1
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
2
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
3
|
Vibrio cholerae OmpR Contributes to Virulence Repression and Fitness at Alkaline pH. Infect Immun 2020; 88:IAI.00141-20. [PMID: 32284367 DOI: 10.1128/iai.00141-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae is a Gram-negative human pathogen and the causative agent of the life-threatening disease cholera. V. cholerae is a natural inhabitant of marine environments and enters humans through the consumption of contaminated food or water. The ability to transition between aquatic ecosystems and the human host is paramount to the pathogenic success of V. cholerae The transition between these two disparate environments requires the expression of adaptive responses, and such responses are most often regulated by two-component regulatory systems such as the EnvZ/OmpR system, which responds to osmolarity and acidic pH in many Gram-negative bacteria. Previous work in our laboratory indicated that V. cholerae OmpR functioned as a virulence regulator through repression of the LysR-family transcriptional regulator aphB; however, the role of OmpR in V. cholerae biology outside virulence regulation remained unknown. In this work, we sought to further investigate the function of OmpR in V. cholerae biology by defining the OmpR regulon through RNA sequencing. This led to the discovery that V. cholerae ompR was induced at alkaline pH to repress genes involved in acid tolerance and virulence factor production. In addition, OmpR was required for V. cholerae fitness during growth under alkaline conditions. These findings indicate that V. cholerae OmpR has evolved the ability to respond to novel signals during pathogenesis, which may play a role in the regulation of adaptive responses to aid in the transition between the human gastrointestinal tract and the marine ecosystem.
Collapse
|
4
|
Díaz-Menéndez M, Alguacil-Guillén M, Bloise I, García-Pallarés M, Mingorance J. A case of otitis externa caused by non-01/non-0139 Vibrio cholerae after exposure at a Mediterranean bathing site. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2018; 31:295-297. [PMID: 29791126 PMCID: PMC6166257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Marta Díaz-Menéndez
- Infectious Diseases Unit, Department of Internal Medicine. University Hospital La Paz-Carlos III, Madrid, Spain
| | - Marina Alguacil-Guillén
- Department of Microbiology and Parasitology. University Hospital La Paz-Carlos III, Madrid, Spain
| | - Ivan Bloise
- Department of Microbiology and Parasitology. University Hospital La Paz-Carlos III, Madrid, Spain
| | | | - Jesús Mingorance
- Department of Microbiology and Parasitology. University Hospital La Paz-Carlos III, Madrid, Spain
| |
Collapse
|
5
|
A study on the existence of Vibrio cholerae non-O1 in the river. Environ Health Prev Med 2014; 20:97-101. [PMID: 25500964 DOI: 10.1007/s12199-014-0430-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVE The aim of the present study is Vibrio cholerae non-O1 existing in river. Bacteria are known to inhabit all kinds of environment. Vibrionaceae is widely distributed in environmental water. Vibrio spp. have been identified as a cause of toxicity in fish and shellfish. One condition affecting the survival of pathogenic microorganisms in environmental water is the salt concentration, and they have been reported to inhabit brackish water. However, V. cholerae non-O1 has also been detected in fresh water, and its properties suggest that it can survive in river water. METHODS Sampling was performed 4 times at 4 points during a 5-month period from July to November at about 1-month intervals from the Sagami River in 1985. River water bacteria were identified, and V. cholera non-O1 isolated. I investigated the relationship between the bacterial flora in river water and the detection of V. cholerae non-O1. RESULTS There were significant differences in the composition of bacterial flora with and without the isolation of V. cholerae non-O1 (Chi-square test) (χ(2) = 24.70 > 22.0 (p = 0.005), df = 8). A correlation between changes in the composition of the river water bacterial flora and detection of V. cholerae non-O1 was identified. CONCLUSION Therefore, V. cholerae non-O1 exists in the river.
Collapse
|
6
|
Sabater-Vidal S, Rodriguez-Martinez E, Igual-Adell R, Gomila-Sard B. Celulitis y sepsis grave por Vibrio cholerae O1 no toxigénico. Enferm Infecc Microbiol Clin 2013; 31:488-9. [DOI: 10.1016/j.eimc.2012.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/27/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
|
7
|
Igbinosa EO, Okoh AI. Vibrio fluvialis: an unusual enteric pathogen of increasing public health concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3628-43. [PMID: 21139853 PMCID: PMC2996184 DOI: 10.3390/ijerph7103628] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023]
Abstract
In developing countries, the fraction of treated wastewater effluents being discharged into watersheds have increased over the period of time, which have led to the deteriorations of the qualities of major rivers in developing nations. Consequently, high densities of disease causing bacteria in the watersheds are regularly reported including incidences of emerging Vibrio fluvialis. Vibrio fluvialis infection remains among those infectious diseases posing a potentially serious threat to public health. This paper addresses the epidemiology of this pathogen; pathogenesis of its disease; and its clinical manifestations in humans.
Collapse
Affiliation(s)
- Etinosa O. Igbinosa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa; E-Mail:
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa; E-Mail:
| |
Collapse
|
8
|
Bacterioplankton diversity and community composition in the Southern Lagoon of Venice. Syst Appl Microbiol 2010; 33:128-38. [PMID: 20227843 DOI: 10.1016/j.syapm.2009.12.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 12/23/2009] [Indexed: 11/21/2022]
Abstract
The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.
Collapse
|
9
|
Biodiversity of prokaryotic communities in sediments of different sub-basins of the Venice lagoon. Res Microbiol 2009; 160:307-14. [DOI: 10.1016/j.resmic.2009.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/15/2009] [Accepted: 04/15/2009] [Indexed: 11/21/2022]
|
10
|
Hjerde E, Lorentzen MS, Holden MT, Seeger K, Paulsen S, Bason N, Churcher C, Harris D, Norbertczak H, Quail MA, Sanders S, Thurston S, Parkhill J, Willassen NP, Thomson NR. The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay. BMC Genomics 2008; 9:616. [PMID: 19099551 PMCID: PMC2627896 DOI: 10.1186/1471-2164-9-616] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/19/2008] [Indexed: 01/05/2023] Open
Abstract
Background The fish pathogen Aliivibrio salmonicida is the causative agent of cold-water vibriosis in marine aquaculture. The Gram-negative bacterium causes tissue degradation, hemolysis and sepsis in vivo. Results In total, 4 286 protein coding sequences were identified, and the 4.6 Mb genome of A. salmonicida has a six partite architecture with two chromosomes and four plasmids. Sequence analysis revealed a highly fragmented genome structure caused by the insertion of an extensive number of insertion sequence (IS) elements. The IS elements can be related to important evolutionary events such as gene acquisition, gene loss and chromosomal rearrangements. New A. salmonicida functional capabilities that may have been aquired through horizontal DNA transfer include genes involved in iron-acquisition, and protein secretion and play potential roles in pathogenicity. On the other hand, the degeneration of 370 genes and consequent loss of specific functions suggest that A. salmonicida has a reduced metabolic and physiological capacity in comparison to related Vibrionaceae species. Conclusion Most prominent is the loss of several genes involved in the utilisation of the polysaccharide chitin. In particular, the disruption of three extracellular chitinases responsible for enzymatic breakdown of chitin makes A. salmonicida unable to grow on the polymer form of chitin. These, and other losses could restrict the variety of carrier organisms A. salmonicida can attach to, and associate with. Gene acquisition and gene loss may be related to the emergence of A. salmonicida as a fish pathogen.
Collapse
Affiliation(s)
- Erik Hjerde
- Department of Molecular Biotechnology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Vibrio cholerae is a versatile bacterium that flourishes in diverse environments, including the human intestine, rivers, lakes, estuaries, and the ocean. Surface attachment is believed to be essential for colonization of all of these natural environments. Previous studies have demonstrated that the vps genes, which encode proteins required for exopolysaccharide synthesis and transport, are required for V. cholerae biofilm development in Luria-Bertani broth. In this work, we showed that V. cholerae forms vps-dependent biofilms and vps-independent biofilms. The vps-dependent and -independent biofilms differ in their environmental activators and in architecture. Our results suggest that environmental activators of vps-dependent biofilm development are present in freshwater, while environmental activators of vps-independent biofilm development are present in seawater. The distinct environmental requirements for the two modes of biofilm development suggest that vps-dependent biofilm development and vps-independent biofilm development may play distinct roles in the natural environment.
Collapse
Affiliation(s)
- Katharine Kierek
- Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
12
|
Abstract
Recently, the role of the environment and climate in disease dynamics has become a subject of increasing interest to microbiologists, clinicians, epidemiologists, and ecologists. Much of the interest has been stimulated by the growing problems of antibiotic resistance among pathogens, emergence and/or reemergence of infectious diseases worldwide, the potential of bioterrorism, and the debate concerning climate change. Cholera, caused by Vibrio cholerae, lends itself to analyses of the role of climate in infectious disease, coupled to population dynamics of pathogenic microorganisms, for several reasons. First, the disease has a historical context linking it to specific seasons and biogeographical zones. In addition, the population dynamics of V. cholerae in the environment are strongly controlled by environmental factors, such as water temperature, salinity, and the presence of copepods, which are, in turn, controlled by larger-scale climate variability. In this review, the association between plankton and V. cholerae that has been documented over the last 20 years is discussed in support of the hypothesis that cholera shares properties of a vector-borne disease. In addition, a model for environmental transmission of cholera to humans in the context of climate variability is presented. The cholera model provides a template for future research on climate-sensitive diseases, allowing definition of critical parameters and offering a means of developing more sophisticated methods for prediction of disease outbreaks.
Collapse
Affiliation(s)
- Erin K Lipp
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | |
Collapse
|
13
|
Chiavelli DA, Marsh JW, Taylor RK. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 2001; 67:3220-5. [PMID: 11425745 PMCID: PMC93004 DOI: 10.1128/aem.67.7.3220-3225.2001] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Accepted: 04/11/2001] [Indexed: 11/20/2022] Open
Abstract
The bacterium Vibrio cholerae, the etiological agent of cholera, is often found attached to plankton, a property that is thought to contribute to its environmental persistence in aquatic habitats. The V. cholerae O1 El Tor biotype and V. cholerae O139 strains produce a surface pilus termed the mannose-sensitive hemagglutinin (MSHA), whereas V. cholerae O1 classical biotype strains do not. Although V. cholerae O1 classical does not elaborate MSHA, the gene is present and expressed at a level comparable to that of the other strains. Since V. cholerae O1 El Tor and V. cholerae O139 have displaced V. cholerae O1 classical as the major epidemic strains over the last fifteen years, we investigated the potential role of MSHA in mediating adherence to plankton. We found that mutation of mshA in V. cholerae O1 El Tor significantly diminished, but did not eliminate, adherence to exoskeletons of the planktonic crustacean Daphnia pulex. The effect of the mutation was more pronounced for V. cholerae O139, essentially eliminating adherence. Adherence of the V. cholerae O1 classical mshA mutant was unaffected. The results suggest that MSHA is a factor contributing to the ability of V. cholerae to adhere to plankton. The results also showed that both biotypes of V. cholerae O1 utilize factors in addition to MSHA for zooplankton adherence. The expression of MSHA and these additional, yet to be defined, adherence factors differ in a serogroup- and biotype-specific manner.
Collapse
Affiliation(s)
- D A Chiavelli
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
14
|
Connell TD, Metzger DJ, Lynch J, Folster JP. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J Bacteriol 1998; 180:5591-600. [PMID: 9791107 PMCID: PMC107616 DOI: 10.1128/jb.180.21.5591-5600.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chiA gene of Vibrio cholerae encodes a polypeptide which degrades chitin, a homopolymer of N-acetylglucosamine (GlcNAc) found in cell walls of fungi and in the integuments of insects and crustaceans. chiA has a coding capacity corresponding to a polypeptide of 846 amino acids having a predicted molecular mass of 88.7 kDa. A 52-bp region with promoter activity was found immediately upstream of the chiA open reading frame. Insertional inactivation of the chromosomal copy of the gene confirmed that expression of chitinase activity by V. cholerae required chiA. Fluorescent analogues were used to demonstrate that the enzymatic activity of ChiA was specific for beta,1-4 glycosidic bonds located between GlcNAc monomers in chitin. Antibodies against ChiA were obtained by immunization of a rabbit with a MalE-ChiA hybrid protein. Polypeptides with antigenic similarity to ChiA were expressed by classical and El Tor biotypes of V. cholerae and by the closely related bacterium Aeromonas hydrophila. Immunoblotting experiments using the wild-type strain 569B and the secretion mutant M14 confirmed that ChiA is an extracellular protein which is secreted by the eps system. The eps system is also responsible for secreting cholera toxin, an oligomeric protein with no amino acid homology to ChiA. These results indicate that ChiA and cholera toxin have functionally similar extracellular transport signals that are essential for eps-dependent secretion.
Collapse
Affiliation(s)
- T D Connell
- Center for Microbial Pathogenesis and Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | |
Collapse
|
15
|
Dalsgaard A. The occurrence of human pathogenic Vibrio spp. and Salmonella in aquaculture*. Int J Food Sci Technol 1998. [DOI: 10.1046/j.1365-2621.1998.3320127.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Chakraborty S, Nair GB, Shinoda S. Pathogenic vibrios in the natural aquatic environment. REVIEWS ON ENVIRONMENTAL HEALTH 1997; 12:63-80. [PMID: 9273923 DOI: 10.1515/reveh.1997.12.2.63] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, members belonging to the genus Vibrio of the family Vibrionaceae have acquired increasing importance because of the association of several of its members with human disease. The most feared of the Vibrio species is Vibrio cholerae, the causative agent of cholera, a devastating disease of global significance. Other important vibrios of medical importance are V. parahemolyticus, V. vulnificus, V. mimicus, and to a lesser extent V. fluvialis, V. furnissii, V. hollisae, and V. damsela. Recent studies have also implicated V. alginolyticus and V. metschnikovii in human disease, although their complete significance has not yet been established. The virulence of all medically important vibrios is aided by a variety of traits that help breach human defenses. In this review, we provide an overview of the environmental distribution of the pathogenic vibrios and the important virulence traits that enable them to cause disease.
Collapse
Affiliation(s)
- S Chakraborty
- National Institute of Cholera & Enteric Diseases, Calcutta, India
| | | | | |
Collapse
|
17
|
Dalsgaard A, Huss HH, H-Kittikun A, Larsen JL. Prevalence of vibrio cholerae and salmonella in a major shrimp production area in Thailand. Int J Food Microbiol 1995; 28:101-13. [PMID: 8751094 DOI: 10.1016/0168-1605(94)00165-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In 1992 and 1993, a 7 months study carried out in a major shrimp-producing area in Southern Thailand to study the prevalence of Vibrio cholerae and Salmonella. A total of 158 samples were examined including water, sediment, shrimp, pelleted feed, shrimp gut, and chicken manure. Salmonella was not recovered from any sample type studied. V. cholerae O1 was isolated from 2 (2%) and V. cholerae non-O1 was isolated from 35 (33%) of 107 samples examined. The occurrence of V. cholerae was not significantly influenced by water salinity, temperature, dissolved oxygen or pH. There was no correlation between fecal coliform counts and the prevalence of V. cholerae. The results indicate that V. cholerae non-O1 is ubiquitous in aquatic environments where shrimp culture is practised under a variety of environmental conditions. The public health significance of non-O1 V. cholerae in shrimp culture remains to be determined. V. cholerae O1 and Salmonella do not appear to constitute a hygienic problem even if chicken manure was used as fertilizer.
Collapse
Affiliation(s)
- A Dalsgaard
- Laboratory of Fish Diseases, Department of Veterinary Microbiology, The Royal Veterinary and Agricultural University, Frederiksberg C, Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Aznar R, Amaro C, Garay E, Alcaide E. Physico-Chemical and Bacteriological Parameters in a Hypereutrophic Lagoon (Albufera Lake, Valencia, Spain). ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0232-4393(11)80215-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Amaro C, Aznar R, Alcaide E, Lemos ML. Iron-binding compounds and related outer membrane proteins in Vibrio cholerae non-O1 strains from aquatic environments. Appl Environ Microbiol 1990; 56:2410-6. [PMID: 2144956 PMCID: PMC184742 DOI: 10.1128/aem.56.8.2410-2416.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A total of 156 strains of Vibrio cholerae non-O1 from aquatic origins were examined for the presence of iron uptake mechanisms and compared with O1 strains and other Vibrio species. All non-O1 strains were able to grow in iron-limiting conditions, with MICs of ethylenediaminedi (O-hydroxyphenylacetic acid) ranging from 20 microM to 2 mM. The production of siderophores was demonstrated by growth in chrome azurol S agar and cross-feeding assays. All strains produced phenolate-type compounds, as assessed by the chemical tests and by bioassays with Salmonella typhimurium enb-7. Some of the strains also promoted the growth of S. typhimurium enb-1 (which can use only enterobactin as a siderophore) as well as some strains of Vibrio anguillarum deficient in the anguibactin-mediated system. The chromatographic analyses and absorption spectra of siderophores extracted from culture supernatants suggest that vibriobactin may be produced by the strains examined. Interestingly, some strains also produced hydroxamate-type compounds, as determined by chemical tests, and were able to promote the growth of an aerobactin-deficient strain of Escherichia coli. These results were confirmed by the absorption spectra and chromatographic analyses of the culture extracts. The synthesis of iron-regulated outer membrane proteins in representative strains was also examined. The molecular sizes of the main induced proteins ranged from 70 to 78 kilodaltons. These results indicate that several iron uptake mechanisms which could be involved in environmental survival and pathogenicity are present in environmental V. cholerae non-O1 strains.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Spain
| | | | | | | |
Collapse
|
20
|
Amaro C, Toranzo AE, González EA, Blanco J, Pujalte MJ, Aznar R, Garay E. Surface and virulence properties of environmental Vibrio cholerae non-O1 from Albufera Lake (Valencia, Spain). Appl Environ Microbiol 1990; 56:1140-7. [PMID: 1692675 PMCID: PMC184356 DOI: 10.1128/aem.56.4.1140-1147.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A total of 140 environmental Vibrio cholerae non-O1 isolates, together with several culture collection strains from both environmental and clinical sources, were studied in relation to hemagglutination, surface hydrophobicity, and the enzymatic, hemolytic, cytotoxic, and enterotoxic activities of their extracellular products. A total of 78 and 62% of the strains produced hemagglutinins and exohemagglutinins, respectively. Four different hemagglutinating and two exohemagglutinating activities were found by using eight sugars in the inhibition assays. Cell-bound mannose-sensitive hemagglutination was detected mainly in chicken blood, whereas fucose-sensitive hemagglutination was recorded only in human blood. Cell-bound hemagglutinin resistant to all sugars tested was the only one related to surface hydrophobicity. The surface properties varied along the growth curves. The non-O1 strains displayed strong enzymatic and hemolytic activities, except for esculin hydrolysis. Of 26 non-O1 isolates selected for cytotoxin and enterotoxin production, 23 showed a wide spectrum of cytotoxic effects on cell lines of poikilothermic and homoiothermic species, but they were weakly enterotoxigenic in the infant mouse test. All extracellular products of cytotoxic strains were proteolytic, lipolytic, and hemolytic, and a high percentage produced hemagglutination of chicken blood. The cytotoxic factors in the non-O1 strains analyzed were not R plasmid mediated.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjasot, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Amaro C, Aznar R, Garay E, Alcaide E. R plasmids in environmental Vibrio cholerae non-O1 strains. Appl Environ Microbiol 1988; 54:2771-6. [PMID: 3214157 PMCID: PMC204371 DOI: 10.1128/aem.54.11.2771-2776.1988] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The occurrence of drug resistance and its plasmid-mediated transferability was investigated in 140 environmental strains of Vibrio cholerae non-O1 and 6 strains of Vibrio cholerae, both O1 and non-O1, of clinical origin. Of the 146 strains tested, 93% were resistant to at least one drug and 74% were resistant to two or more antibiotics. The O1 strains were susceptible to all antibiotics used. A total of 26 of 28 selected resistant wild strains carried R plasmids that were transferable by intraspecific and intergeneric matings. The most common transmissible R factor determined resistance to ampicillin, amoxicillin, and sulfanilamide (30%), followed by resistance to ampicillin and amoxicillin (13%) and resistance to ampicillin, amoxicillin, phosphomycin, and sulfanilamide (9%). Comparison of the three methods of plasmid analysis showed that the method of Birnboim and Doly (Nucleic Acids Res. 7:1513-1523, 1979) without EDTA and lysozyme was optimal for isolation of both large and small plasmids in environmental V. cholerae strains. Most strains harbored more than one plasmid, and the molecular sizes ranged from 1.1 to 74.8 megadaltons. The plasmids of high molecular size (around 74 megadaltons) were responsible for the resistance pattern transferred and were maintained with high stability in the hosts.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Universitat de València, Burjasot, Spain
| | | | | | | |
Collapse
|
22
|
Eyles MJ, Davey GR. Vibrio cholerae and enteric bacteria in oyster-producing areas of two urban estuaries in Australia. Int J Food Microbiol 1988; 6:207-18. [PMID: 3079469 DOI: 10.1016/0168-1605(88)90013-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three sampling sites in oyster-producing areas of 2 estuaries were monitored at intervals of about 2 weeks for 1 year. Oysters (Crassostrea commercialis), water and sediment were examined for Vibrio cholerae, Escherichia coli and Salmonella. V. cholerae was detected in 20, 30 and 11% of oyster, water and sediment samples respectively. The highest incidence was in the autumn (March-May), with few isolations from July to October. Most isolates were non-O1 serotypes. The presence of V. cholerae and the enteric bacteria appeared to be influenced by different, but perhaps overlapping, sets of factors in these high salinity waters. There was no relationship between rainfall or salinity and the detection of V. cholerae, whereas high counts of E. coli in oysters and the presence of Salmonella were correlated wtih rainfall and, to a lesser degree, reduced salinity. High counts of E. coli were correlated with V. cholerae isolations from water and with the presence of Salmonella. Oysters concentrated E. coli effectively. The counts of E. coli in oysters were 7.3 times higher than those in water. Examination of 8 batches of purified and unpurified oysters indicated that purification reduces the incidence of V. cholerae. However V. cholerae was detected in 3 of 25 market samples of oysters, demonstrating that it can be present in oysters throughout the distribution system. The highest V. cholerae count observed in oysters was 3/g.
Collapse
Affiliation(s)
- M J Eyles
- CSIRO Division of Food Research, North Ryde, NSW, Australia
| | | |
Collapse
|
23
|
Nair GB, Sarkar BL, De SP, Chakrabarti MK, Bhadra RK, Pal SC. Ecology ofVibrio cholerae in the freshwater environs of Calcutta, India. MICROBIAL ECOLOGY 1988; 15:203-215. [PMID: 24203001 DOI: 10.1007/bf02011713] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Seasonal incidence ofVibrio cholerae was monitored for a year in a man-made freshwater lake, an open sewage canal, and a pond composed of rainwater accumulations, located in Calcutta.V. cholerae was found in all sites. It exhibited a distinct bimodal seasonal cycle in the lake with a primary peak in August-September and a secondary peak in May-June. Correlation with environmental parameters revealed that temperature and, to a certain extent, pH were the important factors governing the densities ofV. cholerae. In the lake, sediment samples harbored high densities ofV. cholerae immediately after months when peak counts were observed in plankton, suggesting a cycle of cells between sediment and water. At the other sampling areas, no defined seasonality was observed. Instead, high counts ofV. cholerae were observed at these severely polluted sites throughout the study period, including the winter months. All the 15 water samples passed via the ligated loop of rabbits yielded pure cultures ofV. cholerae, indicating that the rabbit intestine selects outV. cholerae from a mixed flora. Uniformly high isolation rates ofV. cholerae were observed from brackish water and freshwater species of export quality prawns.V. cholerae was found to be abundant and was represented by 32 individual Louisiana State University (LSU) serovars, including two new serovars. The 01 serovar could not be isolated from any of the samples examined in this study. It was concluded thatV. cholerae non-01 is common in the freshwater environs of Calcutta.
Collapse
Affiliation(s)
- G B Nair
- National Institute of Cholera and Enteric Diseases, 700 010, Beliaghata, Calcutta, India
| | | | | | | | | | | |
Collapse
|