Prospects and challenges of using electrochemical immunosensors as an alternative detection method for SARS-CoV-2 wastewater-based epidemiology.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;
777:146239. [PMCID:
PMC7934662 DOI:
10.1016/j.scitotenv.2021.146239]
[Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/22/2023]
Abstract
Given its potential applications in confronting the COVID-19 pandemic, wastewater-based epidemiology (WBE) has attracted tremendous attention. Developing a fast, cost-effective, and practical method for SARS-CoV-2 detection in wastewater is of great significance to facilitate future WBE development. By now, the PCR-based approach serves as the reference method and “gold standard” to detect the virus in wastewater. However, we found a trend that the PCR-based method becomes almost an unshakable choice as more and more studies were published regarding SARS-CoV-2 WBE. Of note, the importance of exploring new, alternative approaches for SARS-CoV-2 detection in wastewater should not be underestimated. In this context, the prospect of using electrochemical immunosensors as the alternative detection method was investigated in this survey. Based on the previous efforts towards different virus immunoassay studies and newly published PCR-based COVD-19 WBE works, this survey provides new insights into the electrochemical immunoassay that have been widely adopted in body fluids virus detection, along with an extensive discussion of the detection mechanism, detection performance, past performances, current efforts, and potential challenges with wastewater detection. In the end, this survey concludes that using electrochemical immunosensors to analyze SARS-CoV-2 in wastewater samples quantitatively may have better feasibility and practicability than using the conventional PCR-based approach, especially when considering its fast detection, ease of miniaturization, and potential on-site measurement.
Collapse