1
|
Thakur A, Sharma A, Khaire KC, Moholkar VS, Pathak P, Bhardwaj NK, Goyal A. Two-Step Saccharification of the Xylan Portion of Sugarcane Waste by Recombinant Xylanolytic Enzymes for Enhanced Xylose Production. ACS OMEGA 2021; 6:11772-11782. [PMID: 34056331 PMCID: PMC8153997 DOI: 10.1021/acsomega.1c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 05/10/2023]
Abstract
Sugarcane bagasse (SB) and sugarcane trash (SCT) containing 30% hemicellulose content are the waste from the sugarcane industry. Hemicellulose being heterogeneous, more complex, and less abundant than cellulose remains less explored. The optimized conditions for the pretreatment of SB and SCT for maximizing the delignification are soaking in aqueous ammonia (SAA), 18.5 wt %, followed by heating at 70 °C for 14 h. The optimization of hydrolysis of SAA pretreated (ptd) SB and SCT by the Box-Behnken design in the first step of saccharification by xylanase (CtXyn11A) and α-l-arabinofuranosidase (PsGH43_12) resulted in the total reducing sugar (TRS) yield of xylooligosaccharides (TRS(XOS)) of 93.2 mg/g ptd SB and 85.1 mg/g ptd SCT, respectively. The second step of saccharification by xylosidase (BoGH43) gave the TRS yield of 164.7 mg/g ptd SB and 147.2 mg/g ptd SCT. The high-performance liquid chromatography analysis of hydrolysate obtained after the second step of saccharification showed 69.6% xylan-to-xylose conversion for SB and 64.1% for SCT. This study demonstrated the optimization of the pretreatment method and of the enzymatic saccharification by recombinant xylanolytic enzymes, resulting in the efficient saccharification of ptd hemicellulose to TRS by giving 73.5% conversion for SB and 71.1% for SCT. These optimized conditions for the pretreatment and saccharification of sugarcane waste can also be used at a large scale.
Collapse
Affiliation(s)
- Abhijeet Thakur
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Aakash Sharma
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Kaustubh Chandrakant Khaire
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Vijayanand Suryakant Moholkar
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Puneet Pathak
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Nishi Kant Bhardwaj
- Avantha
Centre for Industrial Research & Development, Paper Mill Campus, Yamuna Nagar, Haryana 135001, India
| | - Arun Goyal
- Carbohydrate
Enzyme Biotechnology Laboratory, Department of Biosciences
and Bioengineering, Center for Energy, Department of Chemical Engineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
- E-mail: . Phone: +91-361-258-2208
| |
Collapse
|
2
|
Wei X, Tsai T, Howe S, Zhao J. Weaning Induced Gut Dysfunction and Nutritional Interventions in Nursery Pigs: A Partial Review. Animals (Basel) 2021; 11:1279. [PMID: 33946901 PMCID: PMC8146462 DOI: 10.3390/ani11051279] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/08/2023] Open
Abstract
Weaning is one of the most stressful events in the life of a pig. Unsuccessful weaning often leads to intestinal and immune system dysfunctions, resulting in poor growth performance as well as increased morbidity and mortality. The gut microbiota community is a complex ecosystem and is considered an "organ," producing various metabolites with many beneficial functions. In this review, we briefly introduce weaning-associated gut microbiota dysbiosis. Then, we explain the importance of maintaining a balanced gut microbiota. Finally, we discuss dietary supplements and their abilities to restore intestinal balance and improve the growth performance of weaning pigs.
Collapse
Affiliation(s)
| | | | | | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA; (X.W.); (T.T.); (S.H.)
| |
Collapse
|
3
|
PUL-Mediated Plant Cell Wall Polysaccharide Utilization in the Gut Bacteroidetes. Int J Mol Sci 2021; 22:ijms22063077. [PMID: 33802923 PMCID: PMC8002723 DOI: 10.3390/ijms22063077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/16/2023] Open
Abstract
Plant cell wall polysaccharides (PCWP) are abundantly present in the food of humans and feed of livestock. Mammalians by themselves cannot degrade PCWP but rather depend on microbes resident in the gut intestine for deconstruction. The dominant Bacteroidetes in the gut microbial community are such bacteria with PCWP-degrading ability. The polysaccharide utilization systems (PUL) responsible for PCWP degradation and utilization are a prominent feature of Bacteroidetes. In recent years, there have been tremendous efforts in elucidating how PULs assist Bacteroidetes to assimilate carbon and acquire energy from PCWP. Here, we will review the PUL-mediated plant cell wall polysaccharides utilization in the gut Bacteroidetes focusing on cellulose, xylan, mannan, and pectin utilization and discuss how the mechanisms can be exploited to modulate the gut microbiota.
Collapse
|
4
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
5
|
Tian DD, Xu XQ, Peng Q, Zhang YW, Zhang PB, Qiao Y, Shi B. Effects of banana powder (Musa acuminata Colla) on the composition of human fecal microbiota and metabolic output using in vitro fermentation. J Food Sci 2020; 85:2554-2564. [PMID: 32677055 DOI: 10.1111/1750-3841.15324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023]
Abstract
Bananas are rich in indigestible carbohydrates and are considered potential whole-fruit prebiotics. To investigate banana-induced changes in the composition of the human gut microbiota and the production of short chain fatty acids (SCFAs), ripe banana (Musa acuminata Colla, Degrees Brix: 22.6 ± 0.2° Bé), from Hainan, China, was powdered and fermented in vitro for 24 hr with the feces of six Chinese donors. The degradation of banana polysaccharides was observed in all six fecal samples. During in vitro fecal fermentation, banana polysaccharides were gradually degraded up to approximately 80%. The production of SCFAs was also measured. The addition of banana powder increased the concentrations of acetate, propionate, and butyrate, with the production of acetate being higher than that of propionate and butyrate. Changes in the human gut microbiota were assessed using high-throughput sequencing of the 16S ribosomal RNA (rRNA) gene. The results indicated that banana powder significantly altered bacterial diversity, increasing the relative abundance of Bacteroides, while maintaining the proportion of Bifidobacterium in the feces. At the same time, banana powder also increased the proportion of Lactobacillus; however, a significant difference was not observed. In summary, banana powder can be utilized by specific bacteria in human intestines, providing data support for the study of the effects of banana powder on the human intestinal health. PRACTICAL APPLICATION: In this study, in vitro batch fermentation was used to evaluate the effect of banana powder on the human intestinal microbial community, and the metabolized products of banana powder were determined. Our study showed that banana powder improved the human intestinal microbial flora and promoted the growth of Bifidobacterium and Bacteroides and could produce beneficial SCFAs (acetate, propionate, and butyrate). This study provided a theoretical basis for the use of banana powder as a potential prebiotic in production applications and our daily diet.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiao-Qing Xu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qing Peng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu-Wei Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Peng-Bo Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu Qiao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Bo Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
6
|
Zhu H, Zeng D, Wang Q, Wang N, Zeng B, Niu L, Ni X. Diarrhea-Associated Intestinal Microbiota in Captive Sichuan Golden Snub-Nosed Monkeys (Rhinopithecus roxellana). Microbes Environ 2018; 33:249-256. [PMID: 30047510 PMCID: PMC6167115 DOI: 10.1264/jsme2.me17163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diarrhea is often associated with marked alterations in the intestinal microbiota, termed dysbiosis; however, limited information is currently available on the intestinal microbiota in captive golden snub-nosed monkeys (Rhinopithecus roxellana) with diarrhea. We herein characterized the fecal microbiota in diarrhea and healthy monkeys using the Illumina MiSeq platform. The concentrations of fecal short-chain fatty acids (SCFAs) and copy numbers of virulence factor genes were also assessed using gas chromatography and quantitative PCR (qPCR), respectively. The results obtained showed that diarrhea monkeys harbored a distinctive microbiota from that of healthy monkeys and had 45% fewer Bacteroidetes. Among healthy subjects, old monkeys had the lowest relative abundance of Bacteroidetes. Linear discriminant analysis coupled with the effect size (LEfSe) and canonical correlation analysis (CCA) identified significant differences in microbial taxa between diarrhea and healthy monkeys. A PICRUSt analysis revealed that several pathogenic genes were enriched in diarrhea monkeys, while glycan metabolism genes were overrepresented in healthy monkeys. A positive correlation was observed between the abundance of nutrition metabolism-related genes and the individual digestive capacities of healthy monkeys. Consequently, the abundance of genes encoding heat stable enterotoxin was significantly higher in diarrhea monkeys than in healthy monkeys (P<0.05). In healthy subjects, adult monkeys had significant higher concentrations of butyrate and total SCFAs than old monkeys (P<0.05). In conclusion, the present study demonstrated that diarrhea had a microbial component and changes in the microbial structure were accompanied by altered systemic metabolic states. These results suggest that pathogens and malabsorption are the two main causes of diarrhea, which are closely related to the microbial structure and functions.
Collapse
Affiliation(s)
- Hui Zhu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University.,Sichuan University of Science and Engineering
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University
| | | | - Ning Wang
- Sichuan University of Science and Engineering.,Department of Parasitology, College of Veterinary, Sichuan Agricultural University
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University
| | - Lili Niu
- Chengdu Wildlife Institute, Chengdu Zoo
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University
| |
Collapse
|
7
|
Zhu H, Zeng D, Wang N, Niu LL, Zhou Y, Zeng Y, Ni XQ. Microbial community and diversity in the feces of Sichuan takin (Budorcas taxicolor tibetana) as revealed by Illumina Miseq sequencing and quantitative real-time PCR. AMB Express 2018; 8:68. [PMID: 29704067 PMCID: PMC5924506 DOI: 10.1186/s13568-018-0599-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
The Sichuan takin (Budorcas taxicolor tibetana) is a rare and endangered ruminant distributed in the eastern Himalayas. However, little information is available regarding the intestinal microbiota of the takin. In this study, Illumina Miseq platform targeting the V4 region of the 16S rRNA was employed to characterize microbial community and diversity in the feces of wild (n = 6) and captive takins (n = 6). The takin exhibited an intestinal microbiota dominated by three phyla: Firmicutes (57.4%), Bacteroidetes (24.2%) and Proteobacteria (12.3%). At family/genus level, Ruminococcaceae, Bacteroidaceae, Acinetobacter, Clostridium, Lachnospiraceae, Rikenellaceae, Bacillus, Comamonas and Spirochaetaceae were dominant. Distinctive microbiotas between wild and captive takins were observed based on microbial community structure, captive takins having significantly higher community diversity. Quantitative real-time PCR were also utilized to monitor predominant bacteria in three Sichuan takin individuals housed in Chengdu Zoo over a half-year period, which showed that microbial communities of the three takins were relatively similar to each other and stable during our study period. Our results suggested that diet was a major driver for shaping microbial community composition.
Collapse
|
8
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Abstract
Mammals rely entirely on symbiotic microorganisms within their digestive tract to gain energy from plant biomass that is resistant to mammalian digestive enzymes. Especially in herbivorous animals, specialized organs (the rumen, cecum, and colon) have evolved that allow highly efficient fermentation of ingested plant biomass by complex anaerobic microbial communities. We consider here the two most intensively studied, representative gut microbial communities involved in degradation of plant fiber: those of the rumen and the human large intestine. These communities are dominated by bacteria belonging to the Firmicutes and Bacteroidetes phyla. In Firmicutes, degradative capacity is largely restricted to the cell surface and involves elaborate cellulosome complexes in specialized cellulolytic species. By contrast, in the Bacteroidetes, utilization of soluble polysaccharides, encoded by gene clusters (PULs), entails outer membrane binding proteins, and degradation is largely periplasmic or intracellular. Biomass degradation involves complex interplay between these distinct groups of bacteria as well as (in the rumen) eukaryotic microorganisms.
Collapse
Affiliation(s)
- Bryan A White
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801;
| | | | | | | |
Collapse
|
10
|
Two new xylanases with different substrate specificities from the human gut bacterium Bacteroides intestinalis DSM 17393. Appl Environ Microbiol 2014; 80:2084-93. [PMID: 24463968 DOI: 10.1128/aem.03176-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Xylan is an abundant plant cell wall polysaccharide and is a dominant component of dietary fiber. Bacteria in the distal human gastrointestinal tract produce xylanase enzymes to initiate the degradation of this complex heteropolymer. These xylanases typically derive from glycoside hydrolase (GH) families 10 and 11; however, analysis of the genome sequence of the xylan-degrading human gut bacterium Bacteroides intestinalis DSM 17393 revealed the presence of two putative GH8 xylanases. In the current study, we demonstrate that the two genes encode enzymes that differ in activity. The xyn8A gene encodes an endoxylanase (Xyn8A), and rex8A encodes a reducing-end xylose-releasing exo-oligoxylanase (Rex8A). Xyn8A hydrolyzed both xylopentaose (X5) and xylohexaose (X6) to a mixture of xylobiose (X2) and xylotriose (X3), while Rex8A hydrolyzed X3 through X6 to a mixture of xylose (X1) and X2. Moreover, rex8A is located downstream of a GH3 gene (xyl3A) that was demonstrated to exhibit β-xylosidase activity and would be able to further hydrolyze X2 to X1. Mutational analyses of putative active site residues of both Xyn8A and Rex8A confirm their importance in catalysis by these enzymes. Recent genome sequences of gut bacteria reveal an increase in GH8 Rex enzymes, especially among the Bacteroidetes, indicating that these genes contribute to xylan utilization in the human gut.
Collapse
|
11
|
Abstract
Bacteria that colonize the mammalian intestine collectively possess a far larger repertoire of degradative enzymes and metabolic capabilities than their hosts. Microbial fermentation of complex non-digestible dietary carbohydrates and host-derived glycans in the human intestine has important consequences for health. Certain dominant species, notably among the Bacteroidetes, are known to possess very large numbers of genes that encode carbohydrate active enzymes and can switch readily between different energy sources in the gut depending on availability. Nevertheless, more nutritionally specialized bacteria appear to play critical roles in the community by initiating the degradation of complex substrates such as plant cell walls, starch particles and mucin. Examples are emerging from the Firmicutes, Actinobacteria and Verrucomicrobium phyla, but more information is needed on these little studied groups. The impact of dietary carbohydrates, including prebiotics, on human health requires understanding of the complex relationship between diet composition, the gut microbiota and metabolic outputs.
Collapse
Affiliation(s)
- Harry J. Flint
- Rowett Institute of Nutrition and Health; University of Aberdeen; Bucksburn, Aberdeen UK,Correspondence to: Harry J. Flint,
| | - Karen P. Scott
- Rowett Institute of Nutrition and Health; University of Aberdeen; Bucksburn, Aberdeen UK
| | - Sylvia H. Duncan
- Rowett Institute of Nutrition and Health; University of Aberdeen; Bucksburn, Aberdeen UK
| | - Petra Louis
- Rowett Institute of Nutrition and Health; University of Aberdeen; Bucksburn, Aberdeen UK
| | - Evelyne Forano
- INRA; UR454 Microbiologie; Saint-Genès Champanelle, France
| |
Collapse
|
12
|
Dodd D, Mackie RI, Cann IKO. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 2010; 79:292-304. [PMID: 21219452 DOI: 10.1111/j.1365-2958.2010.07473.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microbial inhabitants of the bovine rumen fulfil the majority of the normal caloric requirements of the animal by fermenting lignocellulosic plant polysaccharides and releasing short chain fatty acids that are then metabolized by the host. This process also occurs within the human colon, although the fermentation products contribute less to the overall energy requirements of the host. Mounting evidence, however, indicates that the community structure of the distal gut microbiota is a critical factor that influences the inflammatory potential of the immune system thereby impacting the progression of inflammatory bowel diseases. Non-digestible dietary fibre derived from plant material is highly enriched in the lignocellulosic polysaccharides, cellulose and xylan. Members of the Bacteroidetes constitute a dominant phylum in both the human colonic microbiome and the rumen microbial ecosystem. In the current article, we review recent insights into the molecular mechanisms for xylan degradation by rumen and human commensal members of the Bacteroidetes phylum, and place this information in the context of the physiological and metabolic processes that occur within these complex microbial environments.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
13
|
Knudsen KEB, Lærke HN. REVIEW: Rye Arabinoxylans: Molecular Structure, Physicochemical Properties and Physiological Effects in the Gastrointestinal Tract. Cereal Chem 2010. [DOI: 10.1094/cchem-87-4-0353] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Knud Erik Bach Knudsen
- Aarhus University, Faculty of Agricultural Sciences, Department of Animal Health and Bioscience, Blichers Allé 20, DK‐8830 Tjele, Denmark
- Corresponding author. E‐mail:
| | - Helle Nygaard Lærke
- Aarhus University, Faculty of Agricultural Sciences, Department of Animal Health and Bioscience, Blichers Allé 20, DK‐8830 Tjele, Denmark
| |
Collapse
|
14
|
Dodd D, Moon YH, Swaminathan K, Mackie RI, Cann IKO. Transcriptomic analyses of xylan degradation by Prevotella bryantii and insights into energy acquisition by xylanolytic bacteroidetes. J Biol Chem 2010; 285:30261-73. [PMID: 20622018 DOI: 10.1074/jbc.m110.141788] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic depolymerization of lignocellulose by microbes in the bovine rumen and the human colon is critical to gut health and function within the host. Prevotella bryantii B(1)4 is a rumen bacterium that efficiently degrades soluble xylan. To identify the genes harnessed by this bacterium to degrade xylan, the transcriptomes of P. bryantii cultured on either wheat arabinoxylan or a mixture of its monosaccharide components were compared by DNA microarray and RNA sequencing approaches. The most highly induced genes formed a cluster that contained putative outer membrane proteins analogous to the starch utilization system identified in the prominent human gut symbiont Bacteroides thetaiotaomicron. The arrangement of genes in the cluster was highly conserved in other xylanolytic Bacteroidetes, suggesting that the mechanism employed by xylan utilizers in this phylum is conserved. A number of genes encoding proteins with unassigned function were also induced on wheat arabinoxylan. Among these proteins, a hypothetical protein with low similarity to glycoside hydrolases was shown to possess endoxylanase activity and subsequently assigned to glycoside hydrolase family 5. The enzyme was designated PbXyn5A. Two of the most similar proteins to PbXyn5A were hypothetical proteins from human colonic Bacteroides spp., and when expressed each protein exhibited endoxylanase activity. By using site-directed mutagenesis, we identified two amino acid residues that likely serve as the catalytic acid/base and nucleophile as in other GH5 proteins. This study therefore provides insights into capture of energy by xylanolytic Bacteroidetes and the application of their enzymes as a resource in the biofuel industry.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
15
|
Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 2010; 87:2097-105. [PMID: 20532756 DOI: 10.1007/s00253-010-2694-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/08/2023]
Abstract
A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K (m) and V (max) of 1.6 mg ml(-1) and 118 micromol min(-1) mg(-1) on oat spelt xylan, and its optimal temperature and pH for activity were 37 degrees C and pH 6.0, respectively. Its catalytic properties (k (cat)/K (m) = 3,300 ml mg(-1) min(-1)) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.
Collapse
Affiliation(s)
- Caroline Mirande
- INRA, UR Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | | | | | | | | |
Collapse
|
16
|
Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Béra-Maillet C. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1A and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol 2010; 109:451-460. [PMID: 20105245 DOI: 10.1111/j.1365-2672.2010.04671.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To characterize fibre degradation, colonization and fermentation, and xylanase activity of two xylanolytic bacteria Bacteroides xylanisolvens XB1A(T) and Roseburia intestinalis XB6B4 from the human colon. METHODS AND RESULTS The bacteria grew well on all the substrates chosen to represent dietary fibres: wheat and corn bran, pea, cabbage and leek fibres, and also on purified xylans. Roseburia intestinalis colonized the substrates more efficiently than Bact. xylanisolvens. For the two bacteria, 80-99% of the total xylanase activity was associated with the cells whatever the substrate and time of growth. Optimal specific activities of cells were obtained on oat spelt xylan; they were higher than those previously measured for xylanolytic bacteria from the human gut. Roseburia intestinalis produced high molecular mass xylanases (100-70 kDa), while Bact. xylanisolvens produced lower molecular mass enzymes, including a cell-associated xylanase of 37 kDa. CONCLUSIONS The two bacteria display very high xylanolytic activity on the different substrates. Differences were observed on substrate attachment and enzyme systems, suggesting that the two species occupy different niches within the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY This study characterizes xylan degradation by two major species of the human intestine.
Collapse
Affiliation(s)
- C Mirande
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - E Kadlecikova
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - M Matulova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - P Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - A Bernalier-Donadille
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - E Forano
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| | - C Béra-Maillet
- INRA, UR454 Unité de Microbiologie, Centre de Recherches de Clermont-Ferrand/Theix, Saint-Genès-Champanelle, France
| |
Collapse
|
17
|
Hamady ZZR, Farrar MD, Whitehead TR, Holland KT, Lodge JPA, Carding SR. Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins. Microbiology (Reading) 2008; 154:3165-3174. [DOI: 10.1099/mic.0.2008/019109-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zaed Z. R. Hamady
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mark D. Farrar
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Terence R. Whitehead
- Fermentation Biotechnology Research, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Keith T. Holland
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - J. Peter A. Lodge
- School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Simon R. Carding
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Flint HJ, Bayer EA. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann N Y Acad Sci 2008; 1125:280-8. [PMID: 18378598 DOI: 10.1196/annals.1419.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Degradation of lignocellulosic plant material in the mammalian digestive tract is accomplished by communities of anaerobic microorganisms that exist in symbiotic association with the host. Catalytic domains and substrate-binding modules concerned with plant polysaccharide degradation are found in a variety of anaerobic bacteria, fungi, and protozoa from the mammalian gut. The organization of plant cell wall-degrading enzymes, however, varies widely. The cellulolytic gram-positive bacterium Ruminococcus flavefaciens produces an elaborate cellulosomal enzyme complex that is anchored to the bacterial cell wall; assembly of the complex involves at least five different dockerin:cohesin specificities, and the R. flavefaciens genome encodes at least 180 dockerin-containing proteins that encompass a wide array of catalytic and binding activities. On the other hand, in the cellulolytic protozoan, Polyplastron multivesiculatum, individual plant cell wall-degrading enzymes appear to be secreted into food vacuoles, while the gram-negative bacterium Prevotella bryantii appears to possess a sequestration-type system for the utilization of soluble xylans. The system that is employed for polysaccharide utilization must play a major role in defining the ecological niche that each organism occupies within a complex gut community. 16S rRNA analyses are also revealing uncultured bacterial species closely adherent to fibrous substrates in the rumen and in the large intestine of animals and humans. The true complexity, both at a single organism and community level, of the microbial enzyme systems that allow animals to digest plant material is beginning to become apparent.
Collapse
Affiliation(s)
- Harry J Flint
- Microbial Ecology Group, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK.
| | | |
Collapse
|
19
|
Chassard C, Delmas E, Lawson PA, Bernalier-Donadille A. Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:1008-13. [DOI: 10.1099/ijs.0.65504-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
20
|
Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 2008; 6:121-31. [PMID: 18180751 DOI: 10.1038/nrmicro1817] [Citation(s) in RCA: 1100] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The microbiota of the mammalian intestine depend largely on dietary polysaccharides as energy sources. Most of these polymers are not degradable by the host, but herbivores can derive 70% of their energy intake from microbial breakdown--a classic example of mutualism. Moreover, dietary polysaccharides that reach the human large intestine have a major impact on gut microbial ecology and health. Insight into the molecular mechanisms by which different gut bacteria use polysaccharides is, therefore, of fundamental importance. Genomic analyses of the gut microbiota could revolutionize our understanding of these mechanisms and provide new biotechnological tools for the conversion of polysaccharides, including lignocellulosic biomass, into monosaccharides.
Collapse
|
21
|
Louis P, Scott KP, Duncan SH, Flint HJ. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 2008; 102:1197-208. [PMID: 17448155 DOI: 10.1111/j.1365-2672.2007.03322.x] [Citation(s) in RCA: 517] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.
Collapse
Affiliation(s)
- P Louis
- Microbial Ecology Group, Rowett Research Institute, Aberdeen, UK
| | | | | | | |
Collapse
|
22
|
Numan MT, Bhosle NB. Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 2005; 33:247-60. [PMID: 16385399 DOI: 10.1007/s10295-005-0072-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Recently, alpha-L-arabinofuranosidases (EC3.2.1.55) have received increased attention primarily due to their role in the degradation of lignocelluloses as well as their positive effect on the activity of other enzymes acting on lignocelluloses. As a result, these enzymes are used in many biotechnological applications including wine industry, clarification of fruit juices, digestion enhancement of animal feedstuffs and as a natural improver for bread. Moreover, these enzymes could be used to improve existing technologies and to develop new technologies. The production, mechanisms of action, classification, synergistic role, biochemical properties, substrate specificities, molecular biology and biotechnological applications of these enzymes have been reviewed in this article.
Collapse
Affiliation(s)
- Mondher Th Numan
- National Institute Of Oceanography, 403004 Dona Poula, Goa, India.
| | | |
Collapse
|
23
|
Farrar MD, Whitehead TR, Lan J, Dilger P, Thorpe R, Holland KT, Carding SR. Engineering of the gut commensal bacterium Bacteroides ovatus to produce and secrete biologically active murine interleukin-2 in response to xylan. J Appl Microbiol 2005; 98:1191-7. [PMID: 15836489 DOI: 10.1111/j.1365-2672.2005.02565.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS The aim of this work was to engineer a gut commensal bacterium, Bacteroidesovatus, to produce and secrete a biologically active cytokine in a regulated manner as a basis for novel immunotherapies for chronic gut disorders. METHODS AND RESULTS Bacteroides ovatus was engineered to produce murine interleukin-2 (MuIL2) intracellularly in response to xylan in culture media by inserting the MuIL2 gene into the xylanase operon of the organism. A second strain was engineered to secrete MuIL2 by adding Bacteroides fragilis enterotoxin secretion signal sequence to the protein. The recombinant strains produced MuIL2 only in the presence of xylan as determined by ELISA of cell lysates and culture supernatants. The IL2-dependent cell line CTLL-2 was used to demonstrate that MuIL2 produced by both B. ovatus strains was biologically active. This activity could be blocked by an anti-IL2 neutralizing antibody. The xylan-inducible nature of this system was demonstrated by RT-PCR. CONCLUSIONS Bacteroides ovatus was successfully engineered to produce and secrete biologically active MuIL2 in a xylan-inducible manner. SIGNIFICANCE AND IMPACT OF THE STUDY The production and secretion of a biologically active mammalian protein by a member of the gut microflora could lead to the development of new long-term immunotherapies for inflammatory gut diseases.
Collapse
Affiliation(s)
- M D Farrar
- School of Biochemistry and Microbiology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Flint HJ. Polysaccharide Breakdown by Anaerobic Microorganisms Inhabiting the Mammalian Gut. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:89-120. [PMID: 15566977 DOI: 10.1016/s0065-2164(04)56003-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Harry J Flint
- Microbial Genetics Group Rowett Research Institute Bucksburn, Aberdeen, AB21 9SB, United Kingdom.
| |
Collapse
|
25
|
Miyazaki K, Miyamoto H, Mercer DK, Hirase T, Martin JC, Kojima Y, Flint HJ. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B(1)4. J Bacteriol 2003; 185:2219-26. [PMID: 12644492 PMCID: PMC151492 DOI: 10.1128/jb.185.7.2219-2226.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The xylanase gene cluster from the rumen anaerobe Prevotella bryantii B(1)4 was found to include a gene (xynR) that encodes a multidomain regulatory protein and is downstream from the xylanase and beta-xylosidase genes xynA and xynB. Additional genes identified upstream of xynA and xynB include xynD, which encodes an integral membrane protein that has homology with Na:solute symporters; xynE, which is related to the genes encoding acylhydrolases and arylesterases; and xynF, which has homology with the genes encoding alpha-glucuronidases. XynR includes, in a single 833-amino-acid polypeptide, a putative input domain unrelated to other database sequences, a likely transmembrane domain, histidine kinase motifs, response regulator sequences, and a C-terminal AraC-type helix-turn-helix DNA binding domain. Two transcripts (3.7 and 5.8 kb) were detected with a xynA probe, and the start site of the 3.7-kb transcript encoding xynABD was mapped to a position upstream of xynD. The DNA binding domain of XynR was purified after amplification and overexpression in Escherichia coli and was found to bind to a 141-bp DNA fragment from the region immediately upstream of xynD. In vitro transcription assays demonstrated that XynR stimulates transcription of the 3.7-kb transcript. We concluded that XynR acts as a positive regulator that activates expression of xynABD in P. bryantii B(1)4. This is the first regulatory protein that demonstrates significant homology with the two-component regulatory protein superfamily and has been shown to be involved in the regulation of polysaccharidase gene expression.
Collapse
Affiliation(s)
- Kohji Miyazaki
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Gasparic A, Martin J, Daniel AS, Flint HJ. A xylan hydrolase gene cluster in Prevotella ruminicola B(1)4: sequence relationships, synergistic interactions, and oxygen sensitivity of a novel enzyme with exoxylanase and beta-(1,4)-xylosidase activities. Appl Environ Microbiol 1995; 61:2958-64. [PMID: 7487028 PMCID: PMC167572 DOI: 10.1128/aem.61.8.2958-2964.1995] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two genes concerned with xylan degradation were found to be closely linked in the ruminal anaerobe Prevotella ruminicola B(1)4, being separated by an intergenic region of 75 nucleotides. xynA is shown to encode a family F endoxylanase of 369 amino acids, including a putative amino-terminal signal peptide. xynB encodes an enzyme of 319 amino acids, with no obvious signal peptide, that shows 68% amino acid identity with the xsa product of Bacteroides ovatus and 31% amino acid identity with a beta-xylosidase from Clostridium stercorarium; together, these three enzymes define a new family of beta-(1,4)-glycosidases. The activity of the cloned P. ruminicola xynB gene product, but not that of the xynA gene product, shows considerable sensitivity to oxygen. Studied under anaerobic conditions, the XynB enzyme was found to act as an exoxylanase, releasing xylose from substrates including xylobiose, xylopentaose, and birch wood xylan, but was relatively inactive against oat spelt xylan. A high degree of synergy (up to 10-fold stimulation) was found with respect to the release of reducing sugars from oat spelt xylan when XynB was combined with the XynA endoxylanase from P. ruminicola B(1)4 or with endoxylanases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17. Pretreatment with a fungal arabinofuranosidase also stimulated reducing-sugar release from xylans by XynB. In P. ruminicola the XynA and XynB enzymes may act sequentially in the breakdown of xylan.
Collapse
Affiliation(s)
- A Gasparic
- Biotechnical Faculty, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
27
|
Whitehead TR. Nucleotide sequences of xylan-inducible xylanase and xylosidase/arabinosidase genes from Bacteroides ovatus V975. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1244:239-41. [PMID: 7766665 DOI: 10.1016/0304-4165(95)00051-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequences of the xylI and xsa genes of Bacteroides ovatus V975, encoding xylanase and xylosidase activities, were determined. Both genes are part of a xylan-inducible operon, the sequenced region of which also contains a partial open reading frame upstream of the xylanase gene. Deduced amino acid sequence similarly analyses indicate that the xylanase belongs to the Family F series of glycosyl hydrolases.
Collapse
Affiliation(s)
- T R Whitehead
- National Center for Agricultural Utilization Research, USDA, Peoria, IL 61604, USA
| |
Collapse
|
28
|
Gasparic A, Marinsek-Logar R, Martin J, Wallace RJ, Nekrep FV, Flint HJ. Isolation of genes encoding beta-D-xylanase, beta-D-xylosidase and alpha-L-arabinofuranosidase activities from the rumen bacterium Prevotella ruminicola B1(4). FEMS Microbiol Lett 1995; 125:135-41. [PMID: 7875560 DOI: 10.1111/j.1574-6968.1995.tb07349.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prevotella ruminicola B1(4) is a strictly anaerobic, Gram-negative, polysaccharide-degrading rumen bacterium. Xylanase activity in this strain was found to be inducible, the specific activity of cells grown on xylan being increased at least 20-fold by comparison with cells grown on glucose. Ten bacteriophage clones expressing xylanase activity were isolated from a lambda EMBL3 genomic DNA library of P. ruminicola B1(4). These clones were shown to represent four distinct chromosomal regions, based on restriction enzyme analysis and DNA hybridisation. Three groups of clones encoded activity against oat spelt xylan but not carboxymethylcellulose (CMC). In one of these groups, represented by clone 5, activities against pNP-arabinofuranoside and pNP-xyloside were found to be encoded separately from endoxylanase activity. The fourth region encoded activity against CM cellulose and lichen, in addition to xylan, and contains an endoglucanase/xylanase gene isolated previously.
Collapse
Affiliation(s)
- A Gasparic
- Zootechnical Department, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | | | | | | | | | | |
Collapse
|
29
|
Whitehead TR. Analyses of the gene and amino acid sequence of the Prevotella (Bacteroides) ruminicola 23 xylanase reveals unexpected homology with endoglucanases from other genera of bacteria. Curr Microbiol 1993; 27:27-33. [PMID: 7763664 DOI: 10.1007/bf01576830] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA sequence for the xylanase gene from Prevotella (Bacteroides) ruminicola 23 was determined. The xylanase gene encoded for a protein with a molecular weight of 65,740. An apparent leader sequence of 22 amino acids was observed. The promoter region for expression of the xylanase gene in Bacteroides species was identified with a promoterless chloramphenicol acetyltransferase gene. A region of high amino acid homology was found with the proposed catalytic domain of endoglucanases from several organisms, including Butyrivibrio fibrisolvens, Ruminococcus flavefaciens, and Clostridium thermocellum. The cloned xylanase was found to exhibit endoglucanase activity against carboxymethyl cellulose. Analysis of the codon usage for the xylanase gene found a bias towards G and C in the third position in 16 of 18 amino acids with degenerate codons.
Collapse
Affiliation(s)
- T R Whitehead
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|