1
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
2
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
3
|
Liu L, Wang B, Huang A, Zhang H, Li Y, Wang L. Biological characteristics of the bacteriophage LDT325 and its potential application against the plant pathogen Pseudomonas syringae. Front Microbiol 2024; 15:1370332. [PMID: 38533332 PMCID: PMC10964948 DOI: 10.3389/fmicb.2024.1370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Bud blight disease caused by Pseudomonas syringae is a major bacterial disease of tea plants in China. Concerns regarding the emergence of bacterial resistance to conventional copper controls have indicated the need to devise new methods of disease biocontrol. Phage-based biocontrol may be a sustainable approach to combat bacterial pathogens. In this study, a P. syringae phage was isolated from soil samples. Based on morphological characteristics, bacteriophage vB_PsS_LDT325 belongs to the Siphoviridae family; it has an icosahedral head with a diameter of 53 ± 1 nm and nonretractable tails measuring 110 ± 1 nm. The latent period and burst size of the phage were 10 min and 17 plaque-forming units (PFU)/cell, respectively. Furthermore, an analysis of the biological traits showed that the optimal multiplicity of infection (MOI) of the phage was 0.01. When the temperature exceeded 60°C, the phage titer began to decrease. The phage exhibited tolerance to a wide range of pH (3-11) and maintained relatively stable pH tolerance. It showed a high tolerance to chloroform, but was sensitive to ultraviolet (UV) light. The effects of phage LDT325 in treating P. syringae infections in vivo were evaluated using a tea plant. Plants were inoculated with 2 × 107 colony-forming units (CFU)/mL P. syringae using the needle-prick method and air-dried. Subsequently, plants were inoculated with 2 × 107 PFU/mL LDT325 phage. Compared with control plants, the bacterial count was reduced by 1 log10/0.5 g after 4 days in potted tea plants inoculated with the phage. These results underscore the phage as a potential antibacterial agent for controlling P. syringae.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Verhaegen M, Bergot T, Liebana E, Stancanelli G, Streissl F, Mingeot-Leclercq MP, Mahillon J, Bragard C. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective. Front Microbiol 2023; 14:1221478. [PMID: 37440885 PMCID: PMC10333595 DOI: 10.3389/fmicb.2023.1221478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria.
Collapse
Affiliation(s)
- Marie Verhaegen
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Thomas Bergot
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | | | | | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Plant Health Laboratory, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Ramnarine SDBJ, Jayaraman J, Ramsubhag A. copLAB gene prevalence and diversity among Trinidadian Xanthomonas spp. black-rot lesion isolates with variable copper resistance profiles. PeerJ 2023; 11:e15657. [PMID: 37397015 PMCID: PMC10312155 DOI: 10.7717/peerj.15657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Background There has been limited exploration of copLAB genotypes and associated copper resistance phenotypes in Xanthomonas spp. in the southern Caribbean region. An earlier study highlighted a variant copLAB gene cluster found in one Trinidadian Xanthomonas campestris pv. campestris (Xcc) strain (BrA1), with <90% similarity to previously reported Xanthomonas copLAB genes. With only one report describing this copper resistance genotype, the current study investigated the distribution of the BrA1 variant copLAB gene cluster and previously reported forms of copper resistance genes in local Xanthomonas spp. Methods Xanthomonas spp. were isolated from black-rot infected lesions on leaf tissue from crucifer crops at intensively farmed sites with high agrochemical usage in Trinidad. The identity of morphologically identified isolates were confirmed using a paired primer PCR based screen and 16s rRNA partial gene sequencing. MGY agar amended with CuSO4.5H2O up to 2.4 mM was used to establish MIC's for confirmed isolates and group strains as sensitive, tolerant, or resistant to copper. Separate primer pairs targeting the BrA1 variant copLAB genes and those predicted to target multiple homologs found in Xanthomonas and Stenotrophomonas spp. were used to screen copper resistant isolates. Select amplicons were sanger sequenced and evolutionary relationships inferred from global reference sequences using a ML approach. Results Only four copper sensitive/tolerant Xanthomonas sp. strains were isolated, with 35 others classed as copper-resistant from a total population of 45 isolates. PCR detection of copLAB genes revealed two PCR negative copper-resistant resistant strains. Variant copLAB genes were only found in Xcc from the original source location of the BrA1 strain, Aranguez. Other copper-resistant strains contained other copLAB homologs that clustered into three distinct clades. These groups were more similar to genes from X. perforans plasmids and Stenotrophomonas spp. chromosomal homologs than reference Xcc sequences. This study highlights the localisation of the BrA1 variant copLAB genes to one agricultural community and the presence of three distinct copLAB gene groupings in Xcc and related Xanthomonas spp. with defined CuSO4.5H2O MIC. Further characterisation of these gene groups and copper resistance gene exchange dynamics on and within leaf tissue between Xcc and other Xanthomonas species are needed as similar gene clusters showed variable copper sensitivity profiles. This work will serve as a baseline for copper resistance gene characterisation in Trinidad and the wider Caribbean region and can be used to boost already lacking resistant phytopathogen management in the region.
Collapse
|
6
|
Añorga M, Urriza M, Ramos C, Murillo J. Multiple relaxases contribute to the horizontal transfer of the virulence plasmids from the tumorigenic bacterium Pseudomonas syringae pv. savastanoi NCPPB 3335. Front Microbiol 2022; 13:1076710. [PMID: 36578579 PMCID: PMC9791958 DOI: 10.3389/fmicb.2022.1076710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas syringae pv. savastanoi NCPPB 3335 is the causal agent of olive knot disease and contains three virulence plasmids: pPsv48A (pA), 80 kb; pPsv48B (pB), 45 kb, and pPsv48C (pC), 42 kb. Here we show that pB contains a complete MPFT (previously type IVA secretion system) and a functional origin of conjugational transfer adjacent to a relaxase of the MOBP family; pC also contains a functional oriT-MOBP array, whereas pA contains an incomplete MPFI (previously type IVB secretion system), but not a recognizable oriT. Plasmid transfer occurred on solid and in liquid media, and on leaf surfaces of a non-host plant (Phaseolus vulgaris) with high (pB) or moderate frequency (pC); pA was transferred only occasionally after cointegration with pB. We found three plasmid-borne and three chromosomal relaxase genes, although the chromosomal relaxases did not contribute to plasmid dissemination. The MOBP relaxase genes of pB and pC were functionally interchangeable, although with differing efficiencies. We also identified a functional MOBQ mobilization region in pC, which could only mobilize this plasmid. Plasmid pB could be efficiently transferred to strains of six phylogroups of P. syringae sensu lato, whereas pC could only be mobilized to two strains of phylogroup 3 (genomospecies 2). In two of the recipient strains, pB was stably maintained after 21 subcultures in liquid medium. The carriage of several relaxases by the native plasmids of P. syringae impacts their transfer frequency and, by providing functional diversity and redundancy, adds robustness to the conjugation system.
Collapse
Affiliation(s)
- Maite Añorga
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Miriam Urriza
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain,Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra (UPNA), Edificio de Agrobiotecnología, Mutilva Baja, Spain,*Correspondence: Jesús Murillo
| |
Collapse
|
7
|
Liang W, Cheng J, Zhang J, Xiong Q, Jin M, Zhao J. pH-Responsive On-Demand Alkaloids Release from Core-Shell ZnO@ZIF-8 Nanosphere for Synergistic Control of Bacterial Wilt Disease. ACS NANO 2022; 16:2762-2773. [PMID: 35135193 DOI: 10.1021/acsnano.1c09724] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiadong Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
8
|
Caravaca-Fuentes P, Camó C, Oliveras À, Baró A, Francés J, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. A Bifunctional Peptide Conjugate That Controls Infections of Erwinia amylovora in Pear Plants. Molecules 2021; 26:molecules26113426. [PMID: 34198776 PMCID: PMC8201157 DOI: 10.3390/molecules26113426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, peptide conjugates were designed and synthesized by incorporating the antimicrobial undecapeptide BP16 at the C- or N-terminus of the plant defense elicitor peptide flg15, leading to BP358 and BP359, respectively. The evaluation of their in vitro activity against six plant pathogenic bacteria revealed that BP358 displayed MIC values between 1.6 and 12.5 μM, being more active than flg15, BP16, BP359, and an equimolar mixture of BP16 and flg15. Moreover, BP358 was neither hemolytic nor toxic to tobacco leaves. BP358 triggered the overexpression of 6 out of the 11 plant defense-related genes tested. Interestingly, BP358 inhibited Erwinia amylovora infections in pear plants, showing slightly higher efficacy than the mixture of BP16 and flg15, and both treatments were as effective as the antibiotic kasugamycin. Thus, the bifunctional peptide conjugate BP358 is a promising agent to control fire blight and possibly other plant bacterial diseases.
Collapse
Affiliation(s)
- Pau Caravaca-Fuentes
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Cristina Camó
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Jesús Francés
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain; (P.C.-F.); (C.C.); (À.O.); (M.P.); (L.F.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17003 Girona, Spain; (A.B.); (J.F.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +34-660719646
| |
Collapse
|
9
|
Mirzaee H, Neira Peralta NL, Carvalhais LC, Dennis PG, Schenk PM. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. N Biotechnol 2021; 63:54-61. [PMID: 33766789 DOI: 10.1016/j.nbt.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 01/31/2023]
Abstract
Bacteriocins are a diverse group of bacterial antimicrobial peptides (AMPs) that represent potential replacements for current antibiotics due to their novel modes of action. At present, production costs are a key constraint to the use of bacteriocins and other AMPs. Here, we report the production of bacteriocins in planta - a potentially scalable and cost-effective approach for AMP production. Nine bacteriocin genes with three different modes of action and minimal or no post-translational modifications were synthesized, cloned and used to transform Arabidopsis thaliana. To confirm bacteriocin functionality and the potential to use these plants as biofactories, Arabidopsis T3 crude leaf extracts were subjected to inhibition assays against the bacterial pathogens Clavibacter michiganensis subsp. michiganensis (Cmm) and Pseudomonas syringae pv. tomato DC3000 (Pst). Six and seven of nine extracts significantly inhibited Cmm and Pst, respectively. Three bacteriocin genes (plantaricin, enteriocin, and leucocin) were then selected for over-expression in tomato (Solanum lycopersicum). In vitro plant pathogen inhibition assays of T0, T1 and T2 transgenic tomato leaf extracts confirmed antimicrobial activity against both pathogens for all three generations of plants, indicating their potential use as stable biopesticide biofactories. Plantaricin and leucocin-expressing T2 tomato plants were resistant to Cmm, and leucocin-expressing T2 plants were resistant to Pst. This study highlights that plants can be used as biofactories for AMP production and that the expression of bacteriocins in planta may offer new opportunities for disease control in agriculture.
Collapse
Affiliation(s)
- Hooman Mirzaee
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Noelia L Neira Peralta
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia
| | - Lilia C Carvalhais
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia; Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, Ecosciences Precinct, The University of Queensland, Brisbane, Australia
| | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Australia
| | - Peer M Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
van der Putten BCL, Matamoros S, Mende DR, Scholl ER, consortium† COMBAT, Schultsz C. Escherichia ruysiae sp. nov., a novel Gram-stain-negative bacterium, isolated from a faecal sample of an international traveller. Int J Syst Evol Microbiol 2021; 71:004609. [PMID: 33406029 PMCID: PMC8346766 DOI: 10.1099/ijsem.0.004609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/02/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Escherichia comprises five species and at least five lineages currently not assigned to any species, termed 'Escherichia cryptic clades'. We isolated an Escherichia strain from an international traveller and resolved the complete DNA sequence of the chromosome and an IncI multidrug resistance plasmid using Illumina and Nanopore whole-genome sequencing (WGS). Strain OPT1704T can be differentiated from existing Escherichia species using biochemical (VITEK2) and genomic tests [average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH)]. Phylogenetic analysis based on alignment of 16S rRNA sequences and 682 concatenated core genes showed similar results. Our analysis further revealed that strain OPT1704T falls within Escherichia cryptic clade IV and is closely related to cryptic clade III. Combining our analyses with publicly available WGS data of cryptic clades III and IV from Enterobase confirmed the close relationship between clades III and IV (>96 % interclade ANI), warranting assignment of both clades to the same novel species. We propose Escherichia ruysiae sp. nov. as a novel species, encompassing Escherichia cryptic clades III and IV (type strain OPT1704T=NCCB 100732T=NCTC 14359T).
Collapse
Affiliation(s)
- Boas C. L. van der Putten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - S. Matamoros
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - D. R. Mende
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - E. R. Scholl
- Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - COMBAT consortium†
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Schultsz
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Ortega L, Walker KA, Patrick C, Wamishe Y, Rojas A, Rojas CM. Harnessing Pseudomonas protegens to Control Bacterial Panicle Blight of Rice. PHYTOPATHOLOGY 2020; 110:1657-1667. [PMID: 32852258 DOI: 10.1094/phyto-02-20-0045-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial panicle blight of rice is a seedborne disease caused by the bacterium Burkholderia glumae. This disease has affected rice production worldwide and its effects are likely to become more devastating with the continuous increase in global temperatures, especially during the growing season. The bacterium can cause disease symptoms in different tissues and at different developmental stages. In reproductive stages, the bacterium interferes with grain development in the panicles and, as a result, directly affects rice yield. Currently, there are no methods to control the disease because chemical control is not effective and completely resistant cultivars are not available. Thus, a promising approach is the use of antagonistic microorganisms. In this work, we identified one strain of Pseudomonas protegens and one strain of B. cepacia with antimicrobial activity against B. glumae in vitro and in planta. We further characterized the antimicrobial activity of P. protegens and found that this activity is associated with bacterial secretions. Cell-free secretions from P. protegens inhibited the growth of B. glumae in vitro and also prevented B. glumae from causing disease in rice. Although the specific molecules associated with these activities have not been identified, these findings suggest that the secreted fractions from P. protegens could be harnessed as biopesticides to control bacterial panicle blight of rice.
Collapse
Affiliation(s)
- Laura Ortega
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Katherine A Walker
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Casey Patrick
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Yeshi Wamishe
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
- Rice Research and Extension Center, University of Arkansas, Stuttgart, AR 72160, U.S.A
| | - Alejandro Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Clemencia M Rojas
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| |
Collapse
|
12
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Rabiey M, Roy SR, Holtappels D, Franceschetti L, Quilty BJ, Creeth R, Sundin GW, Wagemans J, Lavigne R, Jackson RW. Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microb Biotechnol 2020; 13:1428-1445. [PMID: 32383813 PMCID: PMC7415359 DOI: 10.1111/1751-7915.13585] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial canker is a major disease of Prunus species, such as cherry (Prunus avium). It is caused by Pseudomonas syringae pathovars, including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and the development of bacterial resistance to, traditional copper controls calls for new approaches to disease management. Bacteriophage-based biocontrol could provide a sustainable and natural alternative approach to combat bacterial pathogens. Therefore, seventy phages were isolated from soil, leaf and bark of cherry trees in six locations in the south east of England. Subsequently, their host range was assessed against strains of Pss, Psm1 and Psm2. While these phages lysed different Pss, Psm and some other P. syringae pathovar isolates, they did not infect beneficial bacteria such as Pseudomonas fluorescens. A subset of thirteen phages were further characterized by genome sequencing, revealing five distinct clades in which the phages could be clustered. No known toxins or lysogeny-associated genes could be identified. Using bioassays, selected phages could effectively reduce disease progression in vivo, both individually and in cocktails, reinforcing their potential as biocontrol agents in agriculture.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Shyamali R. Roy
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | | | - Linda Franceschetti
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Billy J. Quilty
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | - Ryan Creeth
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
| | | | - Jeroen Wagemans
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenLeuvenBelgium
| | - Rob Lavigne
- Laboratory of Gene TechnologyDepartment of BiosystemsKU LeuvenLeuvenBelgium
| | - Robert W. Jackson
- School of Biological SciencesUniversity of ReadingKnight BuildingReadingRG6 6AJUK
- School of Biosciences and Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
14
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
15
|
Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1296-1306. [PMID: 31705720 PMCID: PMC7152609 DOI: 10.1111/pbi.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 05/20/2023]
Abstract
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhys W. Grinter
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
School of Biological SciencesCentre for Geometric BiologyMonash UniversityClaytonVictoria3800Australia
| | - Annapaula Correia
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Julian Parkhill
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley RoadCambridgeCB3 0ESUK
| | - Daniel C. Walker
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Joel J. Milner
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
16
|
Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. oryzae. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
17
|
Quintieri L, Fanelli F, Caputo L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019; 8:E372. [PMID: 31480507 PMCID: PMC6769999 DOI: 10.3390/foods8090372] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023] Open
Abstract
Microbial multidrug resistance (MDR) is a growing threat to public health mostly because it makes the fight against microorganisms that cause lethal infections ever less effective. Thus, the surveillance on MDR microorganisms has recently been strengthened, taking into account the control of antibiotic abuse as well as the mechanisms underlying the transfer of antibiotic genes (ARGs) among microbiota naturally occurring in the environment. Indeed, ARGs are not only confined to pathogenic bacteria, whose diffusion in the clinical field has aroused serious concerns, but are widespread in saprophytic bacterial communities such as those dominating the food industry. In particular, fresh dairy products can be considered a reservoir of Pseudomonas spp. resistome, potentially transmittable to consumers. Milk and fresh dairy cheeses products represent one of a few "hubs" where commensal or opportunistic pseudomonads frequently cohabit together with food microbiota and hazard pathogens even across their manufacturing processes. Pseudomonas spp., widely studied for food spoilage effects, are instead underestimated for their possible impact on human health. Recent evidences have highlighted that non-pathogenic pseudomonads strains (P. fluorescens, P. putida) are associated with some human diseases, but are still poorly considered in comparison to the pathogen P. aeruginosa. In addition, the presence of ARGs, that can be acquired and transmitted by horizontal genetic transfer, further increases their risk and the need to be deeper investigated. Therefore, this review, starting from the general aspects related to the physiological traits of these spoilage microorganisms from fresh dairy products, aims to shed light on the resistome of cheese-related pseudomonads and their genomic background, current methods and advances in the prediction tools for MDR detection based on genomic sequences, possible implications for human health, and the affordable strategies to counteract MDR spread.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy.
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
18
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
19
|
Laforest M, Bisaillon K, Ciotola M, Cadieux M, Hébert PO, Toussaint V, Svircev AM. Rapid identification of Erwinia amylovora and Pseudomonas syringae species and characterization of E. amylovora streptomycin resistance using quantitative PCR assays. Can J Microbiol 2019; 65:496-509. [PMID: 30901526 DOI: 10.1139/cjm-2018-0587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erwinia amylovora and Pseudomonas syringae are bacterial phytopathogens responsible for considerable yield losses in commercial pome fruit production. The pathogens, if left untreated, can compromise tree health and economically impact entire commercial fruit productions. Historically, the choice of effective control methods has been limited. The use of antibiotics was proposed as an effective control method. The identification of these pathogens and screening for the presence of antibiotic resistance is paramount in the adoption and implementation of disease control methods. Molecular tests have been developed and accepted for identification and characterization of these disease-causing organisms. We improved existing molecular tests by developing methods that are equal or superior in robustness for identifying E. amylovora or P. syringae while being faster to execute. In addition, the real-time PCR-based detection method for E. amylovora provided complementary information on the susceptibility or resistance to streptomycin of individual isolates. Finally, we describe a methodology and results that compare the aggressiveness of the different bacterial isolates on four apple cultivars. We show that bacterial isolates exhibit different behaviors when brought into contact with various apple varieties and that the hierarchical clustering of symptom severity indicates a population structure, suggesting a genetic basis for host cultivar specificity.
Collapse
Affiliation(s)
- Martin Laforest
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Katherine Bisaillon
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Marie Ciotola
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Mélanie Cadieux
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Pierre-Olivier Hébert
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.,b Department of Biology, Sherbrooke University, 2500 University Boulevard, Sherbrooke, QC J1K 2R1, Canada
| | - Vicky Toussaint
- a Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Antonet M Svircev
- c Agriculture and Agri-Food Canada, 4902 Victoria Avenue North, P.O. Box 6000, Vineland, ON L0R 2E0, Canada
| |
Collapse
|
20
|
Camó C, Bonaterra A, Badosa E, Baró A, Montesinos L, Montesinos E, Planas M, Feliu L. Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Peptides 2019; 112:85-95. [PMID: 30508634 DOI: 10.1016/j.peptides.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023]
Abstract
Recent strong restrictions on the use of pesticides has prompted the search for safer alternatives, being antimicrobial peptides promising candidates. Herein, with the aim of identifying new agents, 15 peptides reported as plant defense elicitors, promiscuous, multifunctional or antimicrobial were selected and tested against six plant pathogenic bacteria of economic importance. Within this set, KSL-W (KKVVFWVKFK-NH2) displayed high antibacterial activity against all the tested pathogens, low hemolysis and low phytotoxicity in tobacco leaves. This peptide was taken as a lead and 49 analogues were designed and synthesized, including N-terminal deletion sequences, peptides incorporating a d-amino acid and lipopeptides. The screening of these sequences revealed that a nine amino acid length was the minimum for activity. The presence of a d-amino acid significantly decreased the hemolysis and endowed KSL-W with the capacity to induce the expression of defense-related genes in tomato plants. The incorporation of an acyl chain led to sequences with high activity against Xanthomonas strains, low hemolysis and phytotoxicity. Therefore, this study demonstrates that KSL-W constitutes an excellent candidate as new agent to control plant diseases and can be considered as a lead to develop derivatives with multifunctional properties, including antimicrobial and plant defense elicitation.
Collapse
Affiliation(s)
- Cristina Camó
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Laura Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain.
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain.
| |
Collapse
|
21
|
Abstract
Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
22
|
Oliveras À, Baró A, Montesinos L, Badosa E, Montesinos E, Feliu L, Planas M. Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens. PLoS One 2018; 13:e0201571. [PMID: 30052685 PMCID: PMC6063448 DOI: 10.1371/journal.pone.0201571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
A collection of 36 lipopeptides were designed from the cecropin A-melittin hybrid peptide BP100 (H-Lys-Lys-Leu-Phe-Lys-Lys-Ile-Leu-Lys-Tyr-Leu-NH2) previously described with activity against phytopathogenic bacteria. These lipopeptides were synthesized on solid-phase and screened for their antimicrobial activity, toxicity and proteolytic stability. They incorporated a butanoyl, a hexanoyl or a lauroyl group at the N-terminus or at the side chain of a lysine residue placed at each position of the sequence. Their antimicrobial activity and hemolysis depended on the fatty acid length and its position. In particular, lipopeptides containing a butanoyl or a hexanoyl chain exhibited the best biological activity profile. In addition, we observed that the incorporation of the acyl group did not induce the overexpression of defense-related genes in tomato. Best lipopeptides were BP370, BP378, BP381, BP387 and BP389, which were highly active against all the pathogens tested (minimum inhibitory concentration of 0.8 to 12.5 μM), low hemolytic, low phytotoxic and significantly stable to protease degradation. This family of lipopeptides might be promising functional peptides useful for plant protection.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| | - Aina Baró
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Laura Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, Girona, Spain
| |
Collapse
|
23
|
Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules 2018; 23:molecules23040815. [PMID: 29614844 PMCID: PMC6017362 DOI: 10.3390/molecules23040815] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022] Open
Abstract
Due to the increasing emergence of drug-resistant pathogenic microorganisms, there is a world-wide quest to develop new-generation antibiotics. Antimicrobial peptides (AMPs) are small peptides with a broad spectrum of antibiotic activities against bacteria, fungi, protozoa, viruses and sometimes exhibit cytotoxic activity toward cancer cells. As a part of the native host defense system, most AMPs target the membrane integrity of the microorganism, leading to cell death by lysis. These membrane lytic effects are often toxic to mammalian cells and restrict their systemic application. However, AMPs containing predominantly either tryptophan or proline can kill microorganisms by targeting intracellular pathways and are therefore a promising source of next-generation antibiotics. A minimum length of six amino acids is required for high antimicrobial activity in tryptophan-rich AMPs and the position of these residues also affects their antimicrobial activity. The aromatic side chain of tryptophan is able to rapidly form hydrogen bonds with membrane bilayer components. Proline-rich AMPs interact with the 70S ribosome and disrupt protein synthesis. In addition, they can also target the heat shock protein in target pathogens, and consequently lead to protein misfolding. In this review, we will focus on describing the structures, sources, and mechanisms of action of the aforementioned AMPs.
Collapse
|
24
|
Güell I, Vilà S, Badosa E, Montesinos E, Feliu L, Planas M. Design, synthesis, and biological evaluation of cyclic peptidotriazoles derived from BPC194 as novel agents for plant protection. Biopolymers 2018; 108. [PMID: 28026016 DOI: 10.1002/bip.23012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/17/2023]
Abstract
The search for novel antimicrobial agents to be used for plant protection has prompted us to design analogues incorporating non-natural amino acids. Herein, we designed and synthesized cyclic peptidotriazoles derived from the lead antimicrobial cyclic peptide c(Lys-Lys-Leu3 -Lys-Lys5 -Phe-Lys-Lys-Leu-Gln) (BPC194). In particular, Leu3 and Lys5 were replaced by a triazolyl alanine, a triazolyl norleucine or a triazolyl lysine. These peptides were screened for their antibacterial activity against Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, and Pseudomonas syringae pv. syringae, for their hemolysis and for their phytotoxicity. Results showed that the type of triazolyl amino acid and the substituent present at the triazole influenced the antibacterial and hemolytic activities. Moreover, the position of this residue was also crucial for the hemolysis. The lead compounds BPC548 and BPC550 exhibited high antibacterial activity (MIC of 3.1 to 25 μM), low hemolysis (19 and 26% at 375 μM, respectively) and low phytotoxicity. Therefore, these analogues could be used as new leads for the development of effective agents to control pathogenic bacteria responsible for plant diseases of economic importance.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Sílvia Vilà
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17003, Girona, Spain
| |
Collapse
|
25
|
Tryptophan-Containing Cyclic Decapeptides with Activity against Plant Pathogenic Bacteria. Molecules 2017; 22:molecules22111817. [PMID: 29072606 PMCID: PMC6150173 DOI: 10.3390/molecules22111817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/03/2022] Open
Abstract
A library of 66 cyclic decapeptides incorporating a Trp residue was synthesized on solid phase and screened against the phytopathogenic bacteria Pseudomonas syringae pv. syringae, Xanthomonas axonopodis pv. vesicatoria, and Erwinia amylovora. The hemolytic activity of these peptides was also evaluated. The results obtained were compared with those of a collection of Phe analogues previously reported. The analysis of the data showed that the presence of the Trp improved the antibacterial activity against these three pathogens. In particular, 40 to 46 Trp analogues displayed lower minimum inhibitory concentration (MIC) values than their corresponding Phe counterparts. Interestingly, 26 Trp-containing sequences exhibited MIC of 0.8 to 3.1 μM against X. axonopodis pv. vesicatoria, 21 peptides MIC of 1.6 to 6.2 μM against P. syringae pv. syringae and six peptides MIC of 6.2 to 12.5 μM against E. amylovora. Regarding the hemolysis, in general, Trp derivatives displayed a percentage of hemolysis comparable to that of their Phe analogues. Notably, 49 Trp-containing cyclic peptides showed a hemolysis ≤ 20% at 125 μM. The peptides with the best biological activity profile were c(LKKKLWKKLQ) (BPC086W) and c(LKKKKWLLKQ) (BPC108W), which displayed MIC values ranging from 0.8 to 12.5 μM and a hemolysis ≤ 8% at 125 μM. Therefore, it is evident that these Trp sequences constitute promising candidates for the development of new agents for use in plant protection.
Collapse
|
26
|
Rational Design of Cyclic Antimicrobial Peptides Based on BPC194 and BPC198. Molecules 2017; 22:molecules22071054. [PMID: 28672817 PMCID: PMC6152393 DOI: 10.3390/molecules22071054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 11/16/2022] Open
Abstract
A strategy for the design of antimicrobial cyclic peptides derived from the lead compounds c(KKLKKFKKLQ) (BPC194) and c(KLKKKFKKLQ) (BPC198) is reported. First, the secondary β-structure of BPC194 and BPC198 was analyzed by carrying out molecular dynamics (MD) simulations. Then, based on the sequence pattern and the β-structure of BPC194 or BPC198, fifteen analogues were designed and synthesized on solid-phase. The best peptides (BPC490, BPC918, and BPC924) showed minimum inhibitory concentration (MIC) values <6.2 μM against Pseudomonas syringae pv. syringae and Xanthomonas axonopodis pv. vesicatoria, and an MIC value of 12.5 to 25 μM against Erwinia amylovora, being as active as BPC194 and BPC198. Interestingly, these three analogues followed the structural pattern defined from the MD simulations of the parent peptides. Thus, BPC490 maintained the parallel alignment of the hydrophilic pairs K¹-K⁸, K²-K⁷, and K⁴-K⁵, whereas BPC918 and BPC924 included the two hydrophilic interactions K³-Q10 and K⁵-K⁸. In short, MD simulations have proved to be very useful for ascertaining the structural features of cyclic peptides that are crucial for their biological activity. Such approaches could be further employed for the development of new antibacterial cyclic peptides.
Collapse
|
27
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A, Sundin GW. Complete sequence and comparative genomic analysis of eight native Pseudomonas syringae plasmids belonging to the pPT23A family. BMC Genomics 2017; 18:365. [PMID: 28486968 PMCID: PMC5424326 DOI: 10.1186/s12864-017-3763-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pPT23A family of plasmids appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. pPT23A-family plasmids (PFPs) are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. The occurrence of repeated sequences including duplicated insertion sequences on PFPs has made obtaining closed plasmid genome sequences difficult. Therefore, our objective was to obtain complete genome sequences from PFPs from divergent P. syringae pathovars and also from strains of P. syringae pv. syringae isolated from different hosts. RESULTS The eight plasmids sequenced ranged in length from 61.6 to 73.8 kb and encoded from 65 to 83 annotated orfs. Virulence genes including type III secretion system effectors were encoded on two plasmids, and one of these, pPt0893-29 from P. syringae pv. tabaci, encoded a wide variety of putative virulence determinants. The PFPs from P. syringae pv. syringae mostly encoded genes of importance to ecological fitness including the rulAB determinant conferring tolerance to ultraviolet radiation. Heavy metal resistance genes encoding resistance to copper and arsenic were also present in a few plasmids. The discovery of part of the chromosomal genomic island GI6 from P. syringae pv. syringae B728a in two PFPs from two P. syringae pv. syringae hosts is further evidence of past intergenetic transfers between plasmid and chromosomal DNA. Phylogenetic analyses also revealed new subgroups of the pPT23A plasmid family and confirmed that plasmid phylogeny is incongruent with P. syringae pathovar or host of isolation. In addition, conserved genes among seven sequenced plasmids within the same phylogenetic group were limited to plasmid-specific functions including maintenance and transfer functions. CONCLUSIONS Our sequence analysis further revealed that PFPs from P. syringae encode suites of accessory genes that are selected at species (universal distribution), pathovar (interpathovar distribution), and population levels (intrapathovar distribution). The conservation of type IV secretion systems encoding conjugation functions also presumably contributes to the distribution of these plasmids within P. syringae populations.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
28
|
Choi J, Baek KH, Moon E. Antimicrobial Effects of a Hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. THE PLANT PATHOLOGY JOURNAL 2014; 30:245-53. [PMID: 25289010 PMCID: PMC4181117 DOI: 10.5423/ppj.oa.02.2014.0011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 05/14/2023]
Abstract
Antimicrobial peptides (AMPs) are small but effective cationic peptides with variable length. In previous study, four hexapeptides were identified that showed antimicrobial activities against various phytopathogenic bacteria. KCM21, the most effective antimicrobial peptide, was selected for further analysis to understand its modes of action by monitoring inhibitory effects of various cations, time-dependent antimicrobial kinetics, and observing cell disruption by electron microscopy. The effects of KCM21 on Gram-negative strain, Pseudomonas syringae pv. tomato DC3000 and Gram-positive strain, Clavibacter michiganensis subsp. michiganensis were compared. Treatment with divalent cations such as Ca(2+) and Mg(2+) inhibited the bactericidal activities of KCM21 significantly against P. syringae pv. tomato DC3000. The bactericidal kinetic study showed that KCM21 killed both bacteria rapidly and the process was faster against C. michiganensis subsp. michiganensis. The electron microscopic analysis revealed that KCM21 induced the formation of micelles and blebs on the surface of P. syringae pv. tomato DC3000 cells, while it caused cell rupture against C. michiganensis subsp. michiganensis cells. The outer membrane alteration and higher sensitivity to Ca(2+) suggest that KCM21 interact with the outer membrane of P. syringae pv. tomato DC3000 cells during the process of killing, but not with C. michiganensis subsp. michiganensis cells that lack outer membrane. Considering that both strains had similar sensitivity to KCM21 in LB medium, outer membrane could not be the main target of KCM21, instead common compartments such as cytoplasmic membrane or internal macromolecules might be a possible target(s) of KCM21.
Collapse
Affiliation(s)
- Jeahyuk Choi
- Department of Biological Science, Ajou University, Suwon 442-749, Korea
- School of Biotechnology, Yeungnam University, Gyengsan 712-749, Korea
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyengsan 712-749, Korea
| | - Eunpyo Moon
- Department of Biological Science, Ajou University, Suwon 442-749, Korea
- Corresponding author. Phone) +82-031-219-2620, FAX) +82-031-219-1615 E-mail)
| |
Collapse
|
29
|
Ashenafi M, Ammosova T, Nekhai S, Byrnes WM. Purification and characterization of aminoglycoside phosphotransferase APH(6)-Id, a streptomycin-inactivating enzyme. Mol Cell Biochem 2013; 387:207-16. [PMID: 24248535 DOI: 10.1007/s11010-013-1886-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
As part of an overall project to characterize the streptomycin phosphotransferase enzyme APH(6)-Id, which confers bacterial resistance to streptomycin, we cloned, expressed, purified, and characterized the enzyme. When expressed in Escherichia coli, the recombinant enzyme increased by up to 70-fold the minimum inhibitory concentration needed to inhibit cell growth. Size-exclusion chromatography gave a molecular mass of 31.4 ± 1.3 kDa for the enzyme, showing that it functions as a monomer. Activity was assayed using three methods: (1) an HPLC-based method that measures the consumption of streptomycin over time; (2) a spectrophotometric method that utilizes a coupled assay; and (3) a radioenzymatic method that detects production of (32)P-labeled streptomycin phosphate. Altogether, the three methods demonstrated that streptomycin was consumed in the APH(6)-Id-catalyzed reaction, ATP was hydrolyzed, and streptomycin phosphate was produced in a substrate-dependent manner, demonstrating that APH(6)-Id is a streptomycin phosphotransferase. Steady-state kinetic analysis gave the following results: K(m)(streptomycin) of 0.38 ± 0.13 mM, K(m)(ATP) of 1.03 ± 0.1 mM, V(max) of 3.2 ± 1.1 μmol/min/mg, and k(cat) of 1.7 ± 0.6 s(-1). Our study demonstrates that APH(6)-Id is a bona fide streptomycin phosphotransferase, functions as a monomer, and confers resistance to streptomycin.
Collapse
Affiliation(s)
- Meseret Ashenafi
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC, 20059, USA
| | | | | | | |
Collapse
|
30
|
Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A. A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. PHYTOPATHOLOGY 2013; 103:1115-1129. [PMID: 24102210 DOI: 10.1094/phyto-04-13-0093-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas syringae pv. syringae, the causal agent of bacterial apical necrosis (BAN) in mango crops, has been isolated in different mango-producing areas worldwide. An extensive collection of 87 P. syringae pv. syringae strains isolated from mango trees affected by BAN from different countries, but mainly from Southern Spain, were initially examined by repetitive sequence-based polymerase chain reaction (rep-PCR) to analyze the genetic diversity with an epidemiological aim. rep-PCR was powerful in assessing intrapathovar distribution and also allowing clustering of the P. syringae pv. syringae strains isolated from mango, depending on the isolation area. A clear pattern of clustering was observed for all the P. syringae pv. syringae strains isolated from mango distinct from strains from other hosts, including strains for the same geographical regions as the mango isolates. For this reason, a representative group of 51 P. syringae pv. syringae strains isolated from mango and other hosts, as well as some P. syringae strains from other pathovars, were further characterized to determine their possible genetic, phenotypic, and phylogenetic relationships. Similar to the rep-PCR results, the randomly amplified polymorphic DNA PCR (RAPD-PCR) and catabolic diversity analysis using the Biolog GN2 profile grouped 90% of the mango isolates together in a unique cluster. Interestingly, the majority of P. syringae pv. syringae strains isolated from mango produced mangotoxin. The analysis of the phylogenetic distribution using the multilocus sequence typing analysis strongly supports the existence of a differentiated phylotype of the pathovar syringae mainly associated with the mango host and characterized by the mangotoxin production.
Collapse
|
31
|
Fones H, Preston GM. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 2013; 37:495-519. [DOI: 10.1111/1574-6976.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
|
32
|
Wang X, Liu X, Han H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.09.044] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Xu Y, Luo QQ, Zhou MG. Identification and characterization of integron-mediated antibiotic resistance in the phytopathogen Xanthomonas oryzae pv. oryzae. PLoS One 2013; 8:e55962. [PMID: 23437082 PMCID: PMC3578876 DOI: 10.1371/journal.pone.0055962] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/04/2013] [Indexed: 12/11/2022] Open
Abstract
Four streptomycin-resistant isolates of Xanthomonas oryzae pv. oryzae (YNA7-1, YNA10-2, YNA11-2, and YNA12-2) were examined via PCR amplification for the presence of class 1, class 2, and class 3 integrons and aadA1 and aadA2 genes, which confer resistance to streptomycin and spectinomycin. The class 1 integrase gene intI1 and the aminoglycoside adenylyltransferase gene aadA1 were identified in all four resistant isolates but not in 25 sensitive isolates. PCR amplifications showed that 7790-bp, 7162-bp, 7790-bp, and 7240-bp resistance integrons with transposition gene modules (tni module) in 3′ conserved segments existed in YNA7-1, YNA10-2, YNA11-2, and YNA12-2, respectively. Subsequent analysis of sequences indicated that the integrons of YNA7-1 and YNA11-2 carried three gene cassettes in the order |aacA3|arr3|aadA1|. The integron of YNA10-2 carried only |arr3|aadA1| gene cassettes. The integron of YNA12-2 lacked a 550-bp sequence including part of intI1 but it still carried |aacA3|arr3|aadA1| gene cassettes. The analysis of inactive mutants and complementation tests confirmed that the aacA3 gene conferred resistance to tobramycin, kanamycin, gentamicin and netilmicin; the arr3 gene conferred resistance to rifampicin; and the aadA1 gene conferred resistance to streptomycin and spectinomycin. The resistance phenotypes of the four isolates corresponded with their resistance gene cassettes, except that YNA7-1 and YNA12-2 did not show rifampicin resistance. Sequence comparison revealed that no gene cassette array in GenBank was in the same order as in the integrons of the four resistant isolates in this study and the aadA1, which was identical in the four resistant isolates, showed 99% identity with aadA1 sequences in GenBank. The result of a stability test showed that the resistance phenotype, the aadA1 gene, and the intI1 gene were completely stable in YNA7-1 and YNA12-2 but unstable in YNA10-2 and YNA11-2. To our knowledge, this is the first report of resistance integron in a phytopathogenic bacteria.
Collapse
Affiliation(s)
- Ying Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Qing-quan Luo
- Shanghai Landscape Gardening Research Institute, Shanghai, China
| | - Ming-guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
34
|
Lamichhane JR, Fabi A, Ridolfi R, Varvaro L. Epidemiological study of hazelnut bacterial blight in central Italy by using laboratory analysis and geostatistics. PLoS One 2013; 8:e56298. [PMID: 23424654 PMCID: PMC3570417 DOI: 10.1371/journal.pone.0056298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Incidence of Xanthomonas arboricola pv. corylina, the causal agent of hazelnut bacterial blight, was analyzed spatially in relation to the pedoclimatic factors. Hazelnut grown in twelve municipalities situated in the province of Viterbo, central Italy was studied. A consistent number of bacterial isolates were obtained from the infected tissues of hazelnut collected in three years (2010-2012). The isolates, characterized by phenotypic tests, did not show any difference among them. Spatial patterns of pedoclimatic data, analyzed by geostatistics showed a strong positive correlation of disease incidence with higher values of rainfall, thermal shock and soil nitrogen; a weak positive correlation with soil aluminium content and a strong negative correlation with the values of Mg/K ratio. No correlation of the disease incidence was found with soil pH. Disease incidence ranged from very low (<1%) to very high (almost 75%) across the orchards. Young plants (4-year old) were the most affected by the disease confirming a weak negative correlation of the disease incidence with plant age. Plant cultivars did not show any difference in susceptibility to the pathogen. Possible role of climate change on the epidemiology of the disease is discussed. Improved management practices are recommended for effective control of the disease.
Collapse
Affiliation(s)
- Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- Hazelnut Research Center, Viterbo, Italy
| | - Alfredo Fabi
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- Hazelnut Research Center, Viterbo, Italy
| | - Roberto Ridolfi
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- Hazelnut Research Center, Viterbo, Italy
| |
Collapse
|
35
|
Gutiérrez-Barranquero JA, de Vicente A, Carrión VJ, Sundin GW, Cazorla FM. Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Appl Environ Microbiol 2013; 79:1028-33. [PMID: 23183969 PMCID: PMC3568574 DOI: 10.1128/aem.02644-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022] Open
Abstract
We describe the genetic organization of a copper-resistant plasmid containing copG and cusCBA genes in the plant pathogen Pseudomonas syringae. Chromosomal variants of czcCBA and a plasmid variant of cusCBA were present in different P. syringae pathovar strains. Transformation of the copper-sensitive Pseudomonas syringae pv. syringae FF5 strain with copG or cusCBA conferred copper resistance, and quantitative real-time PCR (qRT-PCR) experiments confirmed their induction by copper.
Collapse
Affiliation(s)
- José A. Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
36
|
Tolba S, Egan S, Kallifidas D, Wellington EMH. Distribution of streptomycin resistance and biosynthesis genes in streptomycetes recovered from different soil sites. FEMS Microbiol Ecol 2012; 42:269-76. [PMID: 19709287 DOI: 10.1111/j.1574-6941.2002.tb01017.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptomycin resistant streptomycetes were isolated from four diverse sites. Two sites in Germany were sampled and included an agricultural experimental plot of apple trees which had a history of streptomycin application (AR) and a control site without antibiotic application (CR). Two sites in the UK were sampled; a pastureland site which had sewage injection (DW) and an agricultural site (CW). The actinomycete counts indicated a high proportion of streptomycin resistant isolates in the CW soil. Streptomycetes were identified by partial sequencing of the 16S rDNA. PCR product of the hypervariable gamma region of 16S rDNA allowed analysis by denaturing gradient gel electrophoresis to assess the diversity within the isolates. The streptomycin and sewage sludge treated sites showed decreased diversity within streptomycete populations. Isolates were screened for the streptomycin resistance gene, strA, and flanking biosynthesis gene, strB1. Distribution of these genes indicated the prevalence of str genes in the streptomycin treated soil. Evidence of horizontal gene transfer was recorded in isolates identified as Streptomyces platensis recovered from CR and AR sites which had acquired a streptomycin resistance gene homologous to that found in Streptomyces griseus. Members of the latter species were the most abundant streptomycin resistant streptomycetes isolated from all soils.
Collapse
Affiliation(s)
- Sahar Tolba
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
37
|
Draft genome sequence of Pseudomonas syringae pathovar syringae strain FF5, causal agent of stem tip dieback disease on ornamental pear. J Bacteriol 2012; 194:3733-4. [PMID: 22740663 DOI: 10.1128/jb.00567-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae FF5 causes stem tip dieback disease on ornamental pear (Pyrus calleryana). Its genome encodes a complete type III secretion system (T3SS) and HopAC1, HopM1, AvrE1, HopI1, HopAA1, HopJ1, HopAH2, HopAH1, HopAG1, and HopAZ1. Lacking detectable homologues of other T3SS effectors, it may encode novel, undiscovered effectors.
Collapse
|
38
|
Yashiro E, McManus PS. Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PLoS One 2012; 7:e37131. [PMID: 22629357 PMCID: PMC3357425 DOI: 10.1371/journal.pone.0037131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied the effect of many years of streptomycin use in apple orchards on the proportion of phyllosphere bacteria resistant to streptomycin and bacterial community structure. Leaf samples were collected during early July through early September from four orchards that had been sprayed with streptomycin during spring of most years for at least 10 years and four orchards that had not been sprayed. The percentage of cultured phyllosphere bacteria resistant to streptomycin at non-sprayed orchards (mean of 65%) was greater than at sprayed orchards (mean of 50%) (P = 0.0271). For each orchard, a 16S rRNA gene clone library was constructed from leaf samples. Proteobacteria dominated the bacterial communities at all orchards, accounting for 71 of 104 OTUs (determined at 97% sequence similarity) and 93% of all sequences. The genera Massilia, Methylobacterium, Pantoea, Pseudomonas, and Sphingomonas were shared across all sites. Shannon and Simpson's diversity indices and Pielou's evenness index were similar among orchards regardless of streptomycin use. Analysis of Similarity (ANOSIM) indicated that long-term streptomycin treatment did not account for the observed variability in community structure among orchards (R = -0.104, P = 0.655). Other variables, including time of summer, temperature and time at sampling, and relative distance of the orchards from each other, also had no significant effect on bacterial community structure. We conclude that factors other than streptomycin exposure drive both the proportion of streptomycin-resistant bacteria and phylogenetic makeup of bacterial communities in the apple phyllosphere in middle to late summer.
Collapse
Affiliation(s)
- Erika Yashiro
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia S. McManus
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
39
|
Güell I, Micaló L, Cano L, Badosa E, Ferre R, Montesinos E, Bardají E, Feliu L, Planas M. Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides 2012; 33:9-17. [PMID: 22198367 DOI: 10.1016/j.peptides.2011.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 12/31/2022]
Abstract
We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents.
Collapse
Affiliation(s)
- Imma Güell
- LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, E-17071 Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Llop P, Barbé S, López MM. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. TREES (BERLIN, GERMANY : WEST) 2011; 26:31-46. [PMID: 25983394 PMCID: PMC4425259 DOI: 10.1007/s00468-011-0630-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/29/2023]
Abstract
The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees (E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae, which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.
Collapse
Affiliation(s)
- Pablo Llop
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| |
Collapse
|
41
|
Studholme DJ. Application of high-throughput genome sequencing to intrapathovar variation in Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2011; 12:829-38. [PMID: 21726380 PMCID: PMC6640474 DOI: 10.1111/j.1364-3703.2011.00713.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
One reason for the success of Pseudomonas syringae as a model pathogen has been the availability of three complete genome sequences since 2005. Now, at the beginning of 2011, more than 25 strains of P. syringae have been sequenced and many more will soon be released. To date, published analyses of P. syringae have been largely descriptive, focusing on catalogues of genetic differences among strains and between species. Numerous powerful statistical tools are now available that have yet to be applied to P. syringae genomic data for robust and quantitative reconstruction of evolutionary events. The aim of this review is to provide a snapshot of the current status of P. syringae genome sequence data resources, including very recent and unpublished studies, and thereby demonstrate the richness of resources available for this species. Furthermore, certain specific opportunities and challenges in making the best use of these data resources are highlighted.
Collapse
Affiliation(s)
- David J Studholme
- Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
42
|
Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Appl Environ Microbiol 2011; 77:2667-75. [PMID: 21335383 DOI: 10.1128/aem.02759-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A set of 31 undecapeptides, incorporating 1 to 11 d-amino acids and derived from the antimicrobial peptide BP100 (KKLFKKILKYL-NH(2)), was designed and synthesized. This set was evaluated for inhibition of growth of the plant-pathogenic bacteria Erwinia amylovora, Pseudomonas syringae pv. syringae, and Xanthomonas axonopodis pv. vesicatoria, hemolysis, and protease degradation. Two derivatives were as active as BP100, and 10 peptides displayed improved activity, with the all-d isomer being the most active. Twenty-six peptides were less hemolytic than BP100, and all peptides were more stable against protease degradation. Plant extracts inhibited the activity of BP100 as well as that of the d-isomers. Ten derivatives incorporating one d-amino acid each were tested in an infectivity inhibition assay with the three plant-pathogenic bacteria by using detached pear and pepper leaves and pear fruits. All 10 peptides studied were active against E. amylovora, 6 displayed activity against P. syringae pv. syringae, and 2 displayed activity against X. axonopodis pv. vesicatoria. Peptides BP143 (KKLFKKILKYL-NH(2)) and BP145 (KKLFKKILKYL-NH(2)), containing one d-amino acid at positions 4 and 2 (underlined), respectively, were evaluated in whole-plant assays for the control of bacterial blight of pepper and pear and fire blight of pear. Peptide BP143 was as effective as streptomycin in the three pathosystems, was more effective than BP100 against bacterial blight of pepper and pear, and equally effective against fire blight of pear.
Collapse
|
43
|
McGhee GC, Guasco J, Bellomo LM, Blumer-Schuette SE, Shane WW, Irish-Brown A, Sundin GW. Genetic analysis of streptomycin-resistant (Sm(R)) strains of Erwinia amylovora suggests that dissemination of two genotypes is responsible for the current distribution of Sm(R) E. amylovora in Michigan. PHYTOPATHOLOGY 2011; 101:182-191. [PMID: 20923367 DOI: 10.1094/phyto-04-10-0127] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Streptomycin-resistant (Sm(R)) strains of the fire blight pathogen Erwinia amylovora were first isolated in southwest Michigan in 1991. Since that time, resistant strains have progressed northward to other apple-producing regions in the state. A total of 98.7% of Sm(R) strains isolated between 2003 and 2009 in Michigan harbored the strA-strB genes on transposon Tn5393. strA and strB encode phosphotransferase enzymes that modify streptomycin to a nonbactericidal form. Mutational resistance to streptomycin, caused by a point mutation-mediated target-site alteration of the ribosomal S12 protein, occurred in 1.3% of E. amylovora strains from Michigan. Tn5393 was originally introduced to E. amylovora on the plasmid pEa34; thus, the first Sm(R) strains isolated contained both pEa34 and the ubiquitous nonconjugative plasmid pEA29. More recently, we have observed Sm(R) strains in which Tn5393 is present on pEA29, suggesting that the transposon has moved via transposition from pEa34 to pEA29. Almost all of the strains containing Tn5393 on pEA29 had lost pEa34. Of 210 pEA29::Tn5393 plasmids examined, the transposon was inserted at either nucleotide position 1,515 or 17,527. Both of these positions were in noncoding regions of pEA29. Comparative sequencing of the housekeeping genes groEL and potentially variable sequences on pEA29 was done in an attempt to genetically distinguish Sm(R) strains from streptomycin-sensitive (Sm(S)) strains isolated in Michigan. Only 1 nucleotide difference within the total 2,660 bp sequenced from each strain was observed in 2 of 29 strains; multiple sequence differences were observed between the Michigan strains and E. amylovora control strains isolated in the western United States or from Rubus spp. Alterations in virulence observable using an immature pear fruit assay were detected in three of eight Sm(R) strains examined. Our current genetic data indicate that only two Sm(R) strain genotypes (strains containing pEA29::Tn5393 with Tn5393 inserted at either nucleotide position 1,515 or 17,527 on the plasmid) are responsible for the dissemination of Tn5393-encoded streptomycin resistance in Michigan, and that the Sm(R) and Sm(S) strains in Michigan compose a homogenous group.
Collapse
Affiliation(s)
- Gayle C McGhee
- Department of Plant Pathology, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Penaloza-Vazquez A, Sreedharan A, Bender CL. Transcriptional studies of the hrpM/opgH gene in Pseudomonas syringae during biofilm formation and in response to different environmental challenges. Environ Microbiol 2010; 12:1452-67. [PMID: 20132277 DOI: 10.1111/j.1462-2920.2010.02160.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen that causes a rapid dieback on ornamental pear trees. In the present study, the transcriptional expression of hrpM/opgH, algD, hrpR and rpoD was evaluated in P. syringae FF5 and FF5.M2 (hrpM/opgH mutant). The temporal expression of these genes was evaluated during biofilm formation, the hypersensitive reaction (HR) on tobacco plants, and when the bacteria were subjected to different environmental stresses. The results indicate that mutations in hrpM negatively impair several traits including biofilm formation, the ability to cause disease in host plants and the HR in non-host plants, and the expression of hrpR, a regulatory gene modulating the latter two traits. Furthermore, FF5.M2 was decreased in swarming motility and unable to respond to different environmental challenges. Interestingly, FF5.M2 showed an exponential increase in the expression of algD, which is the first gene to be transcribed during the biosynthesis of the alginate, a virulence factor in P. syringae. The expression of both hrpM and algD were required for biofilm formation, and hrpM was expressed earlier than algD during biofilm development. These findings indicate that hrpM expression is required for several traits in P. syringae and plays an important role in how this bacterium responds to environmental challenges.
Collapse
Affiliation(s)
- Alejandro Penaloza-Vazquez
- 127 Noble Research Center, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
45
|
Cazorla FM, Codina JC, Abad C, Arrebola E, Torés JA, Murillo J, Pérez-García A, de Vicente A. 62-kb plasmids harboring rulAB homologues confer UV-tolerance and epiphytic fitness to Pseudomonas syringae pv. syringae mango isolates. MICROBIAL ECOLOGY 2008; 56:283-291. [PMID: 18058161 DOI: 10.1007/s00248-007-9346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/30/2007] [Accepted: 11/08/2007] [Indexed: 05/25/2023]
Abstract
The presence of genetic determinants homologous to rulAB genes for ultraviolet (UV) radiation resistance was determined in a collection of Pseudomonas syringae pv. syringae strains isolated from mango. The potential role of these plasmids in UV tolerance and ecological fitness in the mango phyllosphere was also evaluated. Nearly all of the 62-kb plasmids present in the P. syringae pv. syringae strains hybridized with a rulAB probe, but these 62-kb plasmids showed differences in restriction patterns. In vitro assays of tolerance to UV radiation of P. syringae pv. syringae strains showed a higher survival of the strains harboring the 62-kb plasmids compared to strains lacking plasmids when exposed to UVC or UVA+B fractions. Similar results were observed when transconjugants harboring the 62-kb plasmid were tested. Survival assays were carried out under field conditions, and a higher survival of P. syringae pv. syringae strains harboring 62-kb plasmids under direct solar radiation on the adaxial surface of leaves was also observed. When the assays were carried out in shady areas or on the abaxial surface of leaves, survival time was comparable for all the assayed strains, whether or not they contained a 62-kb plasmid hybridizing to rulAB. Our results indicate that P. syringae pv. syringae strains harboring 62-kb plasmids show an increase in ecological fitness when colonizing the mango phyllosphere.
Collapse
Affiliation(s)
- F M Cazorla
- Grupo de Microbiología y Patología Vegetal-Unidad Asociada CSIC, Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Renick LJ, Cogal AG, Sundin GW. Phenotypic and Genetic Analysis of Epiphytic Pseudomonas syringae Populations from Sweet Cherry in Michigan. PLANT DISEASE 2008; 92:372-378. [PMID: 30769691 DOI: 10.1094/pdis-92-3-0372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A severe outbreak of bacterial canker occurred on sweet cherry in Michigan in 2002. Blossom infection and subsequent canker formation was observed following a prolonged freeze event during bloom. Epiphytic blossom isolates of Pseudomonas syringae were recovered from 39 orchards from the three major cherry-growing areas (southwest [SW], west-central [WC], and northwest [NW]) of Michigan in 2003 and 2004. Average P. syringae populations over 2 years were 4.0, 5.1, and 4.8 log10 CFU/g of blossom tissue from the SW, WC, and NW areas, respectively. In 2003, copper-resistant P. syringae comprised 47.4, 21.1, and 3.1% of the total populations from the SW, WC, and NW areas, respectively, and levels of copper resistance were similar in 2004. Identification of 10 randomly chosen isolates from each orchard using polymerase chain reaction (PCR) assays indicated that 75 and 52% of the isolates from 2003 and 2004, respectively were P. syringae pv. syringae and that 1% and 23% of the isolates from 2003 and 2004, respectively, were P. syringae pv. morsprunorum. In addition, we were unable to determine the pathovar status of approximately 25% of the isolates each year, suggesting that a third P. syringae pathovar also was present in Michigan sweet cherry orchards. Pathogenicity on immature cherry fruit was confirmed for all P. syringae isolates. The frequency of ice nucleation was assessed for 44 individual P. syringae pv. syringae isolates, and the mean number of cells per active ice nucleus was 1,883. Extrapolating from this result, we estimated that active ice nuclei are present on most sweet cherry blossoms in Michigan orchards. Genetic fingerprinting of P. syringae pv. syringae using arbitrarily primed PCR indicated a high level of diversity and a clear differentiation of these organisms from the P. syringae isolates of unknown pathovar. A 2-year field trial evaluating the effect of dormant copper applications in spring and reduced-rate copper applications prior to bloom showed that these treatments were inconsistent in reducing P. syringae populations on blossoms.
Collapse
Affiliation(s)
- Lisa J Renick
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - Andrea G Cogal
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| | - George W Sundin
- Department of Plant Pathology, Michigan State University, East Lansing 48824
| |
Collapse
|
47
|
Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, Bardají E, Montesinos E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 2007; 28:2276-85. [PMID: 17980935 DOI: 10.1016/j.peptides.2007.09.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
A 125-member library of synthetic linear undecapeptides was prepared based on a previously described peptide H-K(1)KLFKKILKF(10)L-NH(2) (BP76) that inhibited in vitro growth of the plant pathogenic bacteria Erwinia amylovora, Xanthomonas axonopodis pv. vesicatoria, and Pseudomonas syringae pv. syringae at low micromolar concentrations. Peptides were designed using a combinatorial chemistry approach by incorporating amino acids possessing various degrees of hydrophobicity and hydrophilicity at positions 1 and 10 and by varying the N-terminus. Library screening for in vitro growth inhibition identified 27, 40 and 113 sequences with MIC values below 7.5 microM against E. amylovora, P. syringae and X. axonopodis, respectively. Cytotoxicity, bactericidal activity and stability towards protease degradation of the most active peptides were also determined. Seven peptides with a good balance between antibacterial and hemolytic activities were identified. Several analogues displayed a bactericidal effect and low susceptibility to protease degradation. The most promising peptides were tested in vivo by evaluating their preventive effect of inhibition of E. amylovora infection in detached apple and pear flowers. The peptide H-KKLFKKILKYL-NH(2) (BP100) showed efficacies in flowers of 63-76% at 100 microM, being more potent than BP76 and only less effective than streptomycin, currently used for fire blight control.
Collapse
Affiliation(s)
- Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-CeRTA, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ma Z, Smith JJ, Zhao Y, Jackson RW, Arnold DL, Murillo J, Sundin GW. Phylogenetic analysis of the pPT23A plasmid family of Pseudomonas syringae. Appl Environ Microbiol 2007; 73:1287-95. [PMID: 17114318 PMCID: PMC1828660 DOI: 10.1128/aem.01923-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022] Open
Abstract
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.
Collapse
Affiliation(s)
- Zhonghua Ma
- Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT. Bacteriophages for plant disease control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:245-62. [PMID: 17386003 DOI: 10.1146/annurev.phyto.45.062806.094411] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of phages for disease control is a fast expanding area of plant protection with great potential to replace the chemical control measures now prevalent. Phages can be used effectively as part of integrated disease management strategies. The relative ease of preparing phage treatments and low cost of production of these agents make them good candidates for widespread use in developing countries as well. However, the efficacy of phages, as is true of many biological control agents, depends greatly on prevailing environmental factors as well as on susceptibility of the target organism. Great care is necessary during development, production and application of phage treatments. In addition, constant monitoring for the emergence of resistant bacterial strains is essential. Phage-based disease control management is a dynamic process with a need for continuous adjustment of the phage preparation in order to effectively fight potentially adapting pathogenic bacteria.
Collapse
Affiliation(s)
- J B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Monroc S, Badosa E, Besalú E, Planas M, Bardají E, Montesinos E, Feliu L. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 2006; 27:2575-84. [PMID: 16762457 DOI: 10.1016/j.peptides.2006.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/02/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Cyclic decapeptides were developed based on the previously reported peptide c(LysLeuLysLeuLysPheLysLeuLysGln). These compounds were active against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae and Xanthomonas vesicatoria. A library of 56 cyclic decapeptides was prepared and screened for antibacterial activity and eukaryotic cytotoxicity, and led to the identification of peptides with improved minimum inhibitory concentration (MIC) against P. syringae (3.1-6.2 microM) and X. vesicatoria (1.6-3.1 microM). Notably, peptides active against E. amylovora (MIC of 12.5-25 microM) were found, constituting the first report of cyclic peptides with activity towards this bacteria. A second library based on the structure c(X(1)X(2)X(3)X(4)LysPheLysLysLeuGln) with X being Lys or Leu yielded peptides with optimized activity profiles. The activity against E. amylovora was further improved (MIC of 6.2-12.5 microM) and the best peptides displayed a low eukaryotic cytotoxicity at concentrations 30-120 times higher than the MIC values. A design of experiments permitted to define rules for high antibacterial activity and low cytotoxicity, being the main rule X(2) not equal X(3), and the secondary rule X(4)=Lys. The best analogs can be considered as good candidates for the development of effective antibacterial agents for use in plant protection.
Collapse
Affiliation(s)
- Sylvie Monroc
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | |
Collapse
|