1
|
Moroz N, Colvin B, Jayasinghe S, Gleason C, Tanaka K. Phytocytokine StPep1-Secreting Bacteria Suppress Potato Powdery Scab Disease. PHYTOPATHOLOGY 2024; 114:2055-2063. [PMID: 38970808 DOI: 10.1094/phyto-01-24-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Benjamin Colvin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Samodya Jayasinghe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| |
Collapse
|
2
|
French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. Emerging strategies for precision microbiome management in diverse agroecosystems. NATURE PLANTS 2021; 7:256-267. [PMID: 33686226 DOI: 10.1038/s41477-020-00830-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2020] [Indexed: 05/18/2023]
Abstract
Substantial efforts to characterize the structural and functional diversity of soil, plant and insect-associated microbial communities have illuminated the complex interacting domains of crop-associated microbiomes that contribute to agroecosystem health. As a result, plant-associated microorganisms have emerged as an untapped resource for combating challenges to agricultural sustainability. However, despite growing interest in maximizing microbial functions for crop production, resource efficiency and stress resistance, research has struggled to harness the beneficial properties of agricultural microbiomes to improve crop performance. Here, we introduce the historical arc of agricultural microbiome research, highlighting current progress and emerging strategies for intentional microbiome manipulation to enhance crop performance and sustainability. We synthesize current practices and limitations to managing agricultural microbiomes and identify key knowledge gaps in our understanding of microbe-assisted crop production. Finally, we propose research priorities that embrace a holistic view of crop microbiomes for achieving precision microbiome management that is tailored, predictive and integrative in diverse agricultural systems.
Collapse
Affiliation(s)
- Elizabeth French
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Anjali Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Laramy Enders
- Department of Entomology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
4
|
Nag P, Shriti S, Das S. Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 2020; 129:186-198. [PMID: 31858682 DOI: 10.1111/jam.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
In an agro-ecosystem, industrially produced nitrogenous fertilizers are the principal sources of nitrogen for plant growth; unfortunately these also serve as the leading sources of pollution. Hence, it becomes imperative to find pollution-free methods of providing nitrogen to crop plants. A diverse group of free-living, plant associative and symbiotic prokaryotes are able to perform biological nitrogen fixation (BNF). BNF is a two component process involving the nitrogen fixing diazotrophs and the host plant. Symbiotic nitrogen fixation is most efficient as it can fix nitrogen inside the nodule formed on the roots of the plant; delivering nitrogen directly to the host. However, most of the important crop plants are nonleguminous and are unable to form symbiotic associations. In this context, the plant associative and endophytic diazotrophs assume importance. BNF in nonlegumes can be encouraged either through the transfer of BNF traits from legumes or by elevating the nitrogen fixing capacity of the associative and endophytic diazotrophs. In this review we discuss mainly the microbiological strategies which may be used in nonleguminous crops for enhancement of BNF.
Collapse
Affiliation(s)
- P Nag
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - S Shriti
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| | - S Das
- Division of Plant Biology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
5
|
|
6
|
Provorov NA, Onishchuk OP, Yurgel SN, Kurchak ON, Chizhevskaya EP, Vorobyov NI, Zatovskaya TV, Simarov BV. Construction of highly-effective symbiotic bacteria: Evolutionary models and genetic approaches. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414110118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Geetha SJ, Joshi SJ. Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. ScientificWorldJournal 2013; 2013:315890. [PMID: 24319357 PMCID: PMC3836376 DOI: 10.1155/2013/315890] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
Under field conditions, inoculated rhizobial strains are at a survival disadvantage as compared to indigenous strains. In order to out-compete native rhizobia it is not only important to develop strong nodulation efficiency but also increase their competence in the soil and rhizosphere. Competitive survival of the inoculated strain may be improved by employing strain selection and by genetic engineering of superior nitrogen fixing strains. Iron sufficiency is an important factor determining the survival and nodulation by rhizobia in soil. Siderophores, a class of ferric specific ligands that are involved in receptor specific iron transport into bacteria, constitute an important part of iron acquisition systems in rhizobia and have been shown to play a role in symbiosis as well as in saprophytic survival. Soils predominantly have iron bound to hydroxamate siderophores, a pool that is largely unavailable to catecholate-utilizing rhizobia. Outer membrane receptors for uptake of ferric hydroxamates include FhuA and FegA which are specific for ferrichrome siderophore. Increase in nodule occupancy and enhanced plant growth of the fegA and fhuA expressing engineered bioinoculants rhizobial strain have been reported. Engineering rhizobia for developing effective bioinoculants with improved ability to utilize heterologous siderophores could provide them with better iron acquisition ability and consequently, rhizospheric stability.
Collapse
Affiliation(s)
- S. J. Geetha
- Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Sanket J. Joshi
- Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| |
Collapse
|
8
|
Olivares J, Bedmar EJ, Sanjuán J. Biological nitrogen fixation in the context of global change. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:486-494. [PMID: 23360457 DOI: 10.1094/mpmi-12-12-0293-cr] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.
Collapse
Affiliation(s)
- José Olivares
- Dpto. Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, Granada, Spain
| | | | | |
Collapse
|
9
|
Prakash D, Verma S, Bhatia R, Tiwary BN. Risks and Precautions of Genetically Modified Organisms. ACTA ACUST UNITED AC 2011. [DOI: 10.5402/2011/369573] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Commercial potential of biotechnology is immense since the scope of its activity covers the entire spectrum of human life. The most potent biotechnological approach is the transfer of specifically constructed gene assemblies through various techniques. However, this deliberate modification and the resulting entities thereof have become the bone of contention all over the world. Benefits aside, genetically modified organisms (GMOs) have always been considered a threat to environment and human health. In view of this, it has been considered necessary by biosafety regulations of individual countries to test the feasibility of GMOs in contained and controlled environments for any potential risks they may pose. This paper describes the various aspects of risk, its assessment, and management which are imperative in decision making regarding the safe use of GMOs. Efficient efforts are necessary for implementation of regulations. Importance of the risk assessment, management, and precautionary approach in environmental agreements and activism is also discussed.
Collapse
Affiliation(s)
- Dhan Prakash
- Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh 160036, India
| | - Sonika Verma
- Department of Biotechnology, UIET, Punjab University, Chandigarh, India
| | - Ranjana Bhatia
- Institute of Microbial Technology (CSIR), Sector 39A, Chandigarh 160036, India
| | - B. N. Tiwary
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, India
| |
Collapse
|
10
|
O'flaherty S, Moenne-Loccoz Y, Boesten B, Higgins P, Dowling DN, Condon S, O'gara F. Greenhouse and Field Evaluations of an Autoselective System Based on an Essential Thymidylate Synthase Gene for Improved Maintenance of Plasmid Vectors in Modified Rhizobium meliloti. Appl Environ Microbiol 2010; 61:4051-6. [PMID: 16535168 PMCID: PMC1388604 DOI: 10.1128/aem.61.11.4051-4056.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of the thy autoselective system, based on an essential thymidylate synthase gene, for enhanced maintenance of plasmid vectors in Rhizobium meliloti was evaluated in the greenhouse and with field-grown alfalfa. The thy autoselective system consists of a free-replicating, broad-host-range plasmid vector containing a copy of the thyA gene from Lactococcus lactis subsp. lactis and a spontaneous mutant of R. meliloti deficient in thymidylate synthase (Thy(sup-)). Under greenhouse conditions, Thy(sup-) rhizobia did not persist in rooting solution alone unless supplemented with thymidine but survived in the presence of the host plant. Nodules formed on alfalfa plants grown in thymidine-free rooting solution and inoculated with Thy(sup-) rhizobia contained only Thy(sup+) revertants. In soil, Thy(sup-) rhizobia were compromised and failed to nodulate alfalfa. Thy(sup-) mutants containing a thy plasmid survived in the rhizosphere and nodulated alfalfa like the wild-type strain. The thy autoselective system was tested in the field with Thy(sup-) strain Rm24T and pPR602, a thy plasmid vector devoid of antibiotic resistance genes and marked with constitutively expressed lacZY. At 80 days after sowing, most rhizobia isolated from the nodules of field-grown alfalfa inoculated with Rm42T(pPR602) contained pPR602. The thy autoselective system proved useful to ensure maintenance of the plasmid vector under greenhouse and field conditions in R. meliloti.
Collapse
|
11
|
Scupham AJ, Bosworth AH, Ellis WR, Wacek TJ, Albrecht KA, Triplett EW. Inoculation with Sinorhizobium meliloti RMBPC-2 Increases Alfalfa Yield Compared with Inoculation with a Nonengineered Wild-Type Strain. Appl Environ Microbiol 2010; 62:4260-2. [PMID: 16535451 PMCID: PMC1388989 DOI: 10.1128/aem.62.11.4260-4262.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inoculation of alfalfa seeds with any of three recombinant strains of Sinorhizobium meliloti significantly increased overall plant biomass compared with inoculation with the wild-type strains over a 3-year period at three locations. A high proportion of nodules were occupied by the inoculum strains throughout the 3-year period.
Collapse
|
12
|
Van Overbeek LS, Van Veen JA, Van Elsas JD. Induced Reporter Gene Activity, Enhanced Stress Resistance, and Competitive Ability of a Genetically Modified Pseudomonas fluorescens Strain Released into a Field Plot Planted with Wheat. Appl Environ Microbiol 2010; 63:1965-73. [PMID: 16535606 PMCID: PMC1389161 DOI: 10.1128/aem.63.5.1965-1973.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fates of Pseudomonas fluorescens R2fR and its mutant derivative RIWE8, which contains a lacZ reporter gene responsive to wheat root exudate, were compared in a field microplot. Inoculant survival, root colonization, translocation, resistance to stress factors, and reporter gene activity were assessed in bulk and wheat rhizosphere soils. Populations of both strains declined gradually in bulk and wheat rhizosphere soils and on the wheat rhizoplane as determined by specific CFU and immunofluorescence (IF). In samples from both bulk soil and wheat rhizosphere, IF cell counts were up to 3 orders of magnitude greater than the corresponding numbers of CFU after 120 days, indicating the presence of nonculturable inoculant cells. Estimates of RIWE8-specific target DNA molecule numbers in bulk soil samples 3 and 120 days after inoculation by most-probable-number PCR coincided with the corresponding CFU values. Transport of both strains to deeper soil layers was observed by 3 days after introduction into the microplot. Both strains colonized wheat roots similarly, and cells were seen scattered on the surface of 1-month-old wheat seedling roots by immunogold labelling-scanning electron microscopy. On average, reporter gene activity was significantly higher in wheat rhizosphere soil containing RIWE8 cells than in bulk soil or in soils containing R2fR cells. For both strains, resistance to the four stress factors ethanol, high temperature, high osmotic tension, and oxidative stress increased progressively with residence in soil. Cells from the rhizosphere of 11-day-old seedlings showed similar levels of resistance to osmotic and oxidative stresses and enhanced resistance to ethanol and heat as compared to cells from bulk soil. By 37 days, populations of R2fR and RIWE8 in the rhizosphere were significantly more sensitive to osmotic stress than were populations in bulk soil, whereas differences in response to the other stress factors were less evident. Hence, except for the induction of reporter gene expression in strain RIWE8 in the wheat rhizosphere, the data indicated that there were no great differences in the ecological properties in soil between the lacZ-modified and parental strains.
Collapse
|
13
|
Abstract
Rhizobia are agriculturally important bacteria that can form nitrogen-fixing nodules on the roots of leguminous plants. Agricultural application of rhizobial inoculants can play an important role in increasing leguminous crop yields. In temperate rhizobia, genes involved in nodulation and nitrogen fixation are usually located on one or more large plasmids (pSyms) or on symbiotic islands. In addition, other large plasmids of rhizobia carry genes that are beneficial for survival and competition of rhizobia in the rhizosphere. Conjugative transfer of these large plasmids thus plays an important role in the evolution of rhizobia. Therefore, understanding the mechanism of conjugative transfer of large rhizobial plasmids provides foundations for maintaining, monitoring, and predicting the behaviour of these plasmids during field release events. In this minireview, we summarize two types of known rhizobial conjugative plasmids, including quorum sensing regulated plasmids and RctA-repressed plasmids. We provide evidence for the existence of a third type of conjugative plasmid, including pRleVF39c in Rhizobium leguminosarum bv. viciae strain VF39SM, and we provide a comparison of the different types of conjugation genes found in members of the rhizobia that have had their genomes sequenced so far.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biological Sciences, University of Calgary, AB, Canada
| | | |
Collapse
|
14
|
Tikhonovich IA, Provorov NA. Cooperation of plants and microorganisms: getting closer to the genetic construction of sustainable agro-systems. Biotechnol J 2007; 2:833-48. [PMID: 17506027 DOI: 10.1002/biot.200700014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular research into two types of beneficial plant-microbe symbioses is reviewed: nutritional (with N(2)-fixing bacteria or mycorrhizal fungi) and defensive (with endo- and epiphytic microbes suppressing pathogens and phytophagans). These symbioses are based on the signaling interactions that result in the development of novel tissue/cellular structures and of extended metabolic capacities in the partners, which greatly improve the adaptive potential of plants due to a decrease in their sensitivity to biotic and abiotic stresses. The molecular, genetic and ecological knowledge on plant-microbe interactions provides a strategy for the organization of sustainable crop production based on substituting the agrochemicals (mineral fertilizers, pesticides) by microbial inoculants. An improvement of plant-microbe symbioses should involve the coordinated modifications in the partners' genotypes resulting in highly complementary combinations. These modifications should be based on the broad utilization of genetic resources from natural symbiotic systems aimed at: (i) increased competitiveness of the introduced (effective) with respect to local (ineffective) microbial strains, and (ii) overcoming the limiting steps in the metabolic machineries of the symbiotic systems.
Collapse
Affiliation(s)
- Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | | |
Collapse
|
15
|
Selbitschka W, Keller M, Miethling-Graff R, Dresing U, Schwieger F, Krahn I, Homann I, Dammann-Kalinowski T, Pühler A, Tebbe CC. Long-term field release of bioluminescent Sinorhizobium meliloti strains to assess the influence of a recA mutation on the strains' survival. MICROBIAL ECOLOGY 2006; 52:583-95. [PMID: 16924432 DOI: 10.1007/s00248-006-9056-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 09/27/2005] [Accepted: 10/17/2005] [Indexed: 05/08/2023]
Abstract
A field release experiment was carried out to study the fate of the isogenic, firefly luciferase (luc) gene-tagged Sinorhizobium meliloti strains L1 (RecA-) and L33 (RecA+) in the environment. Both strains were released at concentrations of approximately 10(6) cfu g(-1) soil in replicate and randomized field plots, which had been sown with alfalfa (Medicago sativa). The survival of both strains during the following 7 years could be subdivided into three phases: a sharp decline for more than two orders of magnitude within the first 4 months (phase I), followed by fluctuations around an average number of 10(4) cfu g(-1) soil for nearly 4 years (phase II), and a further decline to approximately 60 cfu g(-1) (phase III). At most sampling dates, no significant differences in the survival of both strains were detected, indicating that the recA gene function was dispensable under these environmental conditions. During the field inoculation, both strains were dispersed accidentally by wind in small numbers to noninoculated field plots. Strain L33 established at a concentration of more than 10(3) cfu g(-1) soil with subsequent seasonal fluctuations. Although strain L1 must have been disseminated to a similar extent, it could never be recovered from noninoculated field plots, indicating that the recA mutation interfered with the strain's capability to establish there. At the beginning of the field experiment, an indigenous alfalfa-nodulating population was below the limit of detection. In the following years, however, an indigenous population arose, which finally outcompeted both strains for saprophytic growth and alfalfa nodulation. RecA- strain L1 was outcompeted for alfalfa nodulation slightly faster than its RecA+ counterpart L33. The diversity of the indigenous population was characterized by employing the Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction fingerprint method. Typing of 2731 root nodule isolates revealed a total of 38 fingerprint groups. More than 80% of the isolates could be grouped into six dominant fingerprint groups, indicating that a few dominant bacterial strain types had outcompeted the released strains.
Collapse
Affiliation(s)
- W Selbitschka
- Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yurgel SN, Kahn ML. Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 2004; 28:489-501. [PMID: 15374663 DOI: 10.1016/j.femsre.2004.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/03/2004] [Accepted: 04/04/2004] [Indexed: 11/27/2022] Open
Abstract
Soil bacteria collectively known as rhizobia are able to convert atmospheric dinitrogen to ammonia while participating in a symbiotic association with legume plants. This capability has made the bacteria an attractive research subject at many levels of investigation, especially since physiological and metabolic specialization are central to this ecological niche. Dicarboxylate transport plays an important role in the operation of an effective, nitrogen-fixing symbiosis and considerable evidence suggests that dicarboxylates are a major energy and carbon source for the nitrogen-fixing rhizobia. The dicarboxylate transport (Dct) system responsible for importing these compounds generally consists of a dicarboxylate carrier protein, DctA, and a two component kinase regulatory system, DctB/DctD. DctA and DctB/D differ in the substrates that they recognize and a model for substrate recognition by DctA and DctB is discussed. In some rhizobia, DctA expression can be induced during symbiosis in the absence of DctB/DctD by an alternative, uncharacterized, mechanism. The DctA protein belongs to a subgroup of the glutamate transporter family now thought to have an unusual structure that combines aspects of permeases and ion channels. While the structure of C(4)-dicarboxylate transporters has not been analyzed in detail, mutagenesis of S. meliloti DctA has produced results consistent with the alignment of the rhizobial protein with the more characterized bacterial and eukaryotic glutamate transporters in this family.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | |
Collapse
|
17
|
Peralta H, Mora Y, Salazar E, Encarnación S, Palacios R, Mora J. Engineering the nifH promoter region and abolishing poly-beta-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 2004; 70:3272-81. [PMID: 15184121 PMCID: PMC427788 DOI: 10.1128/aem.70.6.3272-3281.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-beta-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium.
Collapse
Affiliation(s)
- Humberto Peralta
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Yolanda Mora
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Emmanuel Salazar
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Sergio Encarnación
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Rafael Palacios
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Jaime Mora
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
- Corresponding author. Mailing address: Departamento de Ingenieria Metabólica, Centro de Investigación sobre Fijación de Nitrogeno, Universidad Nacional Autónoma de México, A. P. 565-A, Cuernavaca, Morelos CP62271, México. Phone: 52 (777) 3 13 99 44. Fax: 52 (777) 3 17 50 94. E-mail:
| |
Collapse
|
18
|
Transmembrane structure and function ofdctPQM encoding C4-dicarboxylate transport proteins from nitrogen-fixingP. stutzeri A1501. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03184060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Shen S, Jing Y. Present status and development on biological nitrogen fixation research in China. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03184206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Abstract
Certain bacteria isolated from soils possess properties that allow them to exert beneficial effects on plants either by enhancing crop nutrition or by reducing damages caused by pathogens or pests. Some of them, such as rhizobia, azospirilla, and agrobacteria, have been traditionally released in fields as seed inoculants and they often lead to increases in the yield of different crops while the application of others, such as pseudomonads, often fails to give the expected results. Bacteria genetically modified to be easily traceable and/or to be improved in their expression of beneficial traits have been constructed and released with plants in a number of experimental field plots. With these releases, it has been possible to monitor the modified inoculant bacteria after their introduction in field ecosystems and to assess their impact on the resident microflora. Local environmental factors appeared as playing a crucial role in the survival and persistence of bacteria once released in fields and in the expression of the beneficial traits whether improved or not. The spread of inoculant bacteria from their point of dissemination was limited. Transient shifts in favour of the released bacteria and in disfavour of some members of the bacterial and fungal populations present in the plant rhizosphere might occur with certain released bacteria. The changes observed were, however, less important than those observed under usual agricultural practices. Gene transfer from resident population to introduced bacteria was detected in one case. The transconjugants were found only transiently in the phytosphere of plants but not in soils. No differences between the survival, spread, persistence in field and ecological impacts of genetically modified bacteria and of the corresponding unmodified parent strain could be detected.
Collapse
Affiliation(s)
- N Amarger
- Laboratoire de Microbiologie des Sols, INRA, BP 86510, 21064 Dijon cedex, France.
| |
Collapse
|
21
|
Gustafson AM, O'Connell KP, Thomashow MF. Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock. Can J Microbiol 2002; 48:821-30. [PMID: 12455614 DOI: 10.1139/w02-078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that mutants of Sinorhizobium meliloti 1021 carrying luxAB insertions in each of the three 16S rRNA genes exhibited a dramatic (> or = 28-fold) increase in luminescence following a temperature downshift from 30 to 15 degrees C. These results raised the possibility that the rRNA operons (rrn) of S. meliloti were cold shock loci. In testing this possibility, we found that fusion of the S. meliloti 1021 rrnA promoter to two different reporter genes, luxAB and uidA, resulted in hybrid genes that were transiently upregulated (as measured by transcript accumulation) about four- to sixfold in response to a temperature downshift. These results are consistent with the hypothesis that the rrn promoters are transiently upregulated in response to cold shock. However, much of the apparent cold shock regulation of the initial luxAB insertions was due to an unexpected mechanism: an apparent temperature-dependent inhibition of translation. Specifically, the rrnA sequences from +1 to +172 (relative to the start of transcription) were found to greatly decrease the ability of S. meliloti to translate hybrid rrn-luxAB transcripts into active protein at 30 degrees C. This effect, however, was largely eliminated at 15 degrees C. Possible mechanisms for the apparent transient increase in rrnA promoter activity and temperature-dependent inhibition of translation are discussed.
Collapse
Affiliation(s)
- Ann M Gustafson
- NSF Center for Microbial Ecology, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
22
|
van Dillewijn P, Soto MJ, Villadas PJ, Toro N. Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl Environ Microbiol 2001; 67:3860-5. [PMID: 11525978 PMCID: PMC93102 DOI: 10.1128/aem.67.9.3860-3865.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA- mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492-498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later.
Collapse
Affiliation(s)
- P van Dillewijn
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | |
Collapse
|
23
|
Fry J, Wood M, Poole PS. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1016-25. [PMID: 11497462 DOI: 10.1094/mpmi.2001.14.8.1016] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three discrete loci required for growth on myo-inositol in Rhizobium leguminosarum bv. viciae have been characterized. Two of these are catabolic loci that code for malonate semialdehyde dehydrogenase (iolA) and malonate semialdehyde dehydrogenase (iolD). IolD is part of a possible operon, iolDEB, although the functions of IolE and IolB are unknown. The third locus, int, codes for an ABC transport system that is highly specific for myo-inositol. LacZ analysis showed that mutation of iolD, which codes for one of the last steps in the catabolic pathway, prevents increased transcription of the entire pathway. It is likely that the pathway is induced by an end product of catabolism rather than myo-inositol itself. Mutants in any of the loci nodulated peas (Pisum sativum) and vetch (Vicia sativa) at the same rate as the wild type. Acetylene reduction rates and plant dry weights also were the same in the mutants and wild type, indicating no defects in nitrogen fixation. When wild-type 3841 was coinoculated onto vetch plants with either catabolic mutant iolD (RU360) or iolA (RU361), however, >95% of the nodules were solely infected with the wild type. The competitive advantage of the wild type was unaffected, even when the mutants were at 100-fold excess. The myo-inositol transport mutant (RU1487), which grows slowly on myo-inositol, was only slightly less competitive than the wild type. The nodulation advantage of the wild type was not the result of superior growth in the rhizosphere. Instead, it appears that the wild type may displace the mutants early on in the infection and nodulation process, suggesting an important role for myo-inositol catabolism.
Collapse
Affiliation(s)
- J Fry
- School of Animal and Microbial Sciences and Department of Soil Science, University of Reading, UK
| | | | | |
Collapse
|
24
|
Oláh B, Kiss E, Györgypál Z, Borzi J, Cinege G, Csanádi G, Batut J, Kondorosi A, Dusha I. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:887-894. [PMID: 11437262 DOI: 10.1094/mpmi.2001.14.7.887] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In specific plant organs, namely the root nodules of alfalfa, fixed nitrogen (ammonia) produced by the symbiotic partner Sinorhizobium meliloti supports the growth of the host plant in nitrogen-depleted environment. Here, we report that a derivative of S. meliloti carrying a mutation in the chromosomal ntrR gene induced nodules with enhanced nitrogen fixation capacity, resulting in an increased dry weight and nitrogen content of alfalfa. The efficient nitrogen fixation is a result of the higher expression level of the nifH gene, encoding one of the subunits of the nitrogenase enzyme, and nifA, the transcriptional regulator of the nif operon. The ntrR gene, controlled negatively by its own product and positively by the symbiotic regulator syrM, is expressed in the same zone of nodules as the nif genes. As a result of the nitrogen-tolerant phenotype of the strain, the beneficial effect of the mutation on efficiency is not abolished in the presence of the exogenous nitrogen source. The ntrR mutant is highly competitive in nodule occupancy compared with the wild-type strain. Sequence analysis of the mutant region revealed a new cluster of genes, termed the "ntrPR operon," which is highly homologous to a group of vap-related genes of various pathogenic bacteria that are presumably implicated in bacterium-host interactions. On the basis of its favorable properties, the strain is a good candidate for future agricultural utilization.
Collapse
Affiliation(s)
- B Oláh
- Institute of Genetics, Hungarian Academy of Science, Szeged
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jiang G, Krishnan AH, Kim YW, Wacek TJ, Krishnan HB. A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J Bacteriol 2001; 183:2595-604. [PMID: 11274120 PMCID: PMC95177 DOI: 10.1128/jb.183.8.2595-2604.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2000] [Accepted: 01/11/2001] [Indexed: 11/20/2022] Open
Abstract
Inositol derivative compounds provide a nutrient source for soil bacteria that possess the ability to degrade such compounds. Rhizobium strains that are capable of utilizing certain inositol derivatives are better colonizers of their host plants. We have cloned and determined the nucleotide sequence of the myo-inositol dehydrogenase gene (idhA) of Sinorhizobium fredii USDA191, the first enzyme responsible for inositol catabolism. The deduced IdhA protein has a molecular mass of 34,648 Da and shows significant sequence similarity with protein sequences of Sinorhizobium meliloti IdhA and MocA; Bacillus subtilis IolG, YrbE, and YucG; and Streptomyces griseus StrI. S. fredii USDA191 idhA mutants revealed no detectable myo-inositol dehydrogenase activity and failed to grow on myo-inositol as a sole carbon source. Northern blot analysis and idhA-lacZ fusion expression studies indicate that idhA is inducible by myo-inositol. S. fredii USDA191 idhA mutant was drastically affected in its ability to reduce nitrogen and revealed deteriorating bacteroids inside the nodules. The number of bacteria recovered from such nodules was about threefold lower than the number of bacteria isolated from nodules initiated by S. fredii USDA191. In addition, the idhA mutant was also severely affected in its ability to compete with the wild-type strain in nodulating soybean. Under competitive conditions, nodules induced on soybean roots were predominantly occupied by the parent strain, even when the idhA mutant was applied at a 10-fold numerical advantage. Thus, we conclude that a functional idhA gene is required for efficient nitrogen fixation and for competitive nodulation of soybeans by S. fredii USDA191.
Collapse
Affiliation(s)
- G Jiang
- Department of Agronomy, USDA-ARS, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
One of the paradigms of symbiotic nitrogen fixation has been that bacteroids reduce N2 to ammonium and secrete it without assimilation into amino acids. This has recently been challenged by work with soybeans showing that only alanine is excreted in 15N2 labelling experiments. Work with peas shows that the bacteroid nitrogen secretion products during in vitro experiments depend on the experimental conditions. There is a mixed secretion of both ammonium and alanine depending critically on the concentration of bacteroids and ammonium concentration. The pathway of alanine synthesis has been shown to be via alanine dehydrogenase, and mutation of this enzyme indicates that in planta there is likely to be mixed secretion of ammonium and alanine. Alanine synthesis directly links carbon catabolism and nitrogen assimilation in the bacteroid. There is now overwhelming evidence that the principal carbon sources of bacteroids are the C4-dicarboxylic acids. This is based on labelling and bacteroid respiration data, and mutation of both the dicarboxylic acid transport system (dct) and malic enzyme. L-malate is at a key bifurcation point in bacteroid metabolism, being oxidized to oxaloacetate and oxidatively decarboxylated to pyruvate. Pyruvate can be aminated to alanine or converted to acetyl-CoA where it either enters the TCA cycle by condensation with oxaloacetate or forms polyhydroxybutyrate (PHB). Thus regulation of carbon and nitrogen metabolism are strongly connected. Efficient catabolism of C4-dicarboxylates requires the balanced input and removal of intermediates from the TCA cycle. The TCA cycle in bacteroids may be limited by the redox state of NADH/NAD+ at the 2-ketoglutarate dehydrogenase complex, and a number of pathways may be involved in bypassing this block. These pathways include PHB synthesis, glutamate synthesis, glycogen synthesis, GABA shunt and glutamine cycling. Their operation may be critical in maintaining the optimum redox poise and carbon balance of the TCA cycle. They can also be considered to be overflow pathways since they act to remove or add electrons and carbon into the TCA cycle. Optimum operation of the TCA cycle has a major impact on nitrogen fixation.
Collapse
Affiliation(s)
- P Poole
- Division of Microbiology, School of Animal and Microbial Sciences, University of Reading, UK
| | | |
Collapse
|
27
|
Corich V, Giacomini A, Vian P, Vendramin E, Carlot M, Basaglia M, Squartini A, Casella S, Nuti M. Aspects of Marker/Reporter Stability and Selectivity in Soil Microbiology. MICROBIAL ECOLOGY 2001; 41:333-340. [PMID: 12032607 DOI: 10.1007/s002480000092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 07/20/2000] [Indexed: 05/23/2023]
Abstract
Based on several experiences of microbial release using genetically modified Rhizobium leguminosarum, we have highlighted a number of aspects related to the suitability of introduced markers such as resistance to mercury and b-galactosidase activity, the latter serving the function of high-expression level reporter gene obtained by the introduction of a synthetic promoter conferring strong inducible expression in Gram-negative bacteria. In vitro expression and in vivo performances of the chosen examples have been followed in model strains comparing gene dosage and expression levels. The technical possibility of unambiguously monitoring the marked GMM has been evaluated in medium- and long-term experiments carried out both in microcosms and soil, also including the presence of the plant symbiotic host. Marker stability, regardless the nature of the gene, was shown to be dependent on the location of the genetic modification and on its degree of gene expression regulation. Reporter strength was found to be an advantage allowing the distinction of marker-bearing bacteria while negatively affecting their genetic stability. Plasmid-borne regulated reporters were found to be stable up to the stages of rhizosphere colonization, but were more critically selected against upon symbiotic host invasion.
Collapse
Affiliation(s)
- V. Corich
- Dipartimento di Biotecnologie Agrarie, Università di Padova, Strada Romea 16, 35020 Legnaro Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Saini I, Sindhu SS, Dadarwal KR. Azide-resistant mutants of Azorhizobium caulinodans with enhanced symbiotic effectiveness. Folia Microbiol (Praha) 2001; 46:217-22. [PMID: 11702406 DOI: 10.1007/bf02818536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azide-resistant mutants of Azorhizobium caulinodans strains Sb3, S78, SrR13 and SrS8 were isolated and screened for nitrate reductase activity. Selected nitrate reductase negative mutants were inoculated on Sesbania bispinosa and S. rostrata under sterile conditions in chillum jars to study their symbiotic behavior. Azide-resistant mutants exhibited either similar or higher symbiotic effectiveness than the parent strain after 30 d of plant growth. Nodule mass, nitrogenase activity and uptake hydrogenase activity of the mutants varied depending on the host as well as on the plant growth stage. In comparison to wild-type parent strains, four azide-resistant mutants, Sb3Az18, S78Az21, SrR13Az17 and SrS8Az6 showed significant increase in nodulation and nitrogen fixation as well as shoot dry mass of the inoculated plants.
Collapse
Affiliation(s)
- I Saini
- Department of Microbiology, CCS Haryana Agricultural University, Hisar-125 004, India
| | | | | |
Collapse
|
29
|
Báscones E, Imperial J, Ruiz-Argüeso T, Palacios JM. Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel hup minitransposon. Appl Environ Microbiol 2000; 66:4292-9. [PMID: 11010872 PMCID: PMC92298 DOI: 10.1128/aem.66.10.4292-4299.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen evolution by nitrogenase is a source of inefficiency for the nitrogen fixation process by the Rhizobium-legume symbiosis. To develop a strategy to generate rhizobial strains with H(2)-recycling ability, we have constructed a Tn5 derivative minitransposon (TnHB100) that contains the ca. 18-kb H(2) uptake (hup) gene cluster from Rhizobium leguminosarum bv. viciae UPM791. Bacteroids from TnHB100-containing strains of R. leguminosarum bv. viciae PRE, Bradyrhizobium japonicum, R. etli, and Mesorhizobium loti expressed high levels of hydrogenase activity that resulted in full recycling of the hydrogen evolved by nitrogenase in nodules. Efficient processing of the hydrogenase large subunit (HupL) in these strains was shown by immunoblot analysis of bacteroid extracts. In contrast, Sinorhizobium meliloti, M. ciceri, and R. leguminosarum bv. viciae UML2 strains showed poor expression of the hup system that resulted in H(2)-evolving nodules. For the latter group of strains, no immunoreactive material was detected in bacteroid extracts using anti-HupL antiserum, suggesting a low level of transcription of hup genes or HupL instability. A general procedure for the characterization of the minitransposon insertion site and removal of antibiotic resistance gene included in TnHB100 has been developed and used to generate engineered strains suitable for field release.
Collapse
Affiliation(s)
- E Báscones
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Brito B, Monza J, Imperial J, Ruiz-Argüeso T, Palacios JM. Nickel availability and hupSL activation by heterologous regulators limit symbiotic expression of the Rhizobium leguminosarum bv. viciae hydrogenase system in Hup(-) rhizobia. Appl Environ Microbiol 2000; 66:937-42. [PMID: 10698755 PMCID: PMC91926 DOI: 10.1128/aem.66.3.937-942.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A limited number of Rhizobium and Bradyrhizobium strains possess a hydrogen uptake (Hup) system that recycles the hydrogen released from the nitrogen fixation process in legume nodules. To extend this ability to rhizobia that nodulate agronomically important crops, we investigated factors that affect the expression of a cosmid-borne Hup system from Rhizobium leguminosarum bv. viciae UPM791 in R. leguminosarum bv. viciae, Rhizobium etli, Mesorhizobium loti, and Sinorhizobium meliloti Hup(-) strains. After cosmid pAL618 carrying the entire hup system of strain UPM791 was introduced, all recipient strains acquired the ability to oxidize H(2) in symbioses with their hosts, although the levels of hydrogenase activity were found to be strain and species dependent. The levels of hydrogenase activity were correlated with the levels of nickel-dependent processing of the hydrogenase structural polypeptides and with transcription of structural genes. Expression of the NifA-dependent hupSL promoter varied depending on the genetic background, while the hyp operon, which is controlled by the FnrN transcriptional regulator, was expressed at similar levels in all recipient strains. With the exception of the R. etli-bean symbiosis, the availability of nickel to bacteroids strongly affected hydrogenase processing and activity in the systems tested. Our results indicate that efficient transcriptional activation by heterologous regulators and processing of the hydrogenase as a function of the availability of nickel to the bacteroid are relevant factors that affect hydrogenase expression in heterologous rhizobia.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
O'Connell KP, Thomashow MF. Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl Environ Microbiol 2000; 66:392-400. [PMID: 10618253 PMCID: PMC91835 DOI: 10.1128/aem.66.1.392-400.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A homolog of the major eubacterial cold shock gene cspA was identified in Sinorhizobium meliloti RM1021 by luxAB reporter transposon mutagenesis. Here we further characterize the organization and regulation of this locus. DNA sequence analysis indicated that the locus includes three open reading frames (ORFs) encoding homologs corresponding to CspA, a novel 10.6-kDa polypeptide designated ORF2, and a homolog of the Escherichia coli ribosomal protein S21. Transcription analysis indicated that this locus produced two different-sized cspA-hybridizing transcripts upon cold shock, a 400-nucleotide (nt) RNA encoding cspA alone and a 1, 000-nt transcript encoding cspA-ORF2-rpsU. The sizes of the transcripts agreed with the location of the transcription start site determined by primer extension and the locations of two putative transcriptional terminators. The promoter of the cspA-ORF2-rpsU locus had -10 and -35 elements similar to the E. coli sigma(70) consensus promoter and, like the cspA locus of E. coli, included an AT-rich region upstream of the -35 hexamer. The promoter of the S. meliloti cspA locus was found to impart cold shock-induced mRNA accumulation. In addition, the 5'-untranslated region (5' UTR) was found to increase the fold induction of cspA transcripts after cold shock and depressed the level of luxAB mRNA prior to cold shock, another feature similar to cspA regulation in E. coli. No "cold box" was identified upstream of the S. meliloti cspA gene, however, and there was no other obvious sequence identity between the S. meliloti 5' UTR and that of E. coli. DNA hybridization analysis indicated that outside the cspA-ORF2-rpsU cold shock locus there are several additional cspA-like genes and a second rpsU homolog.
Collapse
Affiliation(s)
- K P O'Connell
- NSF Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
32
|
Castillo M, Flores M, Mavingui P, Martínez-Romero E, Palacios R, Hernández G. Increase in alfalfa nodulation, nitrogen fixation, and plant growth by specific DNA amplification in Sinorhizobium meliloti. Appl Environ Microbiol 1999; 65:2716-22. [PMID: 10347066 PMCID: PMC91401 DOI: 10.1128/aem.65.6.2716-2722.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.
Collapse
Affiliation(s)
- M Castillo
- Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|
33
|
Wei X, Bauer WD. Tn5-induced and spontaneous switching of Sinorhizobium meliloti to faster-swarming behavior. Appl Environ Microbiol 1999; 65:1228-35. [PMID: 10049888 PMCID: PMC91169 DOI: 10.1128/aem.65.3.1228-1235.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn5 mutants of Sinorhizobium meliloti RMB7201 which swarmed 1.5 to 2. 5 times faster than the parental strain in semisolid agar, moist sand, and viscous liquid were identified. These faster-swarming (FS) mutants outgrew the wild type 30- to 40-fold within 2 days in mixed swarm colonies. The FS mutants survived and grew as well as or better than the wild type under all of the circumstances tested, except in a soil matrix subjected to air drying. Exopolysaccharide (EPS) synthesis was reduced in each of the FS mutants when they were grown on defined succinate-nitrate medium, but the extent of reduction was different for each. It appears that FS behavior likely results from a modest, general derepression of motility involving an increased proportion of motile and flagellated cells and an increased average number of flagella per cell and increased average flagellar length. Spontaneous FS variants of RMB7201 were obtained at a frequency of about 1 per 10,000 to 20,000 cells by either enrichment from the periphery of swarm colonies or screening of colonies for reduced EPS synthesis on succinate-nitrate plates. The spontaneous FS variants and Tn5 FS mutants were symbiotically effective and competitive in alfalfa nodulation. Reversion of FS variants to wild-type behavior was sporadic, indicating that reversion is affected by unidentified environmental factors. Based on phenotypic and molecular differences between individual FS variants and mutants, it appears that there may be multiple genetic configurations that result in FS behavior in RMB7201. The facile isolation of spontaneous FS variants of Escherichia coli and Pseudomonas aeruginosa indicates that switching to FS behavior may be fairly common among bacterial species. The substantial growth advantage of FS mutants and variants wherever nutrient gradients exist suggests that switching to FS forms may be an important behavioral adaptation in natural environments.
Collapse
Affiliation(s)
- X Wei
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
34
|
Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbachl S. A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2915-2924. [PMID: 9802033 DOI: 10.1099/00221287-144-10-2915] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rhizopine (L-3-O-methyl-scyllo-inosamine) is a symbiosis-specific compound found in alfalfa nodules induced by specific Sinorhizobium meliloti strains. It has been postulated that rhizobial strains able to synthesize and catabolize rhizopine gain a competitive advantage in the rhizosphere. The pathway of rhizopine degradation is analysed here. Since rhizopine is an inositol derivative, it was tested whether inositol catabolism is involved in rhizopine utilization. A genetic locus required for the catabolism of inositol as sole carbon source was cloned from S. meliloti. This locus was delimited by transposon Tn5 mutagenesis and its DNA sequence was determined. Based on DNA similarity studies and enzyme assays, this genetic region was shown to encode an S. meliloti myo-inositol dehydrogenase. Strains that harboured a mutation in the myo-inositol dehydrogenase gene (idhA) did not display myo-inositol dehydrogenase activity, were unable to utilize myo-inositol as sole carbon/energy source, and were unable to catabolize rhizopine. Thus, myo-inositol dehydrogenase activity is essential for rhizopine utilization in S. meliloti.
Collapse
Affiliation(s)
- Mark P Galbraith
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| | - Szi Fei Feng
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| | - James Borneman
- Department of Agronomy and Center for the Study of Nitrogen Fixation, University of Wisconsin- MadisonMadison, WI 53706USA
| | - Eric W Triplett
- Department of Agronomy and Center for the Study of Nitrogen Fixation, University of Wisconsin- MadisonMadison, WI 53706USA
| | - Frans J de Bruijn
- MSU-DOE Plant Research Laboratory, Department of Microbiology, NSF Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI 48824USA
| | - Silvia Rossbachl
- Department of Biological Sciences, Western, Michigan UniversityKalamazoo, MI 49008USA
| |
Collapse
|
35
|
Kent AD, Wojtasiak ML, Robleto EA, Triplett EW. A transposable partitioning locus used to stabilize plasmid-borne hydrogen oxidation and trifolitoxin production genes in a Sinorhizobium strain. Appl Environ Microbiol 1998; 64:1657-62. [PMID: 9572932 PMCID: PMC106211 DOI: 10.1128/aem.64.5.1657-1662.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Improved nitrogen-fixing inoculum strains for leguminous crops must be able to effectively compete with indigenous strains for nodulation, enhance legume productivity compared to the productivity obtained with indigenous strains, and maintain stable expression of any added genes in the absence of selection pressure. We constructed a transposable element containing the tfx region for expression of increased nodulation competitiveness and the par locus for plasmid stability. The transposon was inserted into tetA of pHU52, a broad-host-range plasmid conferring the H2 uptake phenotype. The resulting plasmid, pHUTFXPAR, conferred the plasmid stability, trifolitoxin production, and H2 uptake phenotypes in the broad-host-range organism Sinorhizobium sp. strain ANU280. The broad applications of a transposon conferring plasmid stability are discussed.
Collapse
Affiliation(s)
- A D Kent
- Department of Bacteriology, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
36
|
Genetic approach to the intensification of Rhizobium leguminosarum bv. viciae symbiotic nitrogen fixation. Process Biochem 1997. [DOI: 10.1016/s0032-9592(96)00038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Paoletti MG, Pimentel D. Genetic Engineering in Agriculture and the Environment. Bioscience 1996. [DOI: 10.2307/1312896] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Corich V, Bosco F, Giacomini A, Basaglia M, Squartini A, Nuti MP. Fate of genetically modified Rhizobium leguminosarum biovar viciae during long-term storage of commercial inoculants. THE JOURNAL OF APPLIED BACTERIOLOGY 1996; 81:319-28. [PMID: 8810059 DOI: 10.1111/j.1365-2672.1996.tb04334.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A study was carried out to assess the behaviour, in terms of strain survival and genetic stability, of genetically modified micro-organisms (GEMs) during their storage in commercial-type agricultural inoculants. Three genetically modified Rhizobium leguminosarum biovar viciae strains were constructed, using a gene cassette containing an inducible lacZ gene from Escherichia coli and mercury resistance determinants from transposon Tn 1831. In the first case the genes have been integrated into the chromosome, the second strain contains the inducible cassette on a plasmid, in the third case the cassette is carried by the same plasmid, but the lacZ is constitutively expressed at high levels, due to the removal of the regulatory structure (lac operator) between the gene and its promoter. Three inoculum formulations, based on liquid, vermiculite and peat carriers, were prepared using the genetically modified strains, and were monitored during a period of up to 16 months. Results indicate a high stability of the chromosomally integrated markers. The plasmid-borne modification also was very stable, though the presence of the plasmid affected the strain growth kinetics. In contrast, the strain containing the highly expressed lacZ showed dramatic marker instability. Strain behaviour in stored inoculant packages reflected that observed in batch cultures; moreover, prolonged storage appeared to magnify differences found in in vitro cultures.
Collapse
Affiliation(s)
- V Corich
- Dipartimento di Biotecnologie Agrarie, Università di Padova, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Kinkel LL, Wilson M, Lindow SE. Utility of microcosm studies for predicting phylloplane bacterium population sizes in the field. Appl Environ Microbiol 1996; 62:3413-23. [PMID: 16535405 PMCID: PMC1388943 DOI: 10.1128/aem.62.9.3413-3423.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population sizes of two ice nucleation-active strains of Pseudomonas syringae were compared on leaves in controlled environments and in the field to determine the ability of microcosm studies to predict plant habitat preferences in the field. The P. syringae strains investigated were the parental strains of recombinant deletion mutant strains deficient in ice nucleation activity that had been field tested for their ability to control plant frost injury. The population size of the P. syringae strains was measured after inoculation at three field locations on up to 40 of the same plant species that were studied in the growth chamber. There was seldom a significant relationship between the mean population size of a given P. syringae strain incubated under either wet or dry conditions in microcosms and the mean population size which could be recovered from the same species when inoculated in the field. Specifically, on some plant species, the population size recovered from leaves in the field was substantially greater than from that species in a controlled environment, while for other plant species field populations were significantly smaller than those observed under controlled conditions. Population sizes of inoculated P. syringae strains, however, were frequently highly positively correlated with the indigenous bacterial population size on the same plant species in the field, suggesting that the ability of a particular plant species to support introduced bacterial strains is correlated with its ability to support large bacterial populations or that indigenous bacteria enhance the survival of introduced strains. Microcosm studies therefore seem most effective at assessing possible differences between parental and recombinant strains under a given environmental regime but are limited in their ability to predict the specific population sizes or plant habitat preferences of bacteria on leaves under field conditions.
Collapse
|
40
|
Streit WR, Phillips DA. Recombinant Rhizobium meliloti strains with extra biotin synthesis capability. Appl Environ Microbiol 1996; 62:3333-8. [PMID: 8795223 PMCID: PMC168129 DOI: 10.1128/aem.62.9.3333-3338.1996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The growth of Rhizobium meliloti 1021 in an experimental alfalfa (Medicago sativa L.) rhizosphere was stimulated by adding nanomolar amounts of biotin. To overcome this biotin limitation, R. meliloti strains were constructed by conjugating the Escherichia coli biotin synthesis operon into biotin auxotroph R. meliloti 1021-B3. Transconjugant strains Rm1021-WS10 and Rm1021-WS11 grew faster in vitro and achieved a higher cell density than did R. meliloti 1021 and overproduced biotin on a defined medium. The increase in cell yield was associated with as much as a 99% loss in viability for Rm1021-WS11, but data suggested that a separate stabilizing factor in the E. coli DNA reduced cell death in Rm1021-WS10. In rhizosphere tests, the recombinant strains showed delayed growth and competed poorly against Rm1021.
Collapse
Affiliation(s)
- W R Streit
- Department of Agronomy and Range Science, University of California, Davis 95616, USA
| | | |
Collapse
|
41
|
|
42
|
Streeter JG. Integration of Plant and Bacterial Metabolism in Nitrogen Fixing Systems. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/978-94-011-0379-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|