1
|
Lim YH, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z. Optimized medium via statistical approach enhanced threonine production by Pediococcus pentosaceus TL-3 isolated from Malaysian food. Microb Cell Fact 2019; 18:125. [PMID: 31331395 PMCID: PMC6643317 DOI: 10.1186/s12934-019-1173-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Threonine is an essential amino acid that is extensively used in livestock industry as feed supplement due to its pronounced effect in improving the growth performance of animals. Application of genetically engineered bacteria for amino acid production has its share of controversies after eosinophils myalgia syndrome outbreak in 1980s. This has urged for continuous search for a food grade producer as a safer alternative for industrial amino acid production. Lactic acid bacteria (LAB) appear as an exceptional candidate owing to their non-pathogenic nature and reputation of Generally Recognized as Safe (GRAS) status. Recently, we have identified a LAB, Pediococcus pentosaceus TL-3, isolated from Malaysian food as a potential threonine producer. Thus, the objective of this study was to enhance the threonine production by P. pentosaceus TL-3 via optimized medium developed by using Plackett-Burman design (PBD) and central composite design (CCD). RESULTS Molasses, meat extract, (NH4)2SO4, and MnSO4 were identified as the main medium components for threonine production by P. pentosaceus TL-3. The optimum concentration of molasses, meat extract, (NH4)2SO4 and MnSO4 were found to be 30.79 g/L, 25.30 g/L, 8.59 g/L, and 0.098 g/L respectively based on model obtained in CCD with a predicted net threonine production of 123.07 mg/L. The net threonine production by P. pentosaceus TL-3 in the optimized medium was enhanced approximately 2 folds compared to the control. CONCLUSIONS This study has revealed the potential of P. pentosaceus TL-3 as a safer alternative to produce threonine. Additionally, the current study has identified the key medium components affecting the production of threonine by P. pentosaceus TL-3, followed by optimization of their concentrations by means of statistical approach. The findings of this study could act as a guideline for the future exploration of amino acid production by LAB.
Collapse
Affiliation(s)
- Ye Heng Lim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hooi Ling Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Teck Chwen Loh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Zulkifli Idrus
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Aoto S, Yura K. Case study on the evolution of hetero-oligomer interfaces based on the differences in paralogous proteins. Biophys Physicobiol 2015; 12:103-16. [PMID: 27493859 PMCID: PMC4736837 DOI: 10.2142/biophysico.12.0_103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
We addressed the evolutionary trace of hetero-oligomer interfaces by comparing the structures of paralogous proteins; one of them is a monomer or homo-oligomer and the other is a hetero-oligomer. We found different trends in amino acid conservation pattern and hydrophobicity between homo-oligomer and hetero-oligomer. The degree of amino acid conservation in the interface of homo-oligomer has no obvious difference from that in the surface, whereas the degree of conservation is much higher in the interface of hetero-oligomer. The interface of homo-oligomer has a few very conserved residue positions, whereas the residue conservation in the interface of hetero-oligomer tends to be higher. In addition, the interface of hetero-oligomer has a tendency of being more hydrophobic compared with the one in homo-oligomer. We conjecture that these differences are related to the inherent symmetry in homo-oligomers that cannot exist in hetero-oligomers. Paucity of the structural data precludes statistical tests of these tendencies, yet the trend can be applied to the prediction of the interface of hetero-oligomer. We obtained putative interfaces of the subunits in CPSF (cleavage and polyadenylation specificity factor), one of the human pre-mRNA 3′-processing complexes. The locations of predicted interface residues were consistent with the known experimental data.
Collapse
Affiliation(s)
- Saki Aoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan; Centre for Informational Biology, Ochanomizu University, Bunkyo, Tokyo 112-8610, Japan; National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
3
|
Fernández M, Cuadrado Y, Recio E, Aparicio JF, Martı N JF. Characterization of the hom-thrC-thrB cluster in aminoethoxyvinylglycine-producing Streptomyces sp. NRRL 5331. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1413-1420. [PMID: 11988515 DOI: 10.1099/00221287-148-5-1413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three genes from the aminoethoxyvinylglycine (AVG)-producing Streptomyces sp. NRRL 5331 involved in threonine biosynthesis, hom, thrB and thrC, encoding homoserine dehydrogenase (HDH), homoserine kinase (HK) and threonine synthase (TS), respectively, have been cloned and sequenced. The hom and thrC genes appear to be organized in a bicistronic operon as deduced by disruption experiments. The thrB gene, however, is transcribed as a monocistronic transcript. The encoded proteins are quite similar to the HDH, HK and TS proteins from other bacterial species. The overall organization of these three genes, in the order hom-thrC-thrB, differs from that in other bacteria and is similar to that reported in the Streptomyces coelicolor genome sequence. This is the first time in which the gene cluster for the three last steps of threonine biosynthesis has been characterized from a streptomycete. Disruption of thrC indicated that threonine is not a direct precursor for AVG biosynthesis in Streptomyces sp. NRRL 5331 and suggested that the branching point of the aspartic acid-derived biosynthetic route of this metabolite should lie earlier on the threonine biosynthetic route.
Collapse
Affiliation(s)
- Mónica Fernández
- Institute of Biotechnology INBIOTEC, Parque Cientı́fico de León, Avda. del Real, no 1, 24006 León, Spain1
| | - Yolanda Cuadrado
- Institute of Biotechnology INBIOTEC, Parque Cientı́fico de León, Avda. del Real, no 1, 24006 León, Spain1
| | - Eliseo Recio
- Institute of Biotechnology INBIOTEC, Parque Cientı́fico de León, Avda. del Real, no 1, 24006 León, Spain1
| | - Jesús F Aparicio
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain2
- Institute of Biotechnology INBIOTEC, Parque Cientı́fico de León, Avda. del Real, no 1, 24006 León, Spain1
| | - Juan F Martı N
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, Spain2
- Institute of Biotechnology INBIOTEC, Parque Cientı́fico de León, Avda. del Real, no 1, 24006 León, Spain1
| |
Collapse
|
4
|
Bartlem D, Lambein I, Okamoto T, Itaya A, Uda Y, Kijima F, Tamaki Y, Nambara E, Naito S. Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. PLANT PHYSIOLOGY 2000; 123:101-10. [PMID: 10806229 PMCID: PMC58986 DOI: 10.1104/pp.123.1.101] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/1999] [Accepted: 01/25/2000] [Indexed: 05/17/2023]
Abstract
In higher plants, O-phosphohomoserine (OPH) represents a branch point between the methionine (Met) and threonine (Thr) biosynthetic pathways. It is believed that the enzymes Thr synthase (TS) and cystathionine gamma-synthase (CGS) actively compete for the OPH substrate for Thr and Met biosynthesis, respectively. We have isolated a mutant of Arabidopsis, designated mto2-1, that over-accumulates soluble Met 22-fold and contains markedly reduced levels of soluble Thr in young rosettes. The mto2-1 mutant carries a single base pair mutation within the gene encoding TS, resulting in a leucine-204 to arginine change. Accumulation of TS mRNA and protein was normal in young rosettes of mto2-1, whereas functional complementation analysis of an Escherichia coli thrC mutation suggested that the ability of mto2-1 TS to synthesize Thr is impaired. We concluded that the mutation within the TS gene is responsible for the mto2-1 phenotype, resulting in decreased Thr biosynthesis and a channeling of OPH to Met biosynthesis in young rosettes. Analysis of the mto2-1 mutant suggested that, in vivo, the feedback regulation of CGS is not sufficient alone for the control of Met biosynthesis in young rosettes and is dependent on TS activity. In addition, developmental analysis of soluble Met and Thr concentrations indicated that the accumulation of these amino acids is regulated in a temporal and spatial manner.
Collapse
Affiliation(s)
- D Bartlem
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Marchenko GN, Marchenko ND, Tsygankov YD, Chistoserdov AY. Organization of threonine biosynthesis genes from the obligate methylotroph Methylobacillus flagellatus. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3273-3282. [PMID: 10589737 DOI: 10.1099/00221287-145-11-3273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes encoding aspartate kinase (ask), homoserine dehydrogenase (hom), homoserine kinase (thrB) and threonine synthase (thrC) from the obligate methylotroph Methylobacillus flagellatus were cloned. In maxicells hom and thrC directed synthesis of 51 and 48 kDa polypeptides, respectively. The hom, thrB and thrC genes and adjacent DNA areas were sequenced. Of the threonine biosynthesis genes, only hom and thrC were tightly linked in the order hom-thrC. The gene for thymidylate synthase (thyA) followed thrC and the gene for aspartate aminotransferase (aspC) preceded hom. All four genes (aspC-hom-thrC-thyA) were transcribed in the same direction. mRNA analysis indicated that hom-thrC are apparently transcribed in one 7.5 kb transcript in M. flagellatus. Promoter analysis showed the presence of a functional promoter between aspC and hom. No functional promoter was found to be associated with the DNA stretch between hom and thrC. The thrB gene encoded an unusual type of homoserine kinase and was not linked to other threonine biosynthesis genes.
Collapse
Affiliation(s)
- George N Marchenko
- Institute of Genetics and Selection of Industrial Micro-organisms, 1st-Dorozhniy pr. 1, Moscow, Russia1
| | - Natalia D Marchenko
- Institute of Genetics and Selection of Industrial Micro-organisms, 1st-Dorozhniy pr. 1, Moscow, Russia1
| | - Yuriy D Tsygankov
- Institute of Genetics and Selection of Industrial Micro-organisms, 1st-Dorozhniy pr. 1, Moscow, Russia1
| | - Andrei Y Chistoserdov
- Marine Sciences Research Center, State University of New York at Stony Brook, Stony Brook, NY 11794-5000, USA2
| |
Collapse
|
6
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|
7
|
Malumbres M, Martín JF. Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett 1996; 143:103-14. [PMID: 8837462 DOI: 10.1111/j.1574-6968.1996.tb08468.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium. The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).
Collapse
Affiliation(s)
- M Malumbres
- Faculty of Biology, University of León, Spain
| | | |
Collapse
|
8
|
Madsen SM, Albrechtsen B, Hansen EB, Israelsen H. Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. J Bacteriol 1996; 178:3689-94. [PMID: 8682767 PMCID: PMC178148 DOI: 10.1128/jb.178.13.3689-3694.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two genes, hom and thrB, involved in threonine biosynthesis in Lactococcus lactis MG1614, were cloned and sequenced. These genes, which encode homoserine dehydrogenase and homoserine kinase, were initially identified by the homology of their gene products with known homoserine dehydrogenases and homoserine kinases from other organisms. The identification was supported by construction of a mutant containing a deletion in hom and thrB that was unable to grow in a defined medium lacking threonine. Transcriptional analysis showed that the two genes were located in a bicistronic operon with the order 5' hom-thrB 3' and that transcription started 66 bp upstream of the translational start codon of the hom gene. A putative -10 promoter region (TATAAT) was located 6 bp upstream of the transcriptional start point, but no putative -35 region was identified. A DNA fragment covering 155 bp upstream of the hom translational start site was functional in pAK80, an L. lactis promoter probe vector. In addition, transcriptional studies showed no threonine-dependent regulation of hom-thrB transcription.
Collapse
Affiliation(s)
- S M Madsen
- Department of Research and Development, Biotechnological Institute, Denmark
| | | | | | | |
Collapse
|
9
|
Malumbres M, Mateos LM, Guerrero C, Martín JF. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes. Folia Microbiol (Praha) 1995; 40:595-606. [PMID: 8768250 DOI: 10.1007/bf02818515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 6.5 kb DNA fragment containing the gene (thrC) encoding threonine synthase, the last enzyme of the threonine biosynthetic pathway, has been cloned from the DNA of Bacillus sp. ULM1 by complementation of Escherichia coli and Brevibacterium lactofermentum thrC auxotrophs. Complementation studies showed that the thrB gene (encoding homoserine kinase) is found downstream from the thrC gene, and analysis of nucleotide sequences indicated that the hom gene (encoding homoserine dehydrogenase) is located upstream of the thrC gene. The organization of this cluster of genes is similar to the Bacillus subtilis threonine operon (hom-thrC-thrB). An 1.9 kb BclI fragment from the Bacillus sp. ULM1 DNA insert 351 amino acids was found corresponding to a protein of 37462 Da. The thrC gene showed a low G + C content (39.4%) and the encoded threonine synthase is very similar to the B. subtilis enzyme. Expression of the 1.9 kb BcI DNA fragment in E. coli minicells resulted in the formation of a 37 kDa protein. The upstream region of this gene shows promoter activity in E. coli but not in corynebacteria. A peptide sequence, including a lysine that is known to bind the pyridoxal phosphate cofactor, is conserved in all threonine synthase sequences and also in the threonine and serine dehydratase genes. Amino acid comparison of nine threonine synthases revealed evolutionary relationships between different groups of bacteria.
Collapse
Affiliation(s)
- M Malumbres
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | | | | | |
Collapse
|
10
|
Mateos LM, Pisabarro A, Pátek M, Malumbres M, Guerrero C, Eikmanns BJ, Sahm H, Martín JF. Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum. J Bacteriol 1994; 176:7362-71. [PMID: 7961509 PMCID: PMC197126 DOI: 10.1128/jb.176.23.7362-7371.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two genes, hom (encoding homoserine dehydrogenase) and thrB (encoding homoserine kinase), of the threonine biosynthetic pathway are clustered in the chromosome of Brevibacterium lactofermentum in the order 5' hom-thrB 3', separated by only 10 bp. The Brevibacterium thrB gene is expressed in Escherichia coli, in Brevibacterium lactofermentum, and in Corynebacterium glutamicum and complements auxotrophs of all three organisms deficient in homoserine kinase, whereas the Brevibacterium hom gene did not complement two different E. coli auxotrophs lacking homoserine dehydrogenase. However, complementation was obtained when the homoserine dehydrogenase was expressed as a fusion protein in E. coli. Northern (RNA) analysis showed that the hom-thrB cluster is transcribed, giving two different transcripts of 2.5 and 1.1 kb. The 2.5-kb transcript corresponds to the entire cluster hom-thrB (i.e., they form a bicistronic operon), and the short transcript (1.1 kb) originates from the thrB gene. The promoter in front of hom and the hom-internal promoter in front of thrB were subcloned in promoter-probe vectors of E. coli and corynebacteria. The thrB promoter is efficiently recognized both in E. coli and corynebacteria, whereas the hom promoter is functional in corynebacteria but not in E. coli. The transcription start points of both promoters have been identified by primer extension and S1 mapping analysis. The thrB promoter was located in an 87-bp fragment that overlaps with the end of the hom gene. A functional transcriptional terminator located downstream from the cluster was subcloned in terminator-probe vectors.
Collapse
Affiliation(s)
- L M Mateos
- Department of Ecology, Genetics and Microbiology, University of León, Spain
| | | | | | | | | | | | | | | |
Collapse
|