1
|
Grafakou A, Mosterd C, Beck MH, Kelleher P, McDonnell B, de Waal PP, van Rijswijck IMH, van Peij NNME, Cambillau C, Mahony J, van Sinderen D. Discovery of antiphage systems in the lactococcal plasmidome. Nucleic Acids Res 2024; 52:9760-9776. [PMID: 39119896 PMCID: PMC11381338 DOI: 10.1093/nar/gkae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Until the late 2000s, lactococci substantially contributed to the discovery of various plasmid-borne phage defence systems, rendering these bacteria an excellent antiphage discovery resource. Recently, there has been a resurgence of interest in identifying novel antiphage systems in lactic acid bacteria owing to recent reports of so-called 'defence islands' in diverse bacterial genera. Here, 321 plasmid sequences from 53 lactococcal strains were scrutinized for the presence of antiphage systems. Systematic evaluation of 198 candidates facilitated the discovery of seven not previously described antiphage systems, as well as five systems, of which homologues had been described in other bacteria. All described systems confer resistance against the most prevalent lactococcal phages, and act post phage DNA injection, while all except one behave like abortive infection systems. Structure and domain predictions provided insights into their mechanism of action and allow grouping of several genetically distinct systems. Although rare within our plasmid collection, homologues of the seven novel systems appear to be widespread among bacteria. This study highlights plasmids as a rich repository of as yet undiscovered antiphage systems.
Collapse
Affiliation(s)
- Andriana Grafakou
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Cas Mosterd
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Matthias H Beck
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Philip Kelleher
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Brian McDonnell
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Paul P de Waal
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Irma M H van Rijswijck
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Noël N M E van Peij
- dsm-firmenich, Taste, Texture & Health, Center for Food Innovation, Delft 2613 AX, The Netherlands
| | - Christian Cambillau
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IMM), Aix-Marseille Université - CNRS, UMR 7255 Marseille, France
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
2
|
Olijslager L, Weijers D, Swarts D. Distribution of specific prokaryotic immune systems correlates with host optimal growth temperature. NAR Genom Bioinform 2024; 6:lqae105. [PMID: 39165676 PMCID: PMC11333966 DOI: 10.1093/nargab/lqae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Prokaryotes encode an arsenal of highly diverse immune systems to protect themselves against invading nucleic acids such as viruses, plasmids and transposons. This includes invader-interfering systems that neutralize invaders to protect their host, and abortive-infection systems, which trigger dormancy or cell death in their host to offer population-level immunity. Most prokaryotic immune systems are found across different environments and prokaryotic phyla, but their distribution appears biased and the factors that influence their distribution are largely unknown. Here, we compared and combined the prokaryotic immune system identification tools DefenseFinder and PADLOC to obtain an expanded view of the immune system arsenal. Our results show that the number of immune systems encoded is positively correlated with genome size and that the distribution of specific immune systems is linked to phylogeny. Furthermore, we reveal that certain invader-interfering systems are more frequently encoded by hosts with a relatively high optimum growth temperature, while abortive-infection systems are generally more frequently encoded by hosts with a relatively low optimum growth temperature. Combined, our study reveals several factors that correlate with differences in the distribution of prokaryotic immune systems and extends our understanding of how prokaryotes protect themselves from invaders in different environments.
Collapse
Affiliation(s)
- Lisa H Olijslager
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, Wageningen, Stippeneng 4, 6708WE, the Netherlands
| |
Collapse
|
3
|
Payne LJ, Meaden S, Mestre MR, Palmer C, Toro N, Fineran P, Jackson S. PADLOC: a web server for the identification of antiviral defence systems in microbial genomes. Nucleic Acids Res 2022; 50:W541-W550. [PMID: 35639517 PMCID: PMC9252829 DOI: 10.1093/nar/gkac400] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 12/16/2022] Open
Abstract
Most bacteria and archaea possess multiple antiviral defence systems that protect against infection by phages, archaeal viruses and mobile genetic elements. Our understanding of the diversity of defence systems has increased greatly in the last few years, and many more systems likely await discovery. To identify defence-related genes, we recently developed the Prokaryotic Antiviral Defence LOCator (PADLOC) bioinformatics tool. To increase the accessibility of PADLOC, we describe here the PADLOC web server (freely available at https://padloc.otago.ac.nz), allowing users to analyse whole genomes, metagenomic contigs, plasmids, phages and archaeal viruses. The web server includes a more than 5-fold increase in defence system types detected (since the first release) and expanded functionality enabling detection of CRISPR arrays and retron ncRNAs. Here, we provide user information such as input options, description of the multiple outputs, limitations and considerations for interpretation of the results, and guidance for subsequent analyses. The PADLOC web server also houses a precomputed database of the defence systems in > 230,000 RefSeq genomes. These data reveal two taxa, Campylobacterota and Spriochaetota, with unusual defence system diversity and abundance. Overall, the PADLOC web server provides a convenient and accessible resource for the detection of antiviral defence systems.
Collapse
Affiliation(s)
- Leighton J Payne
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sean Meaden
- Biosciences, University of Exeter, Penryn, UK
| | | | - Chris Palmer
- Information Technology Services Research and Teaching Group, University of Otago, Dunedin, New Zealand
| | - Nicolás Toro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Structure, Dynamics and Function of Rhizobacterial Genomes, Grupo de Ecología Genética de la Rizosfera, Granada, Spain
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Abstract
This article describes my early life and the chance events leading to my becoming a microbiologist and then my embarking on a career developing the plasmid biology and genetics of lactococci used in milk fermentations.
Collapse
Affiliation(s)
- Larry McKay
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
5
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
6
|
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009; 1:239-57. [PMID: 20333194 PMCID: PMC2817414 DOI: 10.1093/gbe/evp019] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2009] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei.
Collapse
Affiliation(s)
- Hui Cai
- Department of Food Science, University of Wisconsin, USA
| | | | | | | | | |
Collapse
|
7
|
AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. Appl Environ Microbiol 2008; 74:6528-37. [PMID: 18776030 DOI: 10.1128/aem.00780-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insertional mutagenesis with pGhost9::ISS1 resulted in independent insertions in a 350-bp region of the chromosome of Lactococcus lactis subsp. cremoris MG1363 that conferred phage resistance to the integrants. The orientation and location of the insertions suggested that the phage resistance phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis MG1363. This gene was also found to confer phage resistance to L. lactis MG1363 when it was cloned into an expression vector. A subsequent frameshift mutation in the ORF completely eliminated the phage resistance phenotype, confirming that the ORF was necessary for phage resistance. This ORF provided resistance against virulent lactococcal phages belonging to the 936 and c2 species with an efficiency of plaquing of 10(-4), but it did not protect against members of the P335 species. A high level of expression of the ORF did not affect the cellular growth rate. Assays for phage adsorption, DNA ejection, restriction/modification activity, plaque size, phage DNA replication, and cell survival showed that the ORF encoded an abortive infection (Abi) mechanism. Sequence analysis revealed a deduced protein consisting of 201 amino acids which, in its native state, probably forms a dimer in the cytosol. Similarity searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages.
Collapse
|
8
|
Michelsen O, Cuesta-Dominguez A, Albrechtsen B, Jensen PR. Detection of bacteriophage-infected cells of Lactococcus lactis by using flow cytometry. Appl Environ Microbiol 2007; 73:7575-81. [PMID: 17921265 PMCID: PMC2168076 DOI: 10.1128/aem.01219-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret this change as a consequence of a cease in cell growth, while the ongoing cell divisions leave the cells as single cells. Late in the infection cycle, cells with low-density cell walls appear, and these cells can be detected on cytograms of light scatter versus, for instance, fluorescence of stained DNA. We describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture. The method can be performed in real time and therefore increases the chance of successful intervention in the fermentation process.
Collapse
Affiliation(s)
- Ole Michelsen
- BioCentrum-DTU, Technical University of Denmark, Building 301, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
9
|
Miklič A, Rogelj I. Screening for natural defence mechanisms of Lactococcus lactis strains isolated from traditional starter cultures. Int J Food Sci Technol 2007. [DOI: 10.1111/j.1365-2621.2007.01175.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Frazier CL, San Filippo J, Lambowitz AM, Mills DA. Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl Environ Microbiol 2003; 69:1121-8. [PMID: 12571038 PMCID: PMC143682 DOI: 10.1128/aem.69.2.1121-1128.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci.
Collapse
Affiliation(s)
- Courtney L Frazier
- Department of Viticulture and Enology, University of California at Davis, Davis, California 95616-8749, USA
| | | | | | | |
Collapse
|
11
|
Trotter M, Ross RP, Fitzgerald GF, Coffey A. Lactococcus lactis DPC5598, a plasmid-free derivative of a commercial starter, provides a valuable alternative host for culture improvement studies. J Appl Microbiol 2002; 93:134-43. [PMID: 12067382 DOI: 10.1046/j.1365-2672.2002.01669.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To generate a plasmid-free derivative of an extensively used industrial starter strain Lactococcus lactis DPC4268, which could be used as a backbone strain for starter improvement programmes. METHODS AND RESULTS DPC4268 containing four large plasmids was subjected to high temperature plasmid curing resulting in derivatives, each with a different plasmid complement of one, two or three different plasmids in addition to a plasmid-free derivative. Industrially relevant phenotypes were assigned to each plasmid on the basis of detailed phenotypic and genetic analyses and these were (a) proteinase activity (Prt, 60 kb) (b) lactose fermentation (Lac, 55 kb) (c) bacteriophage adsorption inhibition (Ads, 44 kb) and (d) type I restriction/modification (R/M, 40 kb). The plasmid-free variant of DPC4268 was shown to be transformable at frequencies comparable to the common laboratory strain L. lactis MG1614. Furthermore its genome was demonstrated to be significantly different from the laboratory strains L. lactis MG1614 and the recently sequenced L. lactis IL1403 genomes by pulsed-field gel electrophoresis. CONCLUSIONS This study produced an easily transformable plasmid-free derivative which was genomically different from both MG1614 and IL1403. In addition, important plasmid-borne industrial traits, including two phage-resistance mechanisms, were identified in DPC4268. SIGNIFICANCE AND IMPACT OF THE STUDY L. DPC4268 is a vitally important commercial strain used in the manufacture of Cheddar cheese. The generation of a plasmid-free derivative may provide an important backbone strain as a basis for future strain improvement purposes.
Collapse
Affiliation(s)
- M Trotter
- Department of Microbiology, University College Cork, Ireland
| | | | | | | |
Collapse
|
12
|
Dai G, Su P, Allison GE, Geller BL, Zhu P, Kim WS, Dunn NW. Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1. Appl Environ Microbiol 2001; 67:5225-32. [PMID: 11679349 PMCID: PMC93294 DOI: 10.1128/aem.67.11.5225-5232.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study reports on the identification and characterization of a novel abortive infection system, AbiU, from Lactococcus lactis. AbiU confers resistance to phages from the three main industrially relevant lactococcal phage species: c2, 936, and P335. The presence of AbiU reduced the efficiency of plaquing against specific phage from each species as follows: 3.7 x 10(-1), 1.0 x 10(-2), and 1.0 x 10(-1), respectively. abiU involves two open reading frames, abiU1 (1,772 bp) and abiU2 (1,019 bp). Evidence indicates that AbiU1 is responsible for phage resistance and that AbiU2 may downregulate phage resistance against 936 and P335 type phages but not c2 type phage. AbiU appeared to delay transcription of both phage 712 and c2, with the effect being more marked on phage c2.
Collapse
Affiliation(s)
- G Dai
- Department of Biotechnology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Twomey DP, De Urraza PJ, McKay LL, O'Sullivan DJ. Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid pKR223 of Lactococcus lactis subsp. lactis KR2. Appl Environ Microbiol 2000; 66:2647-51. [PMID: 10831451 PMCID: PMC110594 DOI: 10.1128/aem.66.6.2647-2651.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The native lactococcal plasmid pKR223 encodes two distinct phage resistance mechanisms, a restriction and modification (R/M) system designated LlaKR2I and an abortive infection mechanism (Abi) which affects prolate-headed-phage proliferation. The nucleotide sequence of a 16,174-bp segment of pKR223 encompassing both the R/M and Abi determinants has been determined, and sequence analysis has validated the novelty of the Abi system, which has now been designated AbiR. Analysis of deletion and insertion clones demonstrated that AbiR was encoded by two genetic loci, separated by the LlaKR2I R/M genes. Mechanistic studies on the AbiR phenotype indicated that it was heat sensitive and that it impeded phage DNA replication. These data indicated that AbiR is a novel multicomponent, heat-sensitive, "early"-functioning Abi system and is the first lactococcal Abi system described which is encoded by two separated genetic loci.
Collapse
Affiliation(s)
- D P Twomey
- Department of Food Science and Nutrition and Department of Microbial Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
14
|
Boucher I, Émond É, Dion É, Montpetit D, Moineau S. Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):445-453. [PMID: 10708383 DOI: 10.1099/00221287-146-2-445] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lactococcal abortive infection mechanism AbiK was previously shown to be highly effective against the small isometric-headed bacteriophage ul36 of the P335 species, as evidenced by an efficiency of plaquing (e.o.p.) of 10(-6), a 14-fold reduction in the burst size and an efficiency at which centres of infection form (e.c.o.i.) of 0.5%. No phage DNA was detected in the infected AbiK+ cells [Emond, E., Holler, B. J., Boucher, I., Vandenbergh, P. A., Vedamuthu, E. R., Kondo, J. K. & Moineau, S. (1997). Appl Environ Microbiol 63, 1274-1283]. Here, the effects of AbiK are compared on the small isometric-headed phages p2 and P008 (936 species) and on the phage P335 (P335 species). The microbiological impacts of AbiK on p2 were relatively similar to those reported for ul36, with an e.o.p. of 10(6), an 11-fold reduction in the burst size and an e.c.o.i. of 5%. Contrary to phage ul36, replication of phage p2 DNA was observed in the AbiK+ cells. Only immature forms (concatemeric and circular DNA) of phage p2 DNA were found, indicating that the presence of AbiK prevented phage DNA maturation. These distinct molecular consequences of AbiK were also observed for phages P335 and P008, two phages that propagate on the same host. To the knowledge of the authors, this is the first time that different phage responses towards an Abi system have been reported.
Collapse
Affiliation(s)
- Isabelle Boucher
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Éric Émond
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Éric Dion
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| | - Diane Montpetit
- Agriculture and Agri-Food Canada, Food Research and Development Centre (FRDC), 3600 Casavant Blvd, St-Hyacinthe, Québec, Canada J2S 8E32
| | - Sylvain Moineau
- Department of Biochemistry and Microbiology, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec, Canada G1K 7P41
| |
Collapse
|
15
|
Rincé A, Tangney M, Fitzgerald GF. Identification of a DNA region from lactococcal phage sk1 protecting phage 712 from the abortive infection mechanism AbiF. FEMS Microbiol Lett 2000; 182:185-91. [PMID: 10612752 DOI: 10.1111/j.1574-6968.2000.tb08894.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteriophage 712 is a small isometric-headed phage which is sensitive to the lactococcal abortive infection mechanism AbiF. Its 29.6-kb DNA genome was characterized by restriction mapping and transcriptional analysis. Construction of a gene bank of lactococcal phage sk1, which is insensitive to the action of AbiF, in Lactococcus lactis containing AbiF resulted in the identification of a 324-bp DNA fragment which reduced the effect of the abortive infection mechanism on phage 712. Analysis of this region provided evidence that the action of AbiF is related to the cos ends of small isometric-headed phages. Sequence analysis of a 3.2-kb segment containing the middle operon and the cos ends of phage 712 genome allowed comparison of this part of the phage 712 genome with the equivalent sequences of four other small isometric-headed phages.
Collapse
Affiliation(s)
- A Rincé
- National Food Biotechnology Centre, University College, Cork, Ireland
| | | | | |
Collapse
|
16
|
Forde A, Daly C, Fitzgerald GF. Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris HO2. Appl Environ Microbiol 1999; 65:1540-7. [PMID: 10103248 PMCID: PMC91218 DOI: 10.1128/aem.65.4.1540-1547.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteriophage-host sensitivity patterns of 16 strains of Lactococcus lactis originally isolated from a mixed strain Cheddar cheese starter culture were determined. Using phages obtained from cheese factory whey, four of the strains were found to be highly phage resistant. One of these isolates, Lactococcus lactis subsp. cremoris HO2, was studied in detail to determine the mechanisms responsible for the phage insensitivity phenotypes. Conjugal transfer of plasmid DNA from strain HO2 allowed a function to be assigned to four of its six plasmids. A 46-kb molecule, designated pCI646, was found to harbor the lactose utilization genes, while this and plasmids of 58 kb (pCI658), 42 kb (pCI642), and 4.5 kb (pCI605) were shown to be responsible for the phage resistance phenotypes observed against the small isometric-headed phage phi712 (936 phage species) and the prolate-headed phage phic2 (c2 species). pCI658 was found to mediate an adsorption-blocking mechanism and was also responsible for the fluffy pellet phenotype of cells containing the molecule. pCI642 and pCI605 were both shown to be required for the operation of a restriction-modification system.
Collapse
Affiliation(s)
- A Forde
- Departments of Microbiology, University College, Cork, Ireland
| | | | | |
Collapse
|
17
|
Deng YM, Liu CQ, Dunn NW. Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from Lactococcus lactis. J Biotechnol 1999; 67:135-49. [PMID: 9990732 DOI: 10.1016/s0168-1656(98)00175-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A plasmid-encoded phage abortive infection mechanism (AbiL) was identified from Lactococcus lactis biovar. diacetylactis LD10-1. AbiL conferred complete resistance to the small isometric-headed phage phi 712 (936 species) and partial resistance to the prolate-headed phage phi c2 (c2 species) when introduced into L. lactis LM0230. However, AbiL was not effective against the small isometric-headed phage ul36 (P335 species). The AbiL determinant was sequenced and it consists of two open reading frames, abiLi and abiLii. Their encoded proteins did not share significant homology with any known proteins in the protein databases. Transcriptional analysis indicated that abiLi and abiLii are organized as a single operon. Deletion within abiLii abolished the phage resistance. The levels of four phi c2-specific transcripts, three within the early transcribed region and one within the late transcribed region, were examined by RT-PCR, no effect of AbiL on synthesis of these transcripts was detected, suggesting that AbiL may act at a point after the transcription of phi c2 in L. lactis.
Collapse
Affiliation(s)
- Y M Deng
- Department of Biotechnology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
18
|
Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK, Moineau S. AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol 1998; 64:4748-56. [PMID: 9835558 PMCID: PMC90918 DOI: 10.1128/aem.64.12.4748-4756.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis W-37 is highly resistant to phage infection. The cryptic plasmids from this strain were coelectroporated, along with the shuttle vector pSA3, into the plasmid-free host L. lactis LM0230. In addition to pSA3, erythromycin- and phage-resistant isolates carried pSRQ900, an 11-kb plasmid from L. lactis W-37. This plasmid made the host bacteria highly resistant (efficiency of plaquing <10(-8)) to c2- and 936-like phages. pSRQ900 did not confer any resistance to phages of the P335 species. Adsorption, cell survival, and endonucleolytic activity assays showed that pSRQ900 encodes an abortive infection mechanism. The phage resistance mechanism is limited to a 2.2-kb EcoRV/BclI fragment. Sequence analysis of this fragment revealed a complete open reading frame (abiQ), which encodes a putative protein of 183 amino acids. A frameshift mutation within abiQ completely abolished the resistant phenotype. The predicted peptide has a high content of positively charged residues (pI = 10.5) and is, in all likelihood, a cytosolic protein. AbiQ has no homology to known or deduced proteins in the databases. DNA replication assays showed that phage c21 (c2-like) and phage p2 (936-like) can still replicate in cells harboring AbiQ. However, phage DNA accumulated in its concatenated form in the infected AbiQ+ cells, whereas the AbiQ- cells contained processed (mature) phage DNA in addition to the concatenated form. The production of the major capsid protein of phage c21 was not hindered in the cells harboring AbiQ.
Collapse
Affiliation(s)
- E Emond
- Department of Biochemistry and Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, G1K 7P4 Canada
| | | | | | | | | | | |
Collapse
|
19
|
Prevots F, Ritzenthaler P. Complete sequence of the new lactococcal abortive phage resistance gene abiO. J Dairy Sci 1998; 81:1483-5. [PMID: 9684156 DOI: 10.3168/jds.s0022-0302(98)75713-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- F Prevots
- SKW BioSYSTEMS, Faculté de Pharmacie, Toulouse, France
| | | |
Collapse
|
20
|
Prévots F, Tolou S, Delpech B, Kaghad M, Daloyau M. Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis subsp. cremoris S114. FEMS Microbiol Lett 1998; 159:331-6. [PMID: 9503629 DOI: 10.1111/j.1574-6968.1998.tb12879.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A 7.275-kb DNA fragment which encodes resistance by abortive infection (Abi+) to bacteriophage was cloned from Lactococcus lactis subsp. cremoris S114. The genetic determinant for abortive infection was subcloned from this fragment. This gene was found to confer a reduction in efficiency of plating and plaque size for prolate-headed bacteriophage phi 53 (group I homology) and for small isometric-headed bacteriophage phi 59 (group III homology). This new gene, termed abiN, is predicted to encode a polypeptide of 178 amino acid residues with a deduced molecular mass of 20,461 Da and an isoelectric point of 4.63. No homology with any previously described genes was found. A probe was used to determine the presence of this gene only in S114 from 31 strains tested.
Collapse
Affiliation(s)
- F Prévots
- Faculté de Pharmacie, Toulouse, France.
| | | | | | | | | |
Collapse
|
21
|
McLandsborough L, Sechaud L, McKay L. Synergistic Effects of abiE or abiF from pNP40 When Cloned in Combination with abiD from pBF61. J Dairy Sci 1998. [DOI: 10.3168/jds.s0022-0302(98)75585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
|
23
|
Dinsmore PK, Klaenhammer TR. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA. J Bacteriol 1997; 179:2949-57. [PMID: 9139913 PMCID: PMC179059 DOI: 10.1128/jb.179.9.2949-2957.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.
Collapse
Affiliation(s)
- P K Dinsmore
- Department of Food Science, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|
24
|
Emond E, Holler BJ, Boucher I, Vandenbergh PA, Vedamuthu ER, Kondo JK, Moineau S. Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl Environ Microbiol 1997; 63:1274-83. [PMID: 9097424 PMCID: PMC168421 DOI: 10.1128/aem.63.4.1274-1283.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The natural plasmid pSRQ800 isolated from Lactococcus lactis subsp. lactis W1 conferred strong phage resistance against small isometric phages of the 936 and P335 species when introduced into phage-sensitive L. lactis strains. It had very limited effect on prolate phages of the c2 species. The phage resistance mechanism encoded on pSRQ800 is a temperature-sensitive abortive infection system (Abi). Plasmid pSRQ800 was mapped, and the Abi genetic determinant was localized on a 4.5-kb EcoRI fragment. Cloning and sequencing of the 4.5-kb fragment allowed the identification of two large open reading frames. Deletion mutants showed that only orf1 was needed to produce the Abi phenotype. orf1 (renamed abiK) coded for a predicted protein of 599 amino acids (AbiK) with an estimated molecular size of 71.4 kDa and a pI of 7.98. DNA and protein sequence alignment programs found no significant homology with databases. However, a database query based on amino acid composition suggested that AbiK might be in the same protein family as AbiA. No phage DNA replication nor phage structural protein production was detected in infected AbiK+ L. lactis cells. This system is believed to act at or prior to phage DNA replication. WHen cloned into a high-copy vector, AbiK efficiency increased 100-fold. AbiK provides another powerful tool that can be useful in controlling phages during lactococcal fermentations.
Collapse
Affiliation(s)
- E Emond
- Department of Biochemistry, Faculté des Sciences et Génie, Université Laval, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Parreira R, Valyasevi R, Lerayer AL, Ehrlich SD, Chopin MC. Gene organization and transcription of a late-expressed region of a Lactococcus lactis phage. J Bacteriol 1996; 178:6158-65. [PMID: 8892814 PMCID: PMC178485 DOI: 10.1128/jb.178.21.6158-6165.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The lactococcal phage bIL41 belongs to the small isometric-headed phages of the 936 quasi-species and is resistant to the abortive infection determined by abiB. A 10.2-kb segment from this phage, in which late transcription is initiated, has been sequenced. Thirteen open reading frames (ORFs) organized in one transcriptional unit have been identified. The location of two of them and the structural features of the proteins they code for are evocative of terminase subunits. Five other ORFs specify proteins which are highly homologous to structural proteins from the closely related phage F4-1. By comparing the phage bIL41 sequence with partial sequences available for four related phages, we were able to deduce a chimerical phage map covering the middle- and a large part of the late-expressed regions. Phages from this quasi-species differ by the insertion or deletion of either 1 to about 400 bp in noncoding regions or an entire ORF. Transcription was initiated 9 min after infection at a promoter with a -10 but no -35 consensus sequence. Synthesis of a phage activator protein was needed for initiation of transcription. A large 16-kb transcript covering all of the late-expressed region of the genome was synthesized. This transcript gave rise to smaller units. One of these units most probably resulted from a RNase E processing.
Collapse
Affiliation(s)
- R Parreira
- Institut National de la Recherche Agronomique, Laboratoire de Génétique Microbienne, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
26
|
Daly C, Fitzgerald GF, Davis R. Biotechnology of lactic acid bacteria with special reference to bacteriophage resistance. Antonie Van Leeuwenhoek 1996; 70:99-110. [PMID: 8879402 DOI: 10.1007/bf00395928] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria play an important role in many food and feed fermentations. In recent years major advances have been made in unravelling the genetic and molecular basis of significant industrial traits of lactic acid bacteria. Bacteriophages which can infect and destroy lactic acid bacteria pose a particularly serious threat to dairy fermentations that can result in serious economic losses. Consequently, these organisms and the mechanisms by which they interact with their hosts have received much research attention. This paper reviews some of the key discoveries over the years that have led us to our current understanding of bacteriophages themselves and the means by which their disruptive influence may be minimized.
Collapse
Affiliation(s)
- C Daly
- Department of Microbiology, University College, Cork, Ireland
| | | | | |
Collapse
|
27
|
O'Connor L, Coffey A, Daly C, Fitzgerald GF. AbiG, a genotypically novel abortive infection mechanism encoded by plasmid pCI750 of Lactococcus lactis subsp. cremoris UC653. Appl Environ Microbiol 1996; 62:3075-82. [PMID: 8795193 PMCID: PMC168098 DOI: 10.1128/aem.62.9.3075-3082.1996] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AbiG is an abortive infection (Abi) mechanism encoded by the conjugative plasmid pCI750 originally isolated from Lactococcus lactis subsp. cremoris UC653. Insensitivity conferred by this Abi manifested itself as complete resistance to phi 712 (936 phage species) with only partial resistance to phi c2 (c2 species). The mechanism did not inhibit phage DNA replication. The smallest subclone of pCI750 which expressed the Abi phenotype contained a 3.5-kb insert which encoded two potential open reading frames. abiGi (750 bp) and abiGii (1,194 bp) were separated by 2 bp and appeared to share a single promoter upstream of abiGi. These open reading frames showed no significant homology to sequences of either the DNA or protein databases; however, they did exhibit the typical low G+C content (29 and 27%, respectively) characteristic of lactococcal abi genes. In fact, the G+C content of a 7.0-kb fragment incorporating the abiG locus was 30%, which may suggest horizontal gene transfer from a species of low G+C content. In this context, it is notable that remnants of IS elements were observed throughout this 7.0-kb region.
Collapse
Affiliation(s)
- L O'Connor
- Department of Microbiology, University College Cork, Ireland
| | | | | | | |
Collapse
|
28
|
Prévots F, Daloyau M, Bonin O, Dumont X, Tolou S. Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. FEMS Microbiol Lett 1996; 142:295-9. [PMID: 8810513 DOI: 10.1111/j.1574-6968.1996.tb08446.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A gene which encodes resistance by abortive infection (Abi+) to bacteriophage was cloned from Lactococcus lactis ssp. lactis biovar. diacetylactis S94. This gene was found to confer a reduction in efficiency of plating and plaque size for prolate-headed bacteriophage phi 53 (group I of homology) and total resistance to the small isometric-headed bacteriophage phi 59 (group III of homology). The cloned gene is predicted to encode a polypeptide of 346 amino acid residues with a deduced molecular mass of 41 455 Da. No homology with any previously described genes was found. A probe was used to determine the presence of this gene in two strains on 31 tested.
Collapse
Affiliation(s)
- F Prévots
- Systems Bio-Industries, Boulogne Billancourt, France
| | | | | | | | | |
Collapse
|
29
|
Garvey P, Fitzgerald GF, Hill C. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl Environ Microbiol 1995; 61:4321-8. [PMID: 8534099 PMCID: PMC167743 DOI: 10.1128/aem.61.12.4321-4328.1995] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The lactococcal plasmid pNP40, from Lactococcus lactis subsp. lactis biovar diacetylactis DRC3, confers complete resistance to the prolate-headed phage phi c2 and the small isometric-headed phage phi 712 in L. lactis subsp. lactis MG1614. A 6.0-kb NcoI fragment of pNP40 cloned in the lactococcal Escherichia coli shuttle vector pAM401 was found to confer partial resistance to phi 712. Subcloning and deletion analysis of the recombinant plasmid pPG01 defined a 2.5-kb ScaIHpaI fragment as conferring phage insensitivity. Sequence analysis of this region confirmed the presence of two overlapping open reading frames (ORFs). Further subcloning of pNP40 to characterize the resistance determinant active against phi c2 identified a 5.6-kb EcoRV fragment of pNP40 which, when cloned in pAM401, conferred partial resistance to both phi c2 and phi 712. Subcloning and deletion analysis of the recombinant plasmid pCG1 defined a 3.7-kb EcoRV-XbaI fragment as encoding phage insensitivity. DNA sequence analysis of this region revealed the presence of a single complete ORF. The introduction of a frameshift mutation at the unique BglII site within this ORF disrupted the phage resistance phenotype, confirming that this ORF is responsible for the observed phage insensitivity. The mechanisms encoded by pPG01 and pCG1 in L. lactis subsp. lactis MG1614 conformed to the criteria defining abortive infection and were designated AbiE and AbiF, respectively. Analysis of the phage DNA content of phi 712-infected hosts containing AbiF demonstrated that it inhibited the rate of phage DNA replication, while AbiE had little effect on phage DNA replication, suggesting a later target of inhibition. The predicted protein product of abiF shows significant homology to the products of two other lactococcal abortive infection genes, abiD and abiD1.
Collapse
Affiliation(s)
- P Garvey
- Department of Microbiology, University College, Cork, Ireland
| | | | | |
Collapse
|
30
|
Anba J, Bidnenko E, Hillier A, Ehrlich D, Chopin MC. Characterization of the lactococcal abiD1 gene coding for phage abortive infection. J Bacteriol 1995; 177:3818-23. [PMID: 7601848 PMCID: PMC177101 DOI: 10.1128/jb.177.13.3818-3823.1995] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Lactococcal phage abortive infection (AbiD1) determined by plasmid pIL105 is active on both prolate- and small-isometric-head phages of the C6A and 936 phage groups, respectively, which are considered two different species. The Abi phenotype was found to be encoded by a single gene, designated abiD1. The abiD1-encoded protein (351 amino acids) does not show homology with any known protein and has a deduced isoelectric point of 10. It also possesses two helix-turn-helix structures and an unusually high content of asparagine, isoleucine, and lysine. A consensual promoter with a TGy extension to the -10 box was mapped 76 bp upstream of the start codon. Transcription initiated at this strong promoter stops at a terminator located 48 bp downstream from the promoter. The termination process is very efficient, and transcripts corresponding to the abiD1 gene were not visible in our experimental conditions with or without phage infection. Expression of abiD1 under the control of a T7 promoter induced a lag phase in Lactococcus lactis cell growth, suggesting that overproduction of AbiD1 could be toxic for the cells. AbiD1 protein was visualized in Escherichia coli by using a tightly controlled expression system.
Collapse
Affiliation(s)
- J Anba
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
31
|
Garvey P, van Sinderen D, Twomey D, Hill C, Fitzgerald G. Molecular genetics of bacteriophage and natural phage defence systems in the genus Lactococcus. Int Dairy J 1995. [DOI: 10.1016/0958-6946(95)00038-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|