1
|
Guider JT, Yoshimura KM, Block KR, Biddle JF, Shah Walter SR. Archaeal blooms and busts in an estuarine time series. Environ Microbiol 2024; 26:e16584. [PMID: 38372423 DOI: 10.1111/1462-2920.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Coastal bays, such as Delaware Bay, are highly productive, ecologically important transitions between rivers and the coastal ocean. They offer opportunities to investigate archaeal assemblages across seasons, with the exchange of water masses that occurs with tidal cycles, and in the context of variable organic matter quality. For a year-long estuarine, size-fractionated time series, we used amplicon sequencing, chemical measurements, and qPCR to follow archaeal groups through the seasons. We detected seasonally high abundances of Marine Group II archaea in summer months which correlate with indicators of phytoplankton production, although not phytoplankton biomass. Although previous studies have reported associations between Marine Group II archaea and particles, here they are almost entirely found in very small particles (0.22-0.7 μm), suggesting they are free-living cells. Populations of Nitrososphaeria did not vary with particle size or environmental conditions. Methanogens were significant fractions of archaeal sequences in large particles at low tide during winter months. Contrary to expectations, Nanoarchaeia were found predominantly in the free-living fraction despite the previous observation that they require an association with hosts. These results underscore the utility of time series studies in shallow, tidally mixed estuarine environments that capture variable conditions for understanding the ecology and biogeochemistry of planktic archaea.
Collapse
Affiliation(s)
- Justin T Guider
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Kristin M Yoshimura
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - Kaleigh R Block
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
2
|
Archaea: An Agro-Ecological Perspective. Curr Microbiol 2021; 78:2510-2521. [PMID: 34019119 DOI: 10.1007/s00284-021-02537-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Microorganisms inhabiting bulk soil and rhizosphere play an important role in soil biogeochemical cycles leading to enhanced plant growth and productivity. In this context, the role of bacteria is well established, however, not much reports are available about the role archaea plays in this regard. Literature suggests that archaea also play a greater role in nutrient cycling of carbon, nitrogen, sulfur, and other minerals, possess various plant growth promoting attributes, and can impart tolerance to various abiotic stresses (especially osmotic and oxidative) in areas of high salinity, low and high temperatures and hydrogen ion concentrations. Thermoacidophilic archaea have been found to potentially involve in bioleaching of mineral ores and bioremediation of chemical pollutants and aromatic compounds. Looking at immense potential of archaea in promoting plant growth, alleviating abiotic stresses, and remediating contaminated sites, detailed studies are required to establish their role in different ecological processes, and their interactions in rhizosphere with plant and other microflora (bacteria and fungi) in different ecosystems. In this review, a brief discussion on archaea from the agro-ecological point of view is presented.
Collapse
|
3
|
Loh HQ, Hervé V, Brune A. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Bathyarchaeia From Termite Guts - A Genome-Centric Analysis. Front Microbiol 2021; 11:635786. [PMID: 33613473 PMCID: PMC7886697 DOI: 10.3389/fmicb.2020.635786] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Symbiotic digestion of lignocellulose in the hindgut of higher termites is mediated by a diverse assemblage of bacteria and archaea. During a large-scale metagenomic study, we reconstructed 15 metagenome-assembled genomes of Bathyarchaeia that represent two distinct lineages in subgroup 6 (formerly MCG-6) unique to termite guts. One lineage (TB2; Candidatus Termitimicrobium) encodes all enzymes required for reductive acetogenesis from CO2 via an archaeal variant of the Wood–Ljungdahl pathway, involving tetrahydromethanopterin as C1 carrier and an (ADP-forming) acetyl-CoA synthase. This includes a novel 11-subunit hydrogenase, which possesses the genomic architecture of the respiratory Fpo-complex of other archaea but whose catalytic subunit is phylogenetically related to and shares the conserved [NiFe] cofactor-binding motif with [NiFe] hydrogenases of subgroup 4 g. We propose that this novel Fpo-like hydrogenase provides part of the reduced ferredoxin required for CO2 reduction and is driven by the electrochemical membrane potential generated from the ATP conserved by substrate-level phosphorylation; the other part may require the oxidation of organic electron donors, which would make members of TB2 mixotrophic acetogens. Members of the other lineage (TB1; Candidatus Termiticorpusculum) are definitely organotrophic because they consistently lack hydrogenases and/or methylene-tetrahydromethanopterin reductase, a key enzyme of the archaeal Wood–Ljungdahl pathway. Both lineages have the genomic capacity to reduce ferredoxin by oxidizing amino acids and might conduct methylotrophic acetogenesis using unidentified methylated compound(s). Our results indicate that Bathyarchaeia of subgroup 6 contribute to acetate formation in the guts of higher termites and substantiate the genomic evidence for reductive acetogenesis from organic substrates, possibly including methylated compounds, in other uncultured representatives of the phylum.
Collapse
Affiliation(s)
- Hui Qi Loh
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Brune
- Research Group Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Groundwater Depth Overrides Tree-Species Effects on the Structure of Soil Microbial Communities Involved in Nitrogen Cycling in Plantation Forests. FORESTS 2020. [DOI: 10.3390/f11030275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities found in soil ecosystems play important roles in decomposing organic materials and recycling nutrients. A clear understanding on how biotic and abiotic factors influence the microbial community and its functional role in ecosystems is fundamental to terrestrial biogeochemistry and plant production. The purpose of this study was to investigate microbial communities and functional genes involved in nitrogen cycling as a function of groundwater depth (deep and shallow), tree species (pine and eucalypt), and season (spring and fall). Soil fungal, bacterial, and archaeal communities were determined by length heterogeneity polymerase chain reaction (LH-PCR). Soil ammonia oxidation archaeal (AOA) amoA gene, ammonia oxidation bacterial (AOB) amoA gene, nitrite oxidoreductase nrxA gene, and denitrifying bacterial narG, nirK, nirS, and nosZ genes were further studied using PCR and denaturing gradient gel electrophoresis (DGGE). Soil fungal and bacterial communities remained similar between tree species and groundwater depths, respectively, regardless of season. Soil archaeal communities remained similar between tree species but differed between groundwater depths in the spring only. Archaeal amoA for nitrification and bacterial nirK and nosZ genes for denitrification were detected in DGGE, whereas bacterial amoA and nrxA for nitrification and bacterial narG and nirS genes for denitrification were undetectable. The detected nitrification and denitrification communities varied significantly with groundwater depth. There was no significant difference of nitrifying archaeal amoA or denitrifying nirK communities between different tree species regardless of season. The seasonal difference in microbial communities and functional genes involved in nitrogen cycling suggests microorganisms exhibit seasonal dynamics that likely impact relative rates of nitrification and denitrification.
Collapse
|
5
|
Mihajlovski A, Lepinay C, Mirval AL, Touron S, Bousta F, Di Martino P. Characterization of the archaeal and fungal diversity associated with gypsum efflorescences on the walls of the decorated Sorcerer’s prehistoric cave. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01506-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
6
|
Zhao Z, Cao Y, Fan Y, Yang H, Feng X, Li L, Zhang H, Xing L, Zhao M. Ladderane records over the last century in the East China sea: Proxies for anammox and eutrophication changes. WATER RESEARCH 2019; 156:297-304. [PMID: 30927625 DOI: 10.1016/j.watres.2019.03.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic ammonium oxidation (anammox), an important process for converting fixed nitrogen to N2, plays an important role in the present-day marine nitrogen cycle. However, little is known about anammox activities in the past, especially in regions that were strongly affected by human activities, evidenced by eutrophication and hypoxia, which promote anammox bacteria growth. In this study, ladderanes have been measured in a sediment core and suspended particulate matter (SPM) in the East China Sea (ECS), to reconstruct the anammox record and to evaluate its responses to eutrophication and hypoxia. The detection and distribution of different ladderane lipids in SPM provide additional evidence that ladderanes were mostly produced in the water column and could reflect anammox activities. Summed ladderane content from the core varied between 11 and 300 ng/g dry weight (dw) sediment, with C20-[5]-ladderane fatty acid methyl esters (FAME) as the predominant compound (5-150 ng/g dw), followed by C20-[3]-ladderane FAME (1-110 ng/g dw), C18-[3]-ladderane FAME (1-32 ng/g dw) and C18 -[5]-ladderane FAME (3-11 ng/g dw). The detection of ladderanes over the last century indicate the existence of anammox in the past. The rapidly increasing trend of ladderanes since the 1960s correlates with an increase in phytoplankton biomarkers (Σ(B + D + A), brassicasterol (B), dinosterol (D) and C37 alkenones (A)), indicating that eutrophication exacerbated anammox growth. The co-variation between our ladderane record and published records of low-oxygen tolerant foraminiferal microfossils and hypoxia events over the past 60 years suggested that sediment ladderanes are a useful indicator for past changes of oxygen depletion or hypoxia in the ECS.
Collapse
Affiliation(s)
- Zongshan Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yali Cao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Ying Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Jiangxi Institute of Analysis and Test, Nanchang, 330029, China
| | - Haili Yang
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Xuwen Feng
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou, 310012, China
| | - Li Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Hailong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lei Xing
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Meixun Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
7
|
Wang N, Wang A, Xie J, He M. Responses of soil fungal and archaeal communities to environmental factors in an ongoing antimony mine area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1030-1039. [PMID: 30586790 DOI: 10.1016/j.scitotenv.2018.10.300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 06/09/2023]
Abstract
Microorganisms are vital to biogeochemical cycles. However, heavy metal contamination has been implicated in altering the microbial community. Antimony (Sb) and arsenic (As) in soils can alter soil bacterial community composition in previous studies and, therefore, may have effects on soil fungal and archaeal community composition. The aim of this study was to assess the microbial activity and fungal and archaeal community composition in long-term Sb and As contamination areas. We analyzed soil respiration rates from 247.91 μg C/kg SDW h to 1372.93 μg C/kg SDW h, which revealed a positive correlation with concentrations of antimony (r = 0.79). The microbial diversity indices (Shannon and Simpson indices) showed that the abundances of the fungal and archaeal communities were more sensitive to As. Redundancy analysis (RDA) revealed that soil properties and contamination are drivers controlling the fungal and archaeal community. All of these two microbial groups responded strongly to pH. However, the dominant drivers for fungal and archaeal community composition were very different. These differences were related to limiting conditions for different species, with fungal community composition affected strongly by pH, TC, TSb, RI and SbDGT, while archaeal community composition was mainly affected by the pH, AsDGT and TAs. Furthermore, soil respiration showed a very strong relationship with fungal community composition with r2 = 0,60, p < 0.01. These results showed that microbial responses to contamination gradients of Sb and As were heterogeneous due to the limiting environmental conditions of different microbial taxa.
Collapse
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jun Xie
- Environmental Monitoring Station of Lenshuijiang City, Lenshuijiang 417500, Hunan, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Song GC, Im H, Jung J, Lee S, Jung M, Rhee S, Ryu C. Plant growth‐promoting archaea trigger induced systemic resistance inArabidopsis thalianaagainstPectobacterium carotovorumandPseudomonas syringae. Environ Microbiol 2019; 21:940-948. [DOI: 10.1111/1462-2920.14486] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Hyunjoo Im
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| | - Jihye Jung
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Man‐Young Jung
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Sung‐Keun Rhee
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| |
Collapse
|
9
|
Xia X, Guo W, Liu H. Basin Scale Variation on the Composition and Diversity of Archaea in the Pacific Ocean. Front Microbiol 2017; 8:2057. [PMID: 29109713 PMCID: PMC5660102 DOI: 10.3389/fmicb.2017.02057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/06/2017] [Indexed: 01/09/2023] Open
Abstract
The Archaea are a widely distributed group of prokaryotes that inhabit and thrive in many different environments. In the sea, they play key roles in various global biogeochemical processes. Here, in order to investigate the vertical profiles of archaeal community across a large geographic distance, the compositions of archaeal communities in seven seawater columns in the Pacific Ocean were investigated using high throughput 454 pyrosequencing of the 16S rRNA gene. The surface archaeal communities showed lower diversity and greater variability than those in the deeper layers. Two of the major archaeal phyla that displayed different depth preferences were Thaumarchaeota and Euryarchaeota. The majority of Thaumarchaeota belonged to Marine Group I (MGI), which had high relative abundance in deep water. In contrast, Euryarchaeota, which mainly consisted of Marine Group II (MGII) and III (MGIII), were dominant in the surface layer. Compared with MGI and MGII, MGIII were less abundant in seawater and generally absent from the surface water of the subarctic Pacific. In addition, niche separation in the MGI, MGII, and MGIII subgroups was also observed. For example, MGI.C and MGII.A (the major subgroups of MGI and MGII, respectively) displayed a strong negative correlation with each other. The highest level of archaeal diversity was found in the core of an oxygen minimum zone (OMZ) located off Costa Rica, which resulted from the co-occurrence of both anaerobic and aerobic archaea. For example, methanotrophic archaea ANME-2, methanogenic archaea and several sediment origin archaea, such as Marine Benthic Group A (MBGA) and Bathyarchaeota, were all detected at relatively high abundance in the OMZ. Together, our findings indicate that vertical heterogeneities along water columns and latitudinal differentiation in the surface waters are ubiquitous features of archaeal communities in the Pacific Ocean, and the OMZ off Costa Rica is an archaeal biodiversity hot-spot.
Collapse
Affiliation(s)
| | | | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| |
Collapse
|
10
|
Leuko S, Koskinen K, Sanna L, D’Angeli IM, De Waele J, Marcia P, Moissl-Eichinger C, Rettberg P. The influence of human exploration on the microbial community structure and ammonia oxidizing potential of the Su Bentu limestone cave in Sardinia, Italy. PLoS One 2017; 12:e0180700. [PMID: 28704427 PMCID: PMC5507542 DOI: 10.1371/journal.pone.0180700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 01/20/2023] Open
Abstract
The bacterial diversity in the Su Bentu Cave in Sardinia was investigated by means of 16S rRNA gene-based analysis. This 15 km long cave, carved in Jurassic limestone, hosts a variety of calcite speleothems, and a long succession of subterranean lakes with mixed granite and carbonate sands. The lower level is occasionally flooded by a rising groundwater level, but with only scarce input of organic remains (leaves and charcoal fragments). On the quiet cave pools there are visible calcite rafts, whereas walls are locally coated with manganese deposits. In the drier upper levels, where organic input is much more subdued, moonmilk—a hydrated calcium-magnesium carbonate speleothem—can be found. Relative humidity approaches 100% and the measured mean annual cave air temperature is 14.8°C. Samples were obtained in 2014 from calcite rafts, moonmilk, manganese oxide deposits and soil (limestone and granite grains). Microclimatic conditions in the cave near the sampling sites, sample properties, physico-chemical parameters of water, and sediment composition were determined. The microbial community of this system is predominately composed of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Nitrospirae, and Firmicutes. Sampling sites near the entrance of the cave and in close proximity of the underground campsite–located 500 meters deep into the cave—revealed the highest diversity as well as the highest number of human associated microorganisms. Two samples obtained in very close proximity of each other near the campsite, indicate that the human impact is localized and is not distributed freely within the system. Analysis of the abundance of bacterial and archaeal amoA genes revealed a far greater abundance of archaeal amoA genes compared to bacterial representatives. The results of this study highlight that human impact is confined to locations that are utilized as campsites and that exploration leaves little microbial trails. Furthermore, we uncovered a highly specialized microbiome, which is perfectly adapted to survive and thrive in an environment with low nutrient availability.
Collapse
Affiliation(s)
- Stefan Leuko
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
- * E-mail:
| | - Kaisa Koskinen
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Laura Sanna
- Institute for Biometeorology, National Research Council of Italy, Sassari, Italy
| | | | - Jo De Waele
- Italian Institute of Speleology, University of Bologna, Bologna, Italy
| | - Paolo Marcia
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Sassari, Italy
| | - Christine Moissl-Eichinger
- Medical University of Graz, Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, BioTechMed, Krenngasse, Graz, Austria
| | - Petra Rettberg
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Höhe, Cologne (Köln), Germany
| |
Collapse
|
11
|
From cultured to uncultured genome sequences: metagenomics and modeling microbial ecosystems. Cell Mol Life Sci 2015; 72:4287-308. [PMID: 26254872 PMCID: PMC4611022 DOI: 10.1007/s00018-015-2004-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 12/30/2022]
Abstract
Microorganisms and the viruses that infect them are the most numerous biological entities on Earth and enclose its greatest biodiversity and genetic reservoir. With strength in their numbers, these microscopic organisms are major players in the cycles of energy and matter that sustain all life. Scientists have only scratched the surface of this vast microbial world through culture-dependent methods. Recent developments in generating metagenomes, large random samples of nucleic acid sequences isolated directly from the environment, are providing comprehensive portraits of the composition, structure, and functioning of microbial communities. Moreover, advances in metagenomic analysis have created the possibility of obtaining complete or nearly complete genome sequences from uncultured microorganisms, providing important means to study their biology, ecology, and evolution. Here we review some of the recent developments in the field of metagenomics, focusing on the discovery of genetic novelty and on methods for obtaining uncultured genome sequences, including through the recycling of previously published datasets. Moreover we discuss how metagenomics has become a core scientific tool to characterize eco-evolutionary patterns of microbial ecosystems, thus allowing us to simultaneously discover new microbes and study their natural communities. We conclude by discussing general guidelines and challenges for modeling the interactions between uncultured microorganisms and viruses based on the information contained in their genome sequences. These models will significantly advance our understanding of the functioning of microbial ecosystems and the roles of microbes in the environment.
Collapse
|
12
|
Diversity and Distribution of Archaea in the Mangrove Sediment of Sundarbans. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:968582. [PMID: 26346219 PMCID: PMC4543378 DOI: 10.1155/2015/968582] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/25/2015] [Accepted: 07/14/2015] [Indexed: 11/25/2022]
Abstract
Mangroves are among the most diverse and productive coastal ecosystems in the tropical and subtropical regions. Environmental conditions particular to this biome make mangroves hotspots for microbial diversity, and the resident microbial communities play essential roles in maintenance of the ecosystem. Recently, there has been increasing interest to understand the composition and contribution of microorganisms in mangroves. In the present study, we have analyzed the diversity and distribution of archaea in the tropical mangrove sediments of Sundarbans using 16S rRNA gene amplicon sequencing. The extraction of DNA from sediment samples and the direct application of 16S rRNA gene amplicon sequencing resulted in approximately 142 Mb of data from three distinct mangrove areas (Godkhali, Bonnie camp, and Dhulibhashani). The taxonomic analysis revealed the dominance of phyla Euryarchaeota and Thaumarchaeota (Marine Group I) within our dataset. The distribution of different archaeal taxa and respective statistical analysis (SIMPER, NMDS) revealed a clear community shift along the sampling stations. The sampling stations (Godkhali and Bonnie camp) with history of higher hydrocarbon/oil pollution showed different archaeal community pattern (dominated by haloarchaea) compared to station (Dhulibhashani) with nearly pristine environment (dominated by methanogens). It is indicated that sediment archaeal community patterns were influenced by environmental conditions.
Collapse
|
13
|
Petitjean C, Deschamps P, López-García P, Moreira D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol 2014; 7:191-204. [PMID: 25527841 PMCID: PMC4316627 DOI: 10.1093/gbe/evu274] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The first 16S rRNA-based phylogenies of the Archaea showed a deep division between two groups, the kingdoms Euryarchaeota and Crenarchaeota. This bipartite classification has been challenged by the recent discovery of new deeply branching lineages (e.g., Thaumarchaeota, Aigarchaeota, Nanoarchaeota, Korarchaeota, Parvarchaeota, Aenigmarchaeota, Diapherotrites, and Nanohaloarchaeota) which have also been given the same taxonomic status of kingdoms. However, the phylogenetic position of some of these lineages is controversial. In addition, phylogenetic analyses of the Archaea have often been carried out without outgroup sequences, making it difficult to determine if these taxa actually define lineages at the same level as the Euryarchaeota and Crenarchaeota. We have addressed the question of the position of the root of the Archaea by reconstructing rooted archaeal phylogenetic trees using bacterial sequences as outgroup. These trees were based on commonly used conserved protein markers (32 ribosomal proteins) as well as on 38 new markers identified through phylogenomic analysis. We thus gathered a total of 70 conserved markers that we analyzed as a concatenated data set. In contrast with previous analyses, our trees consistently placed the root of the archaeal tree between the Euryarchaeota (including the Nanoarchaeota and other fast-evolving lineages) and the rest of archaeal species, which we propose to class within the new kingdom Proteoarchaeota. This implies the relegation of several groups previously classified as kingdoms (e.g., Crenarchaeota, Thaumarchaeota, Aigarchaeota, and Korarchaeota) to a lower taxonomic rank. In addition to taxonomic implications, this profound reorganization of the archaeal phylogeny has also consequences on our appraisal of the nature of the last archaeal ancestor, which most likely was a complex organism with a gene-rich genome.
Collapse
Affiliation(s)
- Céline Petitjean
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | | | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| |
Collapse
|
14
|
Beckmann S, Manefield M. Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales. FEMS Microbiol Ecol 2014; 90:587-98. [PMID: 25154758 DOI: 10.1111/1574-6941.12418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 12/23/2022] Open
Abstract
Pristine hydrocarbon-rich river sediments in the Greater Blue Mountains World Heritage Area (Australia) release substantial amounts of methane. The present study aimed to unravel for the first time the active methanogens mediating methane formation and exploiting the bacterial diversity potentially involved in the trophic network. Quantitative PCR of 16S rRNA gene and functional genes as well as 454 pyrosequencing were used to address the unknown microbial diversity and abundance. Methane-releasing sediment cores derived from three different river sites of the Tootie River. Highest methane production rates of 10.8 ± 0.5 μg g(-1)(wet weight) day(-1) were detected in 40 cm sediment depth being in congruence with the detection of the highest abundances of the archaeal 16S rRNA gene and the methyl-coenzyme M reductase (mcrA) genes. Stable carbon and hydrogen isotopic signatures of the produced methane indicated an acetoclastic origin. Long-term enrichment cultures amended with either acetate or H2/CO2 revealed acetoclastic methanogenesis as key methane-formation process mediated by members of the order Methanosarcinales. Conditions prevailing in the river sediments might be suitable for hydrocarbon-degrading bacteria observed in the river sediments that were previously unclassified or closely related to the Bacteroidetes/Chlorobi group, the Firmicutes and the Chloroflexi group fuelling acetoclastic methanogensis in pristine river sediments.
Collapse
Affiliation(s)
- Sabrina Beckmann
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
15
|
Liu J, Yu S, Zhao M, He B, Zhang XH. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiol Ecol 2014; 90:424-35. [PMID: 25098621 DOI: 10.1111/1574-6941.12404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
The significance of archaea in regulating biogeochemical processes has led to an interest in their community compositions. Using 454 pyrosequencing, the present study examined the archaeal communities along a subtropical estuary, Pearl Estuary, China. Marine Group I Thaumarchaeota (MG-I) were predominant in freshwater sites and one novel subgroup of MG-I, that is MG-Iν, was proposed. In addition, the previously defined MG-Iα II was grouped into two clusters (MG-Iα II-1, II-2). MG-Iα II-1 and MG-Iλ II were both freshwater-specific, with MG-Iα II-1 being prevalent in the oxic water and MG-Iλ II in the hypoxic water. Salinity, dissolved oxygen, nutrients and pH were the most important determinants that shaped the differential distribution of MG-I subgroups along Pearl Estuary. Marine Group II Euryarchaeota (MG-II) dominated the saltwater sites, but their abundance was higher in surface waters. The phylogenetic patterns of MG-I subgroups and their habitat preferences provide insight into their phylogeographic relationships. These results highlight the diversification of various ecotypes of archaea, especially of MG-I, under distinct environmental factors in Pearl Estuary, which are of great value for further exploring their ecological functions.
Collapse
Affiliation(s)
- Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
16
|
Stieglmeier M, Klingl A, Alves RJE, Rittmann SKMR, Melcher M, Leisch N, Schleper C. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 2014; 64:2738-2752. [PMID: 24907263 PMCID: PMC4129164 DOI: 10.1099/ijs.0.063172-0] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A mesophilic, neutrophilic and aerobic, ammonia-oxidizing archaeon, strain EN76(T), was isolated from garden soil in Vienna (Austria). Cells were irregular cocci with a diameter of 0.6-0.9 µm and possessed archaella and archaeal pili as cell appendages. Electron microscopy also indicated clearly discernible areas of high and low electron density, as well as tubule-like structures. Strain EN76(T) had an S-layer with p3 symmetry, so far only reported for members of the Sulfolobales. Crenarchaeol was the major core lipid. The organism gained energy by oxidizing ammonia to nitrite aerobically, thereby fixing CO2, but growth depended on the addition of small amounts of organic acids. The optimal growth temperature was 42 °C and the optimal pH was 7.5, with ammonium and pyruvate concentrations of 2.6 and 1 mM, respectively. The genome of strain EN76(T) had a DNA G+C content of 52.7 mol%. Phylogenetic analyses of 16S rRNA genes showed that strain EN76(T) is affiliated with the recently proposed phylum Thaumarchaeota, sharing 85% 16S rRNA gene sequence identity with the closest cultivated relative 'Candidatus Nitrosopumilus maritimus' SCM1, a marine ammonia-oxidizing archaeon, and a maximum of 81% 16S rRNA gene sequence identity with members of the phyla Crenarchaeota and Euryarchaeota and any of the other recently proposed phyla (e.g. 'Korarchaeota' and 'Aigarchaeota'). We propose the name Nitrososphaera viennensis gen. nov., sp. nov. to accommodate strain EN76(T). The type strain of Nitrososphaera viennensis is strain EN76(T) ( = DSM 26422(T) = JMC 19564(T)). Additionally, we propose the family Nitrososphaeraceae fam. nov., the order Nitrososphaerales ord. nov. and the class Nitrososphaeria classis nov.
Collapse
Affiliation(s)
- Michaela Stieglmeier
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| | - Andreas Klingl
- Cell Biology and LOEWE Research Centre for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Ricardo J. E. Alves
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| | - Simon K.-M. R. Rittmann
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| | - Michael Melcher
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| | - Christa Schleper
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaea Biology and Ecogenomics Division, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
17
|
|
18
|
Hawkins AN, Johnson KW, Bräuer SL. Southern Appalachian peatlands support high archaeal diversity. MICROBIAL ECOLOGY 2014; 67:587-602. [PMID: 24419541 DOI: 10.1007/s00248-013-0352-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Mid-latitude peatlands with a temperate climate are sparsely studied and as such represent a gap in the current knowledge base regarding archaeal populations present and their roles in these environments. Phylogenetic analysis of the archaeal populations among three peatlands in the Southern Appalachians reveal not only methanogenic species but also significant populations of thaumarchaeal and crenarchaeal-related organisms of the uncultured miscellaneous crenarchaeotal group (MCG) and the terrestrial group 1.1c, as well as deep-branching Euryarchaeota primarily within the Lake Dagow sediment and rice cluster V lineages. The Thaum/Crenarchaea and deep-branching Euryarchaea represented approximately 24-83% and 2-18%, respectively, of the total SSU rRNA clones retrieved in each library, and methanogens represented approximately 14-72% of the clones retrieved. Several taxa that are either rare or novel to acidic peatlands were detected including the euryarchaeal SM1K20 cluster and thaumarchaeal/crenarchaeal-related clusters 1.1a, C3, SAGMCG-1, pSL12, and AK59. All three major groups (methanogens, Thaumarchaea/Crenarchaea, and deep-branching Euryarchaea) were detected in the RNA library, suggesting at least a minimum level of maintenance activity. Compared to their northern counterparts, Southern Appalachian peatlands appear to harbor a relatively high diversity of Archaea and exhibit a high level of intra-site heterogeneity.
Collapse
Affiliation(s)
- A N Hawkins
- Department of Biology, Appalachian State University, 572 Rivers Street, Boone, NC, 28608, USA
| | | | | |
Collapse
|
19
|
Berdjeb L, Pollet T, Chardon C, Jacquet S. Spatio-temporal changes in the structure of archaeal communities in two deep freshwater lakes. FEMS Microbiol Ecol 2013; 86:215-30. [PMID: 23730709 DOI: 10.1111/1574-6941.12154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023] Open
Abstract
In this study, we evaluated the driving forces exerted by a large set of environmental and biological parameters on the spatial and temporal dynamics of archaeal community structure in two neighbouring peri-alpine lakes that differ in terms of trophic status. We analysed monthly data from a 2-year sampling period at two depths corresponding to the epi- and hypolimnetic layers. The archaeal communities seemed to be mainly composed of ammonia-oxidizing archaea belonging to the thaumarchaeotal phylum. The spatio-temporal dynamics of these communities were very similar in the two lakes and were characterized by (1) disparities in archaeal community structure in both time and space and (2) no seasonal reproducibility between years. The archaeal communities were regulated by a complex combination of abiotic factors, including temperature, nutrients, chlorophyll a and dissolved oxygen, and biotic factors such as heterotrophic nanoflagellates and ciliates. However, in most cases, these factors explained < 52% of the variance in archaeal community structure, while we showed in a previous study that these factors explained 70-90% of the temporal variance for bacteria. This suggests that Bacteria and Archaea may be influenced by different factors and could occupy different ecological niches despite similar spatio-temporal dynamics.
Collapse
Affiliation(s)
- Lyria Berdjeb
- INRA, UMR CARRTEL, Thonon-les-Bains, France; Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, QC, Canada
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- David A. Stahl
- Department of Civil and Environmental Engineering and Department of Microbiology, University of Washington, Seattle, Washington 98195-2700;
| | - José R. de la Torre
- Department of Biology, San Francisco State University, San Francisco, California 94132-1722;
| |
Collapse
|
21
|
Abstract
Archaea were, until recently, considered to be confined to specialized environments including those at high temperature, high salinity, extremes of pH and ambients that permit methanogenesis. Recently developed molecular methods for studying microbial ecology, which do not necessitate cell culturing, have demonstrated their presence in a wide variety of temperate and cold environments including agricultural and forest soils, fresh water lake sediments, marine picoplankton and deep-sea locations. These discoveries mark the beginning of a new era for investigating the Archaea and in particular their physiological and metabolic properties and their biological roles in complex microbial populations.
Collapse
|
22
|
Koizumi Y, Takii S, Nishino M, Nakajima T. Vertical distributions of sulfate-reducing bacteria and methane-producing archaea quantified by oligonucleotide probe hybridization in the profundal sediment of a mesotrophic lake. FEMS Microbiol Ecol 2012; 44:101-8. [PMID: 19719655 DOI: 10.1016/s0168-6496(02)00463-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract Vertical distributions of sulfate-reducing bacteria and methane-producing archaea were investigated in the profundal sediment of a freshwater lake using membrane-immobilized small subunit rRNA hybridization with group- and genus-specific oligonucleotide probes. The annual average of the relative abundance of small subunit rRNA hybridized with all probes for sulfate-reducing bacteria to total small subunit rRNA was 2.3% at 0-2 cm and increased with depth up to 22.9% at 8-14 cm where sulfate concentration was less than 10 nmol ml(-1) in interstitial water, suggesting that these bacteria may survive on alternative metabolisms. The signal of probe Dsv687 (the family Desulfovibrionaceae and some Geobacteraceae) was the main factor in this increase. The relative abundance of methane-producing archaea to total small subunit rRNA was highest (7.8%) at 8-14 cm, dominated by the order Methanosarcinales. The metabolic rates measured in the sediments demonstrated that the peaks of sulfate reduction and methane production were separated vertically, and were not linked to their small subunit rRNA distributions. Our data indicate that sulfate-reducing bacteria can coexist with methane-producing archaea from 0 to 20 cm in the freshwater lake sediment.
Collapse
Affiliation(s)
- Yoshikazu Koizumi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | |
Collapse
|
23
|
Singh D, Takahashi K, Adams JM. Elevational patterns in archaeal diversity on Mt. Fuji. PLoS One 2012; 7:e44494. [PMID: 22970233 PMCID: PMC3435261 DOI: 10.1371/journal.pone.0044494] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Little is known of how archaeal diversity and community ecology behaves along elevational gradients. We chose to study Mount Fuji of Japan as a geologically and topographically uniform mountain system, with a wide range of elevational zones. PCR-amplified soil DNA for the archaeal 16 S rRNA gene was pyrosequenced and taxonomically classified against EzTaxon-e archaeal database. At a bootstrap cut-off of 80%, most of the archaeal sequences were classified into phylum Thaumarchaeota (96%) and Euryarchaeota (3.9%), with no sequences classified into other phyla. Archaeal OTU richness and diversity on Fuji showed a pronounced 'peak' in the mid-elevations, around 1500 masl, within the boreal forest zone, compared to the temperate forest zone below and the alpine fell-field and desert zones above. Diversity decreased towards higher elevations followed by a subtle increase at the summit, mainly due to an increase in the relative abundance of the group I.1b of Thaumarchaeota. Archaeal diversity showed a strong positive correlation with soil NH(4)(+), K and NO(3)(-). Archaeal diversity does not parallel plant diversity, although it does roughly parallel bacterial diversity. Ecological hypotheses to explain the mid diversity bulge on Fuji include intermediate disturbance effects, and the result of mid elevations combining a mosaic of upper and lower slope environments. Our findings show clearly that archaeal soil communities are highly responsive to soil environmental gradients, in terms of both their diversity and community composition. Distinct communities of archaea specific to each elevational zone suggest that many archaea may be quite finely niche-adapted within the range of soil environments. A further interesting finding is the presence of a mesophilic component of archaea at high altitudes on a mountain that is not volcanically active. This emphasizes the importance of microclimate - in this case solar heating of the black volcanic ash surface--for the ecology of soil archaea.
Collapse
Affiliation(s)
- Dharmesh Singh
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Koichi Takahashi
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Japan
- Institute of Mountain Science, Shinshu University, Matsumoto, Japan
| | - Jonathan M. Adams
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
24
|
Bhattarai S, Ross KA, Schmid M, Anselmetti FS, Bürgmann H. Local conditions structure unique archaeal communities in the anoxic sediments of meromictic Lake Kivu. MICROBIAL ECOLOGY 2012; 64:291-310. [PMID: 22430505 DOI: 10.1007/s00248-012-0034-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
Meromictic Lake Kivu is renowned for its enormous quantity of methane dissolved in the hypolimnion. The methane is primarily of biological origin, and its concentration has been increasing in the past half-century. Insight into the origin of methane production in Lake Kivu has become relevant with the recent commercial extraction of methane from the hypolimnion. This study provides the first culture-independent approach to identifying the archaeal communities present in Lake Kivu sediments at the sediment-water interface. Terminal restriction fragment length polymorphism analysis suggests considerable heterogeneity in the archaeal community composition at varying sample locations. This diversity reflects changes in the geochemical conditions in the sediment and the overlying water, which are an effect of local groundwater inflows. A more in-depth look at the archaeal community composition by clone library analysis revealed diverse phylogenies of Euryarchaeota and Crenarachaeota. Many of the sequences in the clone libraries belonged to globally distributed archaeal clades such as the rice cluster V and Lake Dagow sediment environmental clusters. Several of the determined clades were previously thought to be rare among freshwater sediment Archaea (e.g., sequences related to the SAGMEG-1 clade). Surprisingly, there was no observed relation of clones to known hydrogentrophic methanogens and less than 2 % of clones were related to acetoclastic methanogens. The local variability, diversity, and novelty of the archaeal community structure in Lake Kivu should be considered when making assumptions on the biogeochemical functioning of its sediments.
Collapse
MESH Headings
- Anaerobiosis
- Archaea/classification
- Archaea/genetics
- Archaea/growth & development
- Archaea/metabolism
- Cloning, Molecular
- Crenarchaeota/classification
- Crenarchaeota/genetics
- Crenarchaeota/growth & development
- Crenarchaeota/metabolism
- DNA, Archaeal/analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Ribosomal/analysis
- Ecosystem
- Euryarchaeota/classification
- Euryarchaeota/genetics
- Euryarchaeota/growth & development
- Euryarchaeota/metabolism
- Gene Library
- Genes, rRNA
- Geologic Sediments/microbiology
- Lakes/microbiology
- Methane/metabolism
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Susma Bhattarai
- Department of Surface Waters-Research and Management, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME JOURNAL 2011. [PMID: 22071343 DOI: 10.1038/ismej.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prototypical representatives of the Euryarchaeota--the methanogens--are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ(13)C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment.
Collapse
Affiliation(s)
- Roey Angel
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
26
|
Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME JOURNAL 2011; 6:847-62. [PMID: 22071343 DOI: 10.1038/ismej.2011.141] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prototypical representatives of the Euryarchaeota--the methanogens--are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ(13)C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment.
Collapse
Affiliation(s)
- Roey Angel
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
27
|
Graças DA, Miranda PR, Baraúna RA, McCulloch JA, Ghilardi R, Schneider MPC, Silva A. Microbial diversity of an anoxic zone of a hydroelectric power station reservoir in Brazilian Amazonia. MICROBIAL ECOLOGY 2011; 62:853-861. [PMID: 21755290 DOI: 10.1007/s00248-011-9906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/10/2011] [Indexed: 05/31/2023]
Abstract
Microbial diversity was evaluated in an anoxic zone of Tucuruí Hydroelectric Power Station reservoir in Brazilian Amazonia using a culture-independent approach by amplifying and sequencing fragments of the 16S rRNA gene using metagenomic DNA as a template. Samples obtained from the photic, aphotic (40 m) and sediment (60 m) layers were used to construct six 16S rDNA libraries containing a total of 1,152 clones. The sediment, aphotic and photic layers presented 64, 33 and 35 unique archaeal operational taxonomic units (OTUs). The estimated richness of these layers was evaluated to be 153, 106 and 79 archaeal OTUs, respectively, using the abundance-based coverage estimator (ACE) and 114, 83 and 77 OTUs using the Chao1 estimator. For bacterial sequences, 114, 69 and 57 OTUs were found in the sediment, aphotic and photic layers, which presented estimated richnesses of 1,414, 522 and 197 OTUs (ACE) and 1,059, 1,014 and 148 OTUs (Chao1), respectively. Phylogenetic analyses of the sequences obtained revealed a high richness of microorganisms which participate in the carbon cycle, namely, methanogenic archaea and methanotrophic proteobacteria. Most sequences obtained belong to non-culturable prokaryotes. The present study offers the first glimpse of the huge microbial diversity of an anoxic area of a man-made lacustrine environment in the tropics.
Collapse
Affiliation(s)
- Diego A Graças
- Universidade Federal do Pará. Instituto de Ciências Biológicas, 66075-900 Belém, Pará, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (~51,000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ~69-84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96-97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.
Collapse
|
29
|
Brochier-Armanet C, Deschamps P, López-García P, Zivanovic Y, Rodríguez-Valera F, Moreira D. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME JOURNAL 2011; 5:1291-302. [PMID: 21346789 DOI: 10.1038/ismej.2011.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.
Collapse
Affiliation(s)
- Céline Brochier-Armanet
- Université de Provence, Aix-Marseille I, Laboratoire de Chimie Bactérienne, Marseille, France
| | | | | | | | | | | |
Collapse
|
30
|
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME JOURNAL 2010; 5:908-17. [PMID: 21085198 DOI: 10.1038/ismej.2010.171] [Citation(s) in RCA: 659] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea, primarily Crenarchaeota, are common in soil; however, the structure of soil archaeal communities and the factors regulating their diversity and abundance remain poorly understood. Here, we used barcoded pyrosequencing to comprehensively survey archaeal and bacterial communities in 146 soils, representing a multitude of soil and ecosystem types from across the globe. Relative archaeal abundance, the percentage of all 16S rRNA gene sequences recovered that were archaeal, averaged 2% across all soils and ranged from 0% to >10% in individual soils. Soil C:N ratio was the only factor consistently correlated with archaeal relative abundances, being higher in soils with lower C:N ratios. Soil archaea communities were dominated by just two phylotypes from a constrained clade within the Crenarchaeota, which together accounted for >70% of all archaeal sequences obtained in the survey. As one of these phylotypes was closely related to a previously identified putative ammonia oxidizer, we sampled from two long-term nitrogen (N) addition experiments to determine if this taxon responds to experimental manipulations of N availability. Contrary to expectations, the abundance of this dominant taxon, as well as archaea overall, tended to decline with increasing N. This trend was coupled with a concurrent increase in known N-oxidizing bacteria, suggesting competitive interactions between these groups.
Collapse
Affiliation(s)
- Scott T Bates
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Song ZQ, Chen JQ, Jiang HC, Zhou EM, Tang SK, Zhi XY, Zhang LX, Zhang CLL, Li WJ. Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China. Extremophiles 2010; 14:287-96. [DOI: 10.1007/s00792-010-0307-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 03/12/2010] [Indexed: 11/29/2022]
|
32
|
Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 2009; 76:757-68. [PMID: 19948847 DOI: 10.1128/aem.02409-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.
Collapse
|
33
|
Lehtovirta LE, Prosser JI, Nicol GW. Soil pH regulates the abundance and diversity of Group 1.1c Crenarchaeota. FEMS Microbiol Ecol 2009; 70:367-76. [PMID: 19732147 DOI: 10.1111/j.1574-6941.2009.00748.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Archaeal communities in many acidic forest soil systems are dominated by a distinct crenarchaeal lineage Group 1.1c. In addition, they are found consistently in other acidic soils including grassland pasture, moorland and alpine soils. To determine whether soil pH is a major factor in determining their presence and abundance, Group 1.1c community size and composition were investigated across a pH gradient from 4.5 to 7.5 that has been maintained for > 40 years. The abundances of Group 1.1c Crenarchaeota, total Crenarchaeota and total bacteria were assessed by quantitative PCR (qPCR) targeting 16S rRNA genes and the diversity of Group 1.1c crenarchaeal community was investigated by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. The abundance of Group 1.1c Crenarchaeota declined as the pH increased, whereas total Crenarchaeota and Bacteria showed no clear trend. Community diversity of Group 1.1c Crenarchaeota was also influenced with different DGGE bands dominating at different pH. Group 1.1c Crenarchaeota were also quantified in 13 other soils representing a range of habitats, soil types and pH. These results exhibited the same trend as that shown across the pH gradient with Group 1.1c Crenarchaeota representing a greater proportion of total Crenarchaeota in the most acidic soils.
Collapse
Affiliation(s)
- Laura E Lehtovirta
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
34
|
Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 2008; 74:7620-8. [PMID: 18849450 DOI: 10.1128/aem.00972-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Culture-independent (PCR with Crenarchaeota-specific primers and subsequent denaturing gradient gel electrophoresis) and culture-dependent approaches were used to study the diversity of Crenarchaeota in terrestrial hot springs of the Kamchatka Peninsula and the Lake Baikal region (Russia) and of Iceland. Among the phylotypes detected there were relatives of both cultured (mainly hyperthermophilic) and uncultured Crenarchaeota. It was found that there is a large and diverse group of uncultured Crenarchaeota that inhabit terrestrial hot springs with moderate temperatures (55 to 70 degrees C). Two of the lineages of this group were given phenotypic characterization, one as a result of cultivation in an enrichment culture and another one after isolation of a pure culture, "Fervidococcus fontis," which proved to be a moderately thermophilic, neutrophilic (optimum pH of 6.0 to 7.5), anaerobic organotroph.
Collapse
|
35
|
Llirós M, Casamayor EO, Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiol Ecol 2008; 66:331-42. [PMID: 18754782 DOI: 10.1111/j.1574-6941.2008.00583.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We surveyed the archaeal assemblage in a stratified sulfurous lake (Lake Vilar, Banyoles, Spain) over 5 consecutive years to detect potential seasonal and interannual trends in the free-living planktonic Archaea composition. The combination of different primer pairs and nested PCR steps revealed an unexpectedly rich archaeal community. Overall, 140 samples were analyzed, yielding 169 different 16S rRNA gene sequences spread over 14 Crenarchaeota (109 sequences) and six Euryarchaeota phylogenetic clusters. Most of the Crenarchaeota (98% of the total crenarchaeotal sequences) affiliated within the Miscellaneous Crenarchaeota Group (MCG) and were related to both marine and freshwater phylotypes. Euryarchaeota mainly grouped within the Deep Hydrothermal Vent Euryarchaeota (DHVE) cluster (80% of the euryarchaeotal sequences) and the remaining 20% distributed into three less abundant taxa, most of them composed of soil and sediment clones. The largest fraction of phylotypes from the two archaeal kingdoms (79% of the Crenarchaeota and 54% of the Euryarchaeota) was retrieved from the anoxic hypolimnion, indicating that these cold and sulfide-rich waters constitute an unexplored source of archaeal richness. The taxon rank-frequency distribution showed two abundant taxa (MCG and DHVE) that persisted in the water column through seasons, plus several rare ones that were only detected occasionally. Differences in richness distribution and seasonality were observed, but no clear correlations were obtained when multivariate statistical analyses were carried out.
Collapse
Affiliation(s)
- Marc Llirós
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| | | | | |
Collapse
|
36
|
Park SJ, Park BJ, Rhee SK. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 2008; 12:605-15. [PMID: 18465082 DOI: 10.1007/s00792-008-0165-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/07/2008] [Indexed: 11/27/2022]
Abstract
Considering their abundance and broad distribution, non-extremophilic Crenarchaeota are likely to play important roles in global organic and inorganic matter cycles. The diversity and abundance of archaeal 16S rRNA and putative ammonia monooxygenase alpha-subunit (amoA) genes were comparatively analyzed to study genetic potential for nitrification of ammonia-oxidizing archaea (AOA) in the surface layers (0-1 cm) of four marine sediments of the East Sea, Korea. After analysis of a 16S rRNA gene clone library, we found various archaeal groups that include the crenarchaeotal group (CG) I.1a (54.8%) and CG I.1b (5.8%), both of which are known to harbor ammonia oxidizers. Notably, the 16S rRNA gene of CG I.1b has only previously been observed in terrestrial environments. The 16S rRNA gene sequence data revealed a distinct difference in archaeal community among sites of marine sediments. Most of the obtained amoA sequences were not closely related to those of the clones retrieved from estuarine sediments and marine water columns. Furthermore, clades of unique amoA sequences were likely to cluster according to sampling sites. Using real-time PCR, quantitative analysis of amoA copy numbers showed that the copy numbers of archaeal amoA ranged from 1.1x10(7) to 4.9x10(7) per gram of sediment and were more numerous than those of bacterial amoA, with ratios ranging from 11 to 28. In conclusion, diverse CG I.1a and CG I.1b AOA inhabit surface layers of marine sediments and AOA, and especially, CG I.1a are more numerous than other ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Soo-Je Park
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Heungduk-gu, Cheongju, 361-763, Korea
| | | | | |
Collapse
|
37
|
Koch M, Rudolph C, Moissl C, Huber R. A cold-loving crenarchaeon is a substantial part of a novel microbial community in cold sulphidic marsh water. FEMS Microbiol Ecol 2006; 57:55-66. [PMID: 16819950 DOI: 10.1111/j.1574-6941.2006.00088.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this paper, we report the identification and first characterization of a novel, cold-loving, prokaryotic community thriving among white-greenish 'streamers' in the cold (c. 10 degrees C) sulphurous water of the marsh Sippenauer Moor near Regensburg, Bavaria, Germany. It consists of the bacterial genus Thiothrix, the bacterium 'Sip100' and one archaeal representative, forming together a unique association structure with a distinct life cycle. Fluorescence in situ hybridization studies have revealed that the archaeal member can be affiliated to the crenarchaeal kingdom ('Cre1'). This crenarchaeon was always observed attached to the bacterial community member 'Sip100'. Extended fluorescence in situ hybridization studies showed that this crenarchaeon was not detected in a free-living form, raising the idea of a probable host-dependent relationship. In line with our fluorescence in situ hybridization studies, novel crenarchaeal 16S rRNA gene sequences were identified in these samples. The design and application of a new in situ cultivation method in the sulphurous water of the marsh allowed first insights into the cohesion mechanisms, lifestyle and chronology of the microbes involved in this prokaryotic community in nature. Our results suggest that hitherto unknown Crenarchaeota thrive in cold sulphidic water and are a substantial part of a synchronized microbial community.
Collapse
Affiliation(s)
- Marcus Koch
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
38
|
Nicol GW, Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 2006; 14:207-12. [PMID: 16603359 DOI: 10.1016/j.tim.2006.03.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 11/23/2022]
Abstract
Cultivation-independent molecular surveys show that members of the kingdom Crenarchaeota within the domain Archaea represent a substantial component of microbial communities in aquatic and terrestrial environments. Recently, metagenomic studies have revealed that such Crenarchaeota contain and express genes related to those of bacterial ammonia monooxygenases. Furthermore, a marine chemolithoautotrophic strain was isolated that uses ammonia as a sole energy source. Considering the ubiquity and abundance of Crenarchaeota, these findings considerably challenge the accepted view of the microbial communities involved in global nitrogen cycling. However, the quantitative contribution of Archaea to nitrification in marine and terrestrial environments still remains to be elucidated.
Collapse
Affiliation(s)
- Graeme W Nicol
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, UK, AB24 3UU
| | | |
Collapse
|
39
|
Abstract
The domain Archaea represents a third line of evolutionary descent, separate from Bacteria and Eucarya. Initial studies seemed to limit archaea to various extreme environments. These included habitats at the extreme limits that allow life on earth, in terms of temperature, pH, salinity, and anaerobiosis, which were the homes to hyper thermo philes, extreme (thermo)acidophiles, extreme halophiles, and methanogens. Typical environments from which pure cultures of archaeal species have been isolated include hot springs, hydrothermal vents, solfataras, salt lakes, soda lakes, sewage digesters, and the rumen. Within the past two decades, the use of molecular techniques, including PCR-based amplification of 16S rRNA genes, has allowed a culture-independent assessment of microbial diversity. Remarkably, such techniques have indicated a wide distribution of mostly uncultured archaea in normal habitats, such as ocean waters, lake waters, and soil. This review discusses organisms from the domain Archaea in the context of the environments where they have been isolated or detected. For organizational purposes, the domain has been separated into the traditional groups of methanogens, extreme halophiles, thermoacidophiles, and hyperthermophiles, as well as the uncultured archaea detected by molecular means. Where possible, we have correlated known energy-yielding reactions and carbon sources of the archaeal types with available data on potential carbon sources and electron donors and acceptors present in the environments. From the broad distribution, metabolic diversity, and sheer numbers of archaea in environments from the extreme to the ordinary, the roles that the Archaea play in the ecosystems have been grossly underestimated and are worthy of much greater scrutiny.Key words: Archaea, methanogen, extreme halophile, hyperthermophile, thermoacidophile, uncultured archaea, habitats.
Collapse
Affiliation(s)
- Bonnie Chaban
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
40
|
Walsh DA, Papke RT, Doolittle WF. Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 2005; 7:1655-66. [PMID: 16156738 DOI: 10.1111/j.1462-2920.2005.00864.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We employed a cultivation-independent approach to examine archaeal diversity along a transient soil salinity gradient at Salt Spring in British Columbia, Canada that is routinely eroded due to heavy, recurrent rainfall. Archaeal 16S rRNA gene libraries were created using DNA extracted from three soil samples collected along this gradient. Statistical comparisons indicated similar archaeal richness across sites but, a significant shift in archaeal community composition along the salinity gradient. Seven distinct phylogenetic groups were represented in soil libraries. Haloarchaea were the most commonly sampled group. Other 16S rRNA sequences were related to uncultured Euryarchaeota and Crenarchaeota or halophilic methanogens. Haloarchaeal diversity was remarkably high in soil of elevated salinity compared with previously characterized haloarchaeal communities. Salt Spring haloarchaea were not closely related to known low-salt adapted/tolerant species, suggesting they may be frequently faced with local mortality as a result of frequent declines in soil salinity. We speculate that ecosystem disturbance -- in the form of salinity fluctuations -- is one mechanism for maintaining a diverse community of haloarchaea at Salt Spring.
Collapse
Affiliation(s)
- David A Walsh
- Canadian Institute for Advanced Research Program in Evolutionary Biology and Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H1X5, Canada.
| | | | | |
Collapse
|
41
|
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 2005; 102:14683-8. [PMID: 16186488 PMCID: PMC1253578 DOI: 10.1073/pnas.0506625102] [Citation(s) in RCA: 1138] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, occurs in a wide variety of environments and plays a central role in the global nitrogen cycle. Catalyzed by the enzyme ammonia monooxygenase, the ability to oxidize ammonia was previously thought to be restricted to a few groups within the beta- and gamma-Proteobacteria. However, recent metagenomic studies have revealed the existence of unique ammonia monooxygenase alpha-subunit (amoA) genes derived from uncultivated, nonextremophilic Crenarchaeota. Here, we report molecular evidence for the widespread presence of ammonia-oxidizing archaea (AOA) in marine water columns and sediments. Using PCR primers designed to specifically target archaeal amoA, we find AOA to be pervasive in areas of the ocean that are critical for the global nitrogen cycle, including the base of the euphotic zone, suboxic water columns, and estuarine and coastal sediments. Diverse and distinct AOA communities are associated with each of these habitats, with little overlap between water columns and sediments. Within marine sediments, most AOA sequences are unique to individual sampling locations, whereas a small number of sequences are evidently cosmopolitan in distribution. Considering the abundance of nonextremophilic archaea in the ocean, our results suggest that AOA may play a significant, but previously unrecognized, role in the global nitrogen cycle.
Collapse
Affiliation(s)
- Christopher A Francis
- Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|
42
|
Nunoura T, Hirayama H, Takami H, Oida H, Nishi S, Shimamura S, Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments. Environ Microbiol 2005; 7:1967-84. [PMID: 16309394 DOI: 10.1111/j.1462-2920.2005.00881.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subground Animalcule Retrieval (SUGAR) Program, Extremebiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Jokosuka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Archaea represent a considerable fraction of the prokaryotic world in marine and terrestrial ecosystems, indicating that organisms from this domain might have a large impact on global energy cycles. However, many novel archaeal lineages that have been detected by molecular phylogenetic approaches have remained elusive because no laboratory-cultivated strains are available. Environmental genomic analyses have recently provided clues about the potential metabolic strategies of several of the uncultivated and abundant archaeal species, including non-thermophilic terrestrial and marine crenarchaeota and methanotrophic euryarchaeota. These initial studies of natural archaeal populations also revealed an unexpected degree of genomic variation that indicates considerable heterogeneity among archaeal strains. Here, we review genomic studies of uncultivated archaea within a framework of the phylogenetic diversity and ecological distribution of this domain.
Collapse
Affiliation(s)
- Christa Schleper
- Department of Biology, University of Bergen, Jahnebakken 5, N-5020 Bergen, Norway.
| | | | | |
Collapse
|
44
|
Pickup RW, Rhodes G, Arnott S, Sidi-Boumedine K, Bull TJ, Weightman A, Hurley M, Hermon-Taylor J. Mycobacterium avium subsp. paratuberculosis in the catchment area and water of the River Taff in South Wales, United Kingdom, and its potential relationship to clustering of Crohn's disease cases in the city of Cardiff. Appl Environ Microbiol 2005; 71:2130-9. [PMID: 15812047 PMCID: PMC1082532 DOI: 10.1128/aem.71.4.2130-2139.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/15/2004] [Indexed: 12/12/2022] Open
Abstract
In South Wales, United Kingdom, a populated coastal region lies beneath hill pastures grazed by livestock in which Mycobacterium avium subsp. paratuberculosis is endemic. The Taff is a spate river running off the hills and through the principal city of Cardiff. We sampled Taff water above Cardiff twice weekly from November 2001 to November 2002. M. avium subsp. paratuberculosis was detected by IS900 PCR and culture. Thirty-one of 96 daily samples (32.3%) were IS900 PCR positive, and 12 grew M. avium subsp. paratuberculosis bovine strains. Amplicon sequences from colonies were identical to the sequence with GenBank accession no. X16293, whereas 16 of 19 sequences from river water DNA extracts had a single-nucleotide polymorphism at position 214. This is consistent with a different strain of M. avium subsp. paratuberculosis in the river, which is unculturable by the methods we used. Parallel studies showed that M. avium subsp. paratuberculosis remained culturable in lake water microcosms for 632 days and persisted to 841 days. Of four reservoirs controlling the catchment area of the Taff, M. avium subsp. paratuberculosis was present in surface sediments from three and in sediment cores from two, consistent with deposition over at least 50 years. Previous epidemiological research in Cardiff demonstrated a highly significant increase of Crohn's disease in 11 districts. These bordered the river except for a gap on the windward side. A topographical relief map shows that this gap is directly opposite a valley open to the prevailing southwesterly winds. This would influence the distribution of aerosols carrying M. avium subsp. paratuberculosis from the river.
Collapse
Affiliation(s)
- R W Pickup
- Centre for Ecology and Hydrology, Library Ave., Bailrigg, Lancaster LA21 4AP, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Uncultured microorganisms comprise the majority of the planet's biological diversity. Microorganisms represent two of the three domains of life and contain vast diversity that is the product of an estimated 3.8 billion years of evolution. In many environments, as many as 99% of the microorganisms cannot be cultured by standard techniques, and the uncultured fraction includes diverse organisms that are only distantly related to the cultured ones. Therefore, culture-independent methods are essential to understand the genetic diversity, population structure, and ecological roles of the majority of microorganisms. Metagenomics, or the culture-independent genomic analysis of an assemblage of microorganisms, has potential to answer fundamental questions in microbial ecology. This review describes progress toward understanding the biology of uncultured Bacteria, Archaea, and viruses through metagenomic analyses.
Collapse
|
46
|
Takai K, Oida H, Suzuki Y, Hirayama H, Nakagawa S, Nunoura T, Inagaki F, Nealson KH, Horikoshi K. Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 2004; 70:2404-13. [PMID: 15066838 PMCID: PMC383094 DOI: 10.1128/aem.70.4.2404-2413.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Ken Takai
- Subground Animalcule Retrieval Project, Frontier Research System for Extremophiles, Japan Marine Science & Technology Center, Yokosuka 237-0061, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Holben WE, Feris KP, Kettunen A, Apajalahti JHA. GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 70:2263-70. [PMID: 15066821 PMCID: PMC383056 DOI: 10.1128/aem.70.4.2263-2270.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach.
Collapse
Affiliation(s)
- William E Holben
- Microbial Ecology Program, Division of Biological Sciences, The University of Montana, Missoula, Montana 59812, USA.
| | | | | | | |
Collapse
|
48
|
Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A, Meurer G, Schuster SC, Schleper C. Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environ Microbiol 2004; 6:970-80. [PMID: 15305922 DOI: 10.1111/j.1462-2920.2004.00663.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complex genomic libraries are increasingly being used to retrieve complete genes, operons or large genomic fragments directly from environmental samples, without the need to cultivate the respective microorganisms. We report on the construction of three large-insert fosmid libraries in total covering 3 Gbp of community DNA from two different soil samples, a sandy ecosystem and a mixed forest soil. In a fosmid end sequencing approach including 5376 sequence tags of approximately 700 bp length, we show that mostly bacterial and, to a much lesser extent, archaeal and eukaryotic genome fragments (approximately 1% each) have been captured in our libraries. The diversity of putative protein-encoding genes, as reflected by their distribution into different COG clusters, was comparable to that encoded in complete genomes of cultivated microorganisms. A huge variety of genomic fragments has been captured in our libraries, as seen by comparison with sequences in the public databases and by the large variation in G+C contents. We dissect differences between the libraries, which relate to the different ecosystems analysed and to biases introduced by different DNA preparations. Furthermore, a range of taxonomic marker genes (other than 16S rRNA) has been identified that allows the assignment of genome fragments to specific lineages. The complete sequences of two genome fragments identified as being affiliated with Archaea, based on a gene encoding a CDC48 homologue and a thermosome subunit, respectively, are presented and discussed. We thereby extend the genomic information of uncultivated crenarchaeota from soil and offer hints to specific metabolic traits present in this group.
Collapse
Affiliation(s)
- Alexander H Treusch
- Institute of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environ Microbiol 2004; 6:686-98. [PMID: 15186347 DOI: 10.1111/j.1462-2920.2004.00600.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biogeochemistry of North Atlantic salt marshes is characterized by the interplay between the marsh grass Spartina and sulphate-reducing bacteria (SRB), which mineralize the diverse carbon substrates provided by the plants. It was hypothesized that SRB populations display high diversity within the sediment as a result of the rich spatial and chemical structuring provided by Spartina roots. A 2000-member 16S rRNA gene library, prepared with delta-proteobacterial SRB-selective primers, was analysed for diversity patterns and phylogenetic relationships. Sequence clustering detected 348 16S rRNA sequence types (ribotypes) related to delta-proteobacterial SRB, and it was estimated that a total of 623 ribotypes were present in the library. Similarity clustering showed that approximately 46% of these sequences fell into groups with < 1% divergence; thus, microheterogeneity accounts for a large portion of the observable genetic diversity. Phylogenetic comparison revealed that sequences most frequently recovered were associated with the Desulfobacteriaceae and Desulfobulbaceae families. Sequences from the Desulfovibrionaceae family were also observed, but were infrequent. Over 80% of the delta-proteobacterial ribotypes clustered with cultured representatives of Desulfosarcina, Desulfococcus and Desulfobacterium genera, suggesting that complete oxidizers with high substrate versatility dominate. The large-scale approach demonstrates the co-existence of numerous SRB-like sequences and reveals an unexpected amount of microdiversity.
Collapse
Affiliation(s)
- Vanja Klepac-Ceraj
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Bldg 48-421, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
50
|
Koizumi Y, Takii S, Fukui M. Depth-related change in archaeal community structure in a freshwater lake sediment as determined with denaturing gradient gel electrophoresis of amplified 16S rRNA genes and reversely transcribed rRNA fragments. FEMS Microbiol Ecol 2004; 48:285-92. [DOI: 10.1016/j.femsec.2004.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|