1
|
Papale M, Fazi S, Severini M, Scarinci R, Dell'Acqua O, Azzaro M, Venuti V, Fazio B, Fazio E, Crupi V, Irrera A, Rizzo C, Giudice AL, Caruso G. Structural properties and microbial diversity of the biofilm colonizing plastic substrates in Terra Nova Bay (Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173773. [PMID: 38844237 DOI: 10.1016/j.scitotenv.2024.173773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization on plastic polymers has been extensively explored, however the temporal dynamics of biofilm community in Antarctic environments are almost unknown. As a contribute to fill this knowledge gap, the structural characteristics and microbial diversity of the biofilm associated with polyvinyl chloride (PVC) and polyethylene (PE) panels submerged at 5 m of depth and collected after 3, 9 and 12 months were investigated in four coastal sites of the Ross Sea. Additional panels placed at 5 and 20 m were retrieved after 12 months. Chemical characterization was performed by FTIR-ATR and Raman (through Surface-Enhanced Raman Scattering, SERS) spectroscopy. Bacterial community composition was quantified at a single cell level by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and Confocal Laser Scanning Microscopy (CLSM); microbial diversity was assessed by 16S rRNA gene sequencing. This multidisciplinary approach has provided new insights into microbial community dynamics during biofouling process, shedding light on the biofilm diversity and temporal succession on plastic substrates in the Ross Sea. Significant differences between free-living and microbial biofilm communities were found, with a more consolidated and structured community composition on PVC compared to PE. Spectral features ascribable to tyrosine, polysaccharides, nucleic acids and lipids characterized the PVC-associated biofilms. Pseudomonadota (among Gamma-proteobacteria) and Alpha-proteobacteria dominated the microbial biofilm community. Interestingly, in Road Bay, close to the Italian "Mario Zucchelli" research station, the biofilm growth - already observed during summer season, after 3 months of submersion - continued afterwards leading to a massive microbial abundance at the end of winter (after 12 months). After 3 months, higher percentages of Gamma-proteobacteria in Road Bay than in the not-impacted site were found. These observations lead us to hypothesize that in this site microbial fouling developed during the first 3 months could serve as a starter pioneering community stimulating the successive growth during winter.
Collapse
Affiliation(s)
- Maria Papale
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Stefano Fazi
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Maila Severini
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Roberta Scarinci
- Water Research Institute, National Research Council (CNR-IRSA), Via Salaria km 29.300 CP10, 00015 Monterotondo, Rome, Italy
| | - Ombretta Dell'Acqua
- DISTAV, Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa, 26, 16132 Genoa, Italy
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Barbara Fazio
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Institute for Chemical and Physical Processes, National Research Council (CNR-IPCF), Viale Ferdinando Stagno d'Alcontres, 37, 98158 Messina, Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Vincenza Crupi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessia Irrera
- URT "LabSens of Beyond Nano" of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR- DSFTM-ME), Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| | - Carmen Rizzo
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Villa Pace, Contrada Porticatello 29, 98167 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy; National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| |
Collapse
|
2
|
Pezzotti G, Ofuji S, Imamura H, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Mazda O, Togo A, Kimura S, Iwata T, Shiba H, Ouhara K, Aoki T, Kawai T. In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and Streptococcus sanguinis Commensal Cultures. Int J Mol Sci 2023; 24:ijms24076694. [PMID: 37047667 PMCID: PMC10095091 DOI: 10.3390/ijms24076694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Satomi Ofuji
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Azusa Togo
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
3
|
Antimicrobial Efficiency of Chitosan and Its Methylated Derivative against Lentilactobacillus parabuchneri Biofilms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248647. [PMID: 36557784 PMCID: PMC9786053 DOI: 10.3390/molecules27248647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial materials are considered potential alternatives to prevent the development of biofilm-associated contaminations. Concerns regarding synthetic preservatives necessitate the development of innovative and safe natural antimicrobials. In the present study, we discuss the in situ infrared attenuated total reflection spectroscopy (IR-ATR) investigations of the selective antimicrobial efficiency of chitosan in controlling the growth of Lentilactobacillus parabuchneri biofilms. The protonated charges of chitosan were additionally amplified by structural modification via methylation, yielding quaternized derivative TMC (i.e., N, N, N-trimethyl chitosan). To evaluate antimicrobial effectiveness against L. parab. biofilms, IR-ATR spectroscopy provided information on molecular mechanisms and insights into chemical changes during real-time biofilm inhibition studies. The integrated fiberoptic oxygen microsensors enabled monitoring oxygen (O2) concentration gradients within biofilms, thereby confirming the metabolic oxygen depletion dropping from 4.5 to 0.7 mg L-1. IR studies revealed strong electrostatic interactions between chitosan/its water-soluble derivative and bacteria, indicating that a few hours were sufficient to affect biofilm disruption. The significant decrease in the IR bands is related to the characteristic spectral information of amide I, II, III, nucleic acid, and extracellular polymeric matrix (EPS) produced by L. parabuchneri biofilms. Cell clusters of biofilms, microcolonies, and destabilization of the EPS matrix after the addition of biopolymers were visualized using optical microscopy. In addition, scanning electron microscopy (SEM) of biofilms grown on polystyrene and stainless-steel surfaces was used to examine morphological changes, indicating the disintegration of the biofilm matrix into individual cells. Quantification of the total biofilm formation correlated with the CV assay results, indicating cell death and lysis. The electrostatic interactions between chitosan and the bacterial cell wall typically occur between protonated amino groups and negatively charged phospholipids, which promote permeabilization. Biofilm growth inhibition was assessed by a viability assay for a period of 72 h and in the range of low MIC values (varying 0.01-2%). These results support the potential of chitosan and TMC for bacterial growth prevention of the foodborne contaminant L. parabuchneri in the dairy industry and for further implementation in food packaging.
Collapse
|
4
|
Bajrami D, Fischer S, Barth H, Sarquis MA, Ladero VM, Fernández M, Sportelli MC, Cioffi N, Kranz C, Mizaikoff B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022; 8:92. [PMID: 36402858 PMCID: PMC9675856 DOI: 10.1038/s41522-022-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - María A Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria C Sportelli
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
5
|
Pashang R, Gilbride KA. From individual response to population ecology: Environmental factors restricting survival of vegetative bacteria at solid-air interfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144982. [PMID: 33592458 DOI: 10.1016/j.scitotenv.2021.144982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Combating microbial survival on dry surfaces contributes to improving public health in indoor environments (clinical and industrial settings) and extends to the natural environment. For vegetative bacteria at solid-air interfaces, lack of water impacts cellular response, and acclimation depends on community support in response to ecological processes. Gaining insights about important ecological processes leading to inhibition of microbial survival under extreme conditions, such as vicinity of highly radioactive nuclear waste, is key for improving engineering designs. Canada plans to store used nuclear fuel and radioactive waste in a deep geological repository (DGR) with a multiple-barrier system constructed at an approximate depth of 500 m. Microorganisms in highly compacted bentonite surrounding used fuel containers will be challenged by high pressure, temperature, and radiation, as well as limited water and nutrients. Thus, it is difficult to estimate microbial activities, given that the prime concern for a microbial community is survival, and energy expenditure is regulated. To enable preventive measures and for risk evaluation, a deeper understanding of community-based survival strategies of bacterial cells exposed to air (gaseous phase) during prolonged periods of desiccation is required. An in-depth review of collective studies that assess microbial survival and persistence during desiccation is presented here to augment and direct our prior knowledge about tactics used by bacteria for survival at interfaces in hostile natural environments including and similar to a DGR.
Collapse
Affiliation(s)
- Rosha Pashang
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Ryerson Urban Water Group, Ryerson University, Toronto, Canada.
| |
Collapse
|
6
|
Abstract
Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS). Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.
Collapse
|
7
|
Lirtsman V, Golosovsky M, Davidov D. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:103105. [PMID: 29092505 DOI: 10.1063/1.4997388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.
Collapse
Affiliation(s)
- Vladislav Lirtsman
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael Golosovsky
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Dan Davidov
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
8
|
Abstract
The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We believe that among the many different technologies available for monitoring biofilm growth, optical techniques are the most promising, as they afford direct imaging and offer high sensitivity and specificity. Furthermore, as each technique offers different insights into the biofilm growth mechanism, our analysis allows us to provide an overview of the biological processes at play. In addition, we use a set of key parameters to compare state-of-the-art techniques in the field, including a critical assessment of each method, to identify the most promising types of sensors. We highlight the challenges that need to be overcome to improve the characteristics of current biofilm sensor technologies and indicate where further developments are required. In addition, we provide guidelines for selecting a suitable sensor for detecting microbial cells on a surface.
Collapse
|
9
|
Zhang R, Neu TR, Zhang Y, Bellenberg S, Kuhlicke U, Li Q, Sand W, Vera M. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Appl Microbiol Biotechnol 2015; 99:7343-56. [DOI: 10.1007/s00253-015-6775-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 12/13/2022]
|
10
|
Biochemical characteristic of biofilm of uropathogenic Escherichia coli Dr + strains. Microbiol Res 2013; 168:367-378. [DOI: 10.1016/j.micres.2013.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/21/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022]
|
11
|
Houari A, Seyer D, Kecili K, Heim V, Martino PD. Kinetic development of biofilm on NF membranes at the Méry-sur-Oise plant, France. BIOFOULING 2013; 29:109-118. [PMID: 23320545 DOI: 10.1080/08927014.2012.752464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The kinetic formation of biofilms developing on nanofiltration (NF) membranes was studied for 2 years in the water production unit of Méry-sur-Oise, France. New membranes were set up in a pilot train integrated to the plant and autopsied after operation for 7, 80, 475 and 717 days. The biofouling layer was studied by confocal laser scanning microscope after 4',6-diamidino-2-phenyindole dihydrochloride and lectin staining, and by attenuated total reflectance-Fourier transform infrared spectroscopy and rheology experiments. Three stages of biofilm growth were discriminated: (1) the presence of sessile microcolonies embedded in an exopolymeric matrix (after filtration for seven days); (2) membrane coverage expansion through microcolony development and biofilm growth in three dimensions (up to 80 days filtration); and (3) biofilm maturation by densification (after filtration for 80-717 days). Biofilm maturation resulted in total coverage of the membrane surface and matrix residue diversification, development of the polysaccharide network, and the strengthening of matrix cohesion through viscosity and elasticity increases. The wettability and permeability of the fouled NF membranes decreased quickly and continuously throughout the biofilm development process. The longitudinal pressure drop (LPD) increased only after the biofilm reached a quantitative threshold. The decline in membrane permeability may be the result of contributions from many fouling mechanisms but the LPD was more substantially influenced by biofilm development.
Collapse
Affiliation(s)
- Ahmed Houari
- Laboratoire ERRMECe (EA1391) , Université de Cergy-Pontoise, Cergy-Pontoise cedex, France
| | | | | | | | | |
Collapse
|
12
|
Abstract
Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas--data recording, interpretation of recorded data, and information extraction--and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Lu X, Samuelson DR, Rasco BA, Konkel ME. Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J Antimicrob Chemother 2012; 67:1915-26. [PMID: 22550133 DOI: 10.1093/jac/dks138] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Bacterial biofilms pose significant food safety risks because of their attachment to fomites and food surfaces, including fresh produce surfaces. The purpose of this study was to systematically investigate the activity of selected antimicrobials on Campylobacter jejuni biofilms. METHODS C. jejuni biofilms and planktonic cells were treated with ciprofloxacin, erythromycin and diallyl sulphide and examined using infrared and Raman spectroscopies coupled with imaging analysis. RESULTS Diallyl sulphide eliminated planktonic cells and sessile cells in biofilms at a concentration that was at least 100-fold less than used for either ciprofloxacin or erythromycin on the basis of molarity. Distinct cell lysis was observed in diallyl sulphide-treated planktonic cells using immunoblot analysis and was confirmed by a rapid decrease in cellular ATP. Two phases of C. jejuni biofilm recalcitrance modes against ciprofloxacin and erythromycin were validated using vibrational spectroscopies: (i) an initial hindered adsorption into biofilm extracellular polymeric substance (EPS) and delivery of antibiotics to sessile cells within biofilms; and (ii) a different interaction between sessile cells in a biofilm compared with their planktonic counterparts. Diallyl sulphide destroyed the EPS structure of the C. jejuni biofilm, after which the sessile cells were killed in a similar manner as planktonic cells. Spectroscopic models can predict the survival of sessile cells within biofilms. CONCLUSIONS Diallyl sulphide elicits strong antimicrobial activity against planktonic and sessile C. jejuni and may have applications for reducing the prevalence of this microbe in foods, biofilm reduction and, potentially, as an alternative chemotherapeutic agent for multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Xiaonan Lu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7520, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Quilès F, Humbert F, Delille A. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:610-616. [PMID: 20004611 DOI: 10.1016/j.saa.2009.11.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 05/28/2023]
Abstract
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is a useful method for monitoring biofilm in situ, non-destructively, in real time, and under fully hydrated conditions. In this work we focused on changes in Pseudomonas fluorescens ATR-FTIR fingerprint accompanying the very early stages of biofilm formation: initial bacterial adhesion and the very beginning of biofilm development in the presence of nutrients. To help interpreting variations in the ATR-FTIR fingerprint of sessile bacteria, ATR-FTIR spectra of planktonic bacteria in different growth phases were also examined, and the average surface coverage and spatial arrangement of bacteria on the ATR crystal were determined by epifluorescence microscopy. The proteins, nucleic acids and polysaccharides ATR-FTIR spectral data recorded during growth of sessile bacteria were shown to be linked to changes in the physiological state of the bacteria, possibly accompanied by extracellular polymeric substances production. This work clearly showed by spectroscopic method how bacteria change drastically their metabolism during the first hours of biofilm formation.
Collapse
Affiliation(s)
- Fabienne Quilès
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy University, CNRS, UMR 7564, 405 rue de Vandoeuvre, 54600 Villers-lès-Nancy, France.
| | | | | |
Collapse
|
16
|
Arnold T, Großmann K, Baumann N. Uranium speciation in biofilms studied by laser fluorescence techniques. Anal Bioanal Chem 2009; 396:1641-53. [DOI: 10.1007/s00216-009-3296-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/29/2009] [Accepted: 11/04/2009] [Indexed: 01/01/2023]
|
17
|
Seneviratne CJ, Zhang T, Fang HHP, Jin LJ, Samaranayake LP. Distribution Coefficients of Dietary Sugars in Artificial Candida Biofilms. Mycopathologia 2009; 167:325-31. [DOI: 10.1007/s11046-009-9184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|
18
|
Local analysis of oxygen reduction catalysis by scanning vibrating electrode technique: A new approach to the study of biocorrosion. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.02.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Palmer RJ. Pictures of microbiology — The Biofilm Imaging Facility under Dr. David C. White. J Microbiol Methods 2008; 74:5-9. [PMID: 17698230 DOI: 10.1016/j.mimet.2007.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
This contribution honoring David C. White (DC) summarizes the five years I interacted with him on a daily basis in his laboratory. Over this time we worked on many different projects all tied together by the unifying principle now recognized as central to bacterial life in nature: biofilms. My goal is to convey some of the excitement and joy of working with DC and, from my perspective, that means telling how the Biofilm Imaging Facility at the Center for Environmental Biotechnology (CEB) came into existence and describing some of the projects on which DC and I worked.
Collapse
Affiliation(s)
- Robert J Palmer
- Oral Biofilm Communication Unit, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health Bldg. 30, Room 310 30 Convent Drive Bethesda MD 20892, United States.
| |
Collapse
|
20
|
Badireddy AR, Chellam S, Yanina S, Gassman P, Rosso KM. Bismuth dimercaptopropanol (BisBAL) inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta: implications for membrane microfiltration. Biotechnol Bioeng 2008; 99:634-43. [PMID: 17705249 DOI: 10.1002/bit.21615] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A 2:1 molar ratio preparation of bismuth with a lipophilic dithiol (3-dimercapto-1-propanol, BAL) significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the minimum inhibitory concentration (MIC). Total polysaccharides and proteins secreted by B. diminuta decreased by approximately 95% over a 5-day period when exposed to the bismuth-BAL chelate (BisBAL) at near MIC (12 microM). Fourier-transform infrared spectroscopy (FTIR) suggested that a possible mechanism of biofilm disruption by BisBAL is the inhibition of carbohydrate O-acetylation. FTIR also revealed extensive homology between EPS samples with and without BisBAL treatment, with proteins, polysaccharides, and peptides varying predominantly only in the amount expressed. EPS secretion decreased following BisBAL treatment as verified by atomic force microscopy and scanning electron microscopy. Without BisBAL treatment, a slime-like EPS matrix secreted by B. diminuta resulted in biofouling and inefficient hydrodynamic backwashing of microfiltration membranes.
Collapse
Affiliation(s)
- Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-4003, USA
| | | | | | | | | |
Collapse
|
21
|
Delille A, Quilès F, Humbert F. In situ monitoring of the nascent Pseudomonas fluorescens biofilm response to variations in the dissolved organic carbon level in low-nutrient water by attenuated total reflectance-Fourier transform infrared spectroscopy. Appl Environ Microbiol 2007; 73:5782-8. [PMID: 17644640 PMCID: PMC2074918 DOI: 10.1128/aem.00838-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Drinking water quality management requires early warning tools which enable water supply companies to detect quickly and to forecast degradation of the microbial quality of drinking water during its transport throughout distribution systems. This study evaluated the feasibility of assessing, in real time, drinking water biostability by monitoring in situ the evolution of the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) fingerprint of a nascent reference biofilm exposed to water being tested. For this purpose, the responses of nascent Pseudomonas fluorescens biofilms to variations in the dissolved organic carbon (DOC) level in tap water were monitored in situ and in real time by ATR-FTIR spectroscopy. Nascent P. fluorescens biofilms consisting of a monolayer of bacteria were formed on the germanium crystal of an ATR flowthrough cell by pumping bacterial suspensions in Luria-Bertani (LB) medium through the cell. Then they were exposed to a continuous flow of dechlorinated sterile tap water supplemented with appropriate amounts of sterile LB medium to obtain DOC concentrations ranging from 1.5 to 11.8 mg/liter. The time evolution of infrared bands related to proteins, polysaccharides, and nucleic acids clearly showed that changes in the DOC concentration resulted in changes in the nascent biofilm ATR-FTIR fingerprint within 2 h after exposure of the biofilm to the water being tested. The initial bacterial attachment, biofilm detachment, and regrowth kinetics determined from changes in the areas of bands associated with proteins and polysaccharides were directly dependent on the DOC level. Furthermore, they were consistent with bacterial adhesion or growth kinetic models and extracellular polymeric substance overproduction or starvation-dependent detachment mechanisms.
Collapse
Affiliation(s)
- Anne Delille
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, Nancy-Université, CNRS, 405, rue de Vandoeuvre, 54600 Villers-lès-Nancy, France
| | | | | |
Collapse
|
22
|
Doumèche B, Galas L, Vaudry H, Di Martino P. Membrane Foulants Characterization in a Drinking Water Production Unit. FOOD AND BIOPRODUCTS PROCESSING 2007. [DOI: 10.1205/fbp06020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Ortega-Morales BO, Santiago-García JL, Chan-Bacab MJ, Moppert X, Miranda-Tello E, Fardeau ML, Carrero JC, Bartolo-Pérez P, Valadéz-González A, Guezennec J. Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J Appl Microbiol 2007; 102:254-64. [PMID: 17184342 DOI: 10.1111/j.1365-2672.2006.03085.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This study was performed to determine the potential of tropical intertidal biofilm bacteria as a source of novel exopolymers (EPS). METHODS AND RESULTS A screening procedure was implemented to detect EPS-producing biofilm bacteria. Isolates MC3B-10 and MC6B-22, identified respectively as a Microbacterium species and Bacillus species by 16S rDNA and cellular fatty acids analyses, produced different EPS, as evidenced by colorimetric and gas chromatographic analyses. The polymer produced by isolate MC3B-10 displays significant surfactant activity, and may chelate calcium as evidenced by spectroscopic analysis. CONCLUSIONS Polymer MC3B-10 appears to be a glycoprotein, while EPS MC6B-22 seems to be a true polysaccharide dominated by neutral sugars but with significant concentrations of uronic acids and hexosamines. EPS MC3B-10 possesses a higher surfactant activity than that of commercial surfactants, and given its anionic nature, may chelate cations thus proving useful in bioremediation. The chemical composition of polymer MC6B-22 suggests its potential biomedical application in tissue regeneration. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a Microbacterium species producing EPS with surfactant properties, which expands our knowledge of the micro-organisms capable of producing these biomolecules. Furthermore, this work shows that tropical intertidal environments are a nonpreviously recognized habitat for bioprospecting EPS-producing bacteria, and that these molecules might be involved in ecological roles protecting the cells against dessication.
Collapse
Affiliation(s)
- B O Ortega-Morales
- Departamento de Microbiología Ambiental y Biotecnología, Programa de Corrosión del Golfo de México, Universidad Autónoma de Campeche Av., Campeche, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Denkhaus E, Meisen S, Telgheder U, Wingender J. Chemical and physical methods for characterisation of biofilms. Mikrochim Acta 2006. [DOI: 10.1007/s00604-006-0688-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Acuña N, Ortega-Morales BO, Valadez-González A. Biofilm colonization dynamics and its influence on the corrosion resistance of austenitic UNS S31603 stainless steel exposed to Gulf of Mexico seawater. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:62-70. [PMID: 16453199 DOI: 10.1007/s10126-005-5145-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 06/29/2005] [Indexed: 05/06/2023]
Abstract
Viable bacterial counts, chemical markers, phospholipid fatty acid analysis (PLFA), and Fourier-transformed infrared spectroscopy (FTIR), together with electrochemical methods, were used to study biofilm dynamics and its impact on the corrosion resistance of UNS S31603 stainless steels exposed to the Gulf of Mexico seawater. Biofilms progressively accumulated, peaking on day 20, but finally detached. The extracellular polysaccharide (EPS)/cellular biomass ratio remained low most of the time, but reached its highest level (4.2+/-1.9) also on day 20. Viable bacterial cells reached their highest abundance earlier (approximately 800 CFU/cm2), on day 15. Biofilms were seen covering the stainless steel surfaces heterogeneously and were composed mainly of gram-negative rods, presumably EPS-producing bacteria. Despite the different levels of biofilm biomass and attachment state, field-exposed steel coupons ennobled significantly and showed more active pitting potentials (approximately +500 mVSCE) than on the abiotic control (+650 mVSCE), where no significant ennoblement occurred. These results suggest that the heterogeneous distribution of biofilms, as opposed to the quantity of surface-associated biomass, promotes formation of differential aeration cells, and that this in turn contributes to the ennoblement of these steels.
Collapse
Affiliation(s)
- Narciso Acuña
- Departamento de Materiales y Corrosión, Programa de Corrosión del Golfo de México, Universidad Autónoma de Campeche, Av. Agustín Melgar, C.P. 24030, Campeche, Campeche, Mexico
| | | | | |
Collapse
|
26
|
Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, El-Sayed I, El-Sayed MA. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol 2004; 70:4980-8. [PMID: 15294838 PMCID: PMC492445 DOI: 10.1128/aem.70.8.4980-4988.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae forms biofilms, but little is known about its extracellular polymeric substances (EPS) or the kinetics of biofilm formation. A system was developed to enable the simultaneous measurement of cells and the EPS of biofilm-associated S. pneumoniae in situ over time. A biofilm reactor containing germanium coupons was interfaced to an attenuated total reflectance (ATR) germanium cell of a Fourier transform infrared (FTIR) laser spectrometer. Biofilm-associated cells were recovered from the coupons and quantified by total and viable cell count methods. ATR-FTIR spectroscopy of biofilms formed on the germanium internal reflection element (IRE) of the ATR cell provided a continuous spectrum of biofilm protein and polysaccharide (a measure of the EPS). Staining of the biofilms on the IRE surface with specific fluorescent probes provided confirmatory evidence for the biofilm structure and the presence of biofilm polysaccharides. Biofilm protein and polysaccharides were detected within hours after inoculation and continued to increase for the next 141 h. The polysaccharide band increased at a substantially higher rate than did the protein band, demonstrating increasing coverage of the IRE surface with biofilm polysaccharides. The biofilm total cell counts on germanium coupons stabilized after 21 h, at approximately 10(5) cells per cm(2), while viable counts decreased as the biofilm aged. This system is unique in its ability to detect and quantify biofilm-associated cells and EPS of S. pneumoniae over time by using multiple, corroborative techniques. This approach could prove useful for the study of biofilm processes of this or other microorganisms of clinical or industrial relevance.
Collapse
Affiliation(s)
- R M Donlan
- Biofilm Laboratory, ELB/DHQP/NCID, Centers for Disease Control and Prevention, Mail Stop C-16, 1600 Clifton Rd., N.E., Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Suci PA, Tyler BJ. A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. J Microbiol Methods 2003; 53:313-25. [PMID: 12689709 DOI: 10.1016/s0167-7012(02)00247-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbes in biofilms are generally found to be resistant to antimicrobial agents. One set of hypotheses attributes biofilm resistance to acquisition of special physiological traits (phenotypic resistance). Methods are presented that allow discrimination of subpopulations of Candida albicans cells that exhibit relative levels of phenotypic resistance to chlorhexidine. The assay for phenotypic resistance is based on microscopic detection of the rate of penetration of propidium iodide (PI) into single cells as their membranes become disrupted by chlorhexidine. Using the assay, it was found that batch cultures became progressively more resistant to the action of chlorhexidine during the transition from exponential growth to early stationary phase. Results are presented demonstrating that the methods can be used to characterize relative levels of phenotypic resistance exhibited by cells at the base of a C. albicans biofilm.
Collapse
Affiliation(s)
- Peter A Suci
- Center for Biofilm Engineering and Microbiology Department, Montana State University, Bozeman 59717-3980, USA.
| | | |
Collapse
|
28
|
Suci PA, Tyler BJ. Action of chlorhexidine digluconate against yeast and filamentous forms in an early-stage Candida albicans biofilm. Antimicrob Agents Chemother 2002; 46:3522-31. [PMID: 12384360 PMCID: PMC128749 DOI: 10.1128/aac.46.11.3522-3531.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An in situ method for sensitive detection of differences in the action of chlorhexidine against subpopulations of cells in Candida albicans biofilms is described. Detection relies on monitoring the kinetics of propidium iodide (PI) penetration into the cytoplasm of individual cells during dosing with chlorhexidine. Accurate estimation of the time for delivery of the dosing concentration to the substratum was facilitated by using a flow cell system for which transport to the interfacial region was previously characterized. A model was developed to quantify rates of PI penetration based on the shape of the kinetic data curves. Yeast were seeded onto the substratum, and biofilm formation was monitored microscopically for 3 h. During this period a portion of the yeast germinated, producing filamentous forms (both hyphae and pseudohyphae). When the population was subdivided on the basis of cell morphology, rates of PI penetration into filamentous forms appeared to be substantially higher than for yeast forms. Based on the model, rates of penetration were assigned to individual cells. These data indicated that the difference in rates between the two subpopulations was statistically significant (unpaired t test, P < 0.0001). A histogram of rates and analysis of variance indicated that rates were approximately equally distributed among different filamentous forms and between apical and subapical segments of filamentous forms.
Collapse
Affiliation(s)
- Peter A Suci
- Center for Biofilm Engineering and Microbiology Department, Montana State University, Bozeman, Montana 59717-3980, USA.
| | | |
Collapse
|
29
|
Lefèvre C, Tidjani A, Vander Wauven C, David C. The interaction mechanism between microorganisms and substrate in the biodegradation of polycaprolactone. J Appl Polym Sci 2001. [DOI: 10.1002/app.10124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Suci PA, Geesey GG. Comparison of adsorption behavior of two Mytilus edulis foot proteins on three surfaces. Colloids Surf B Biointerfaces 2001; 22:159-168. [PMID: 11451662 DOI: 10.1016/s0927-7765(01)00149-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sea mussel Mytilus edulis fabricates a hold-fast (an adhesive plaque) from a proteinaceous mixture that it extrudes into a cavity formed by an organ called the 'foot'. A family of four proteins in the mixture known as M. edulis foot proteins (Mefp 1-4) have been purified to homogeneity. Mefp-1 and 2 are the most well-characterized and most easily purified members of the Mefp family. They constitute about 5 and 25% of the content of the plaque, respectively. It has been proposed that Mefp-1 mediates bonding to the intended substratum while Mefp-2 serves more as a structural component. In order to provide data relevant to this hypothesis, the adsorption behavior of Mefp-1 and 2 was compared on three surfaces using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Surfaces were germanium (Ge), polystyrene (PS) or poly(octadecyl)methacrylate (POMA). Polymer surfaces were prepared by spin casting onto the flat face of Ge trapezoidal internal reflection elements (IRE). Adsorption behavior was characterized by analyzing the kinetics of adsorption using a double exponential fit. The data indicate that the adsorption behavior of Mefp-1 and 2 is similar on the three surfaces both in terms of rate of adsorption and surface coverage attained over a short (<60 min) time period.
Collapse
Affiliation(s)
- P A. Suci
- Center for Biofilm Engineering and Department of Microbiology, Montana State University, 59717-3980, Bozeman, MT, USA
| | | |
Collapse
|
31
|
Suci PA, Geesey GG, Tyler BJ. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Candida albicans biofilms. J Microbiol Methods 2001; 46:193-208. [PMID: 11438184 DOI: 10.1016/s0167-7012(01)00268-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two spectroscopic techniques, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and Raman microscopy (RM), were used to characterize transport of chlorhexidine digluconate (CHG) in Candida albicans (CA) biofilms. Different (volumetric) regions of the biofilm are sampled by these two vibrational spectroscopies making them complementary techniques. Simple mathematical models were developed to analyze ATR-FTIR and RM data to obtain an effective diffusion coefficient describing transport through CA biofilms. CA biofilms were composed primarily of yeast and hyphal forms, with some pseudohyphae. Upper regions of biofilms that had become confluent, (i.e., biofilms that completely covered the germanium (Ge) substratum) were composed primarily of a tangled mass of hyphae with openings between germtubes about 10 to 50 microm across. Quantitative analysis of ATR-FTIR kinetic data curves indicated that the effective diffusion coefficient for transport of CHG through confluent biofilms about 200-microm thick was reduced 0.1 to 0.3 times compared to the diffusion coefficient for CHG in water. Effective diffusion coefficients obtained from analysis of RM data were consistently higher than those indicated by ATR-FTIR data suggesting that transport is more hindered in regions near the base of the biofilm than in the outer layers. Analysis of both ATR-FTIR and RM data obtained from thicker films indicated that adsorption of CHG to biofilm components was responsible for a substantial portion of the transport limitation imposed by the biofilm. Comparison of ATR-FTIR and RM data for both types of biofilms indicated that sites of CHG adsorption were more concentrated in the interfacial region than in the bulk biofilm. Comparison of results for ATR-FTIR and RM measurements suggests that these relatively thick CA biofilms can be modeled, for purposes of predicting transport, approximately as a homogeneous thin planar sheet. Thus, these biofilms offer a relatively tractable model system for initial investigations of the relation between antimicrobial transport and kinetics of antimicrobial action.
Collapse
Affiliation(s)
- P A Suci
- Center for Biofilm Engineering and Microbiology Department, Montana State University, Bozeman, MT 59717-3980, USA
| | | | | |
Collapse
|
32
|
Baty AM, Diwu Z, Dunham G, Eastburn CC, Geesey GG, Goodman AE, Suci PA, Techkarnjanaruk S. Characterization of extracellular chitinolytic activity in biofilms. Methods Enzymol 2001; 336:279-301. [PMID: 11398405 DOI: 10.1016/s0076-6879(01)36596-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Extracellular enzymes produced by bacterial biofilms tend to become an integral, permanent part of the biofilm/substratum system. Thus, characterizing extracellular enzyme activity is an essential component of understanding biofilm ecology. Methods have been presented for characterizing three aspects of extracellular enzyme activity in biofilms: promoter activity of the structural gene, local catalytic activity, and kinetics of collective substrate degradation. The abundance of intracellular transcript derived from a structural gene is only indirectly related to the magnitude of catalytic activity of the corresponding enzyme. This relationship may be particularly tenuous in the case of extracellular enzymes, which must be transported out of the cell in order to become active. Fluorogenic substrates that allow direct detection of an increasingly greater variety of enzyme activities are becoming available. There are technical problems, originating from surface roughness and intrinsic fluorescence, associated with microscopic examination of biofilms on natural materials. Thin films provide one option for acquiring data about biofilms colonizing relevant materials.
Collapse
Affiliation(s)
- A M Baty
- W. L. Gore & Associates, Inc., Flagstaff, Arizona 86002, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
We have developed and implemented methods of extracting morphological features from images of biofilms in order to quantify the characteristics of the inherent heterogeneity. This is a first step towards quantifying the relationship between biofilm heterogeneity and the underlying processes, such as mass-transport dynamics, substrate concentrations, and species variations. We have examined two categories of features, areal, which quantify the relative magnitude of the heterogeneity and textural, which quantify the microscale structure of the heterogeneous elements. The feature set is not exhaustive and has been restricted to two-dimensional images to this point. Included in this paper are the methods used to extract the structural information and the algorithms used to quantify the data. The features discussed are porosity, fractal dimension, diffusional length, angular second moment, inverse difference moment and textural entropy. We have found that some features are better predictors of biofilm behavior than others and we discuss possible future directions for research in this area.
Collapse
Affiliation(s)
- X Yang
- Center for Biofilm Engineering, Montana State University, Bozeman 59717, USA
| | | | | | | |
Collapse
|
34
|
Abstract
It seems likely, and indeed inevitable, that medical device usage will continue its rapid increase over the next 10 to 20 years and beyond. For surgeons, these new inventions will come in many forms but should take into account biocompatibility and resistance to encrustations and to microorganisms. This review focuses on research under way at present in vitro and in vivo on materials and coatings, use of bioelectrics, use of artificial organs and tissues, application of indigenous bacteria, and other alternative device management techniques, which could well become part of clinical practice in the future. By necessity, some of these citations are speculative, but supporting documentation for their inclusion is presented.
Collapse
Affiliation(s)
- G Reid
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada.
| | | | | |
Collapse
|
35
|
Kuehn M, Hausner M, Bungartz HJ, Wagner M, Wilderer PA, Wuertz S. Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 1998; 64:4115-27. [PMID: 9797255 PMCID: PMC106617 DOI: 10.1128/aem.64.11.4115-4127.1998] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to develop and apply a quantitative optical method suitable for routine measurements of biofilm structures under in situ conditions. A computer program was designed to perform automated investigations of biofilms by using image acquisition and image analysis techniques. To obtain a representative profile of a growing biofilm, a nondestructive procedure was created to study and quantify undisturbed microbial populations within the physical environment of a glass flow cell. Key components of the computer-controlled processing described in this paper are the on-line collection of confocal two-dimensional (2D) cross-sectional images from a preset 3D domain of interest followed by the off-line analysis of these 2D images. With the quantitative extraction of information contained in each image, a three-dimensional reconstruction of the principal biological events can be achieved. The program is convenient to handle and was generated to determine biovolumes and thus facilitate the examination of dynamic processes within biofilms. In the present study, Pseudomonas fluorescens or a green fluorescent protein-expressing Escherichia coli strain, EC12, was inoculated into glass flow cells and the respective monoculture biofilms were analyzed in three dimensions. In this paper we describe a method for the routine measurements of biofilms by using automated image acquisition and semiautomated image analysis.
Collapse
Affiliation(s)
- M Kuehn
- Institute of Water Quality Control and Waste Management, Technical University of Munich, D-85748 Garching, Technical University of Munich, D-80290 Munich, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Busalmen JP, de Sanchez SR, Schiffrin DJ. Ellipsometric measurement of bacterial films at metal-electrolyte interfaces. Appl Environ Microbiol 1998; 64:3690-7. [PMID: 9758786 PMCID: PMC106516 DOI: 10.1128/aem.64.10.3690-3697.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ellipsometric measurements were used to monitor the formation of a bacterial cell film on polarized metal surfaces (Al-brass and Ti). Under cathodic polarization bacterial attachment was measured from changes in the ellipsometric angles. These were fitted to an effective medium model for a nonabsorbing bacterial film with an effective refractive index (nf) of 1.38 and a thickness (df) of 160 +/- 10 nm. From the optical measurements a surface coverage of 17% was estimated, in agreement with direct microscopic observations. The influence of bacteria on the formation of oxide films was monitored by ellipsometry following the film growth in situ. A strong inhibition of metal oxide film formation was observed, which was assigned to the decrease in oxygen concentration due to the presence of bacteria. It is shown that the irreversible adhesion of bacteria to the surface can be monitored ellipsometrically. Electrophoretic mobility is proposed as one of the factors determining bacterial attachment. The high sensitivity of ellipsometry and its usefulness for the determination of growth of interfacial bacterial films is demonstrated.
Collapse
Affiliation(s)
- J P Busalmen
- INTEMA, Facultad de Ingenieria, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | | | | |
Collapse
|