1
|
Precise Regulation of Differential Transcriptions of Various Catabolic Genes by OdcR via a Single Nucleotide Mutation in the Promoter Ensures the Safety of Metabolic Flux. Appl Environ Microbiol 2022; 88:e0118222. [PMID: 36036586 PMCID: PMC9499029 DOI: 10.1128/aem.01182-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synergistic regulation of the expression of various genes in a catabolic pathway is crucial for the degradation, survival, and adaptation of microorganisms in polluted environments. However, how a single regulator accurately regulates and controls differential transcriptions of various catabolic genes to ensure metabolic safety remains largely unknown. Here, a LysR-type transcriptional regulator (LTTR), OdcR, encoded by the regulator gene odcR, was confirmed to be essential for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism and simultaneously activated the transcriptions of a gene with unknown function, orf419, and three genes, odcA, odcB, and odcC, involved in the DBHB catabolism in Pigmentiphaga sp. strain H8. OdcB further metabolized the highly toxic intermediate 2,6-dibromohydroquinone, which was produced from DBHB by OdcA. The upregulated transcriptional level of odcB was 7- to 9-fold higher than that of orf419, odcA, or odcC in response to DBHB. Through an electrophoretic mobility shift assay and DNase I footprinting assay, DBHB was found to be the effector and essential for OdcR binding to all four promoters of orf419, odcA, odcB, and odcC. A single nucleotide mutation in the regulatory binding site (RBS) of the promoter of odcB (TAT-N11-ATG), compared to those of odcA/orf419 (CAT-N11-ATG) and odcC (CAT-N11-ATT), was identified and shown to enable the significantly higher transcription of odcB. The precise regulation of these genes by OdcR via a single nucleotide mutation in the promoter avoided the accumulation of 2,6-dibromohydroquinone, ensuring the metabolic safety of DBHB. IMPORTANCE Prokaryotes use various mechanisms, including improvement of the activity of detoxification enzymes, to cope with toxic intermediates produced during catabolism. However, studies on how bacteria accurately regulate differential transcriptions of various catabolic genes via a single regulator to ensure metabolic safety are scarce. This study revealed a LysR-type transcriptional activator, OdcR, which strongly activated odcB transcription for the detoxification of the toxic intermediate 2,6-dibromohydroquinone and slightly activated the transcriptions of other genes (orf419, odcA, and odcC) for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism in Pigmentiphaga sp. strain H8. Interestingly, the differential transcription/expression of the four genes, which ensured the metabolic safety of DBHB in cells, was determined by a single nucleotide mutation in the regulatory binding sites of the four promoters. This study describes a new and ingenious regulatory mode of ensuring metabolic safety in bacteria, expanding our understanding of synergistic transcriptional regulation in prokaryotes.
Collapse
|
2
|
Flood JJ, Copley SD. Genome-Wide Analysis of Transcriptional Changes and Genes That Contribute to Fitness during Degradation of the Anthropogenic Pollutant Pentachlorophenol by Sphingobium chlorophenolicum. mSystems 2018; 3:e00275-18. [PMID: 30505947 PMCID: PMC6247019 DOI: 10.1128/msystems.00275-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/02/2022] Open
Abstract
Pentachlorophenol (PCP) is a highly toxic pesticide that was first introduced in the 1930s. The alphaproteobacterium Sphingobium chlorophenolicum, which was isolated from PCP-contaminated sediment, has assembled a metabolic pathway capable of completely degrading PCP. This pathway produces four toxic intermediates, including a chlorinated benzoquinone that is a potent alkylating agent and three chlorinated hydroquinones that react with O2 to produce reactive oxygen species (ROS). RNA-seq analysis revealed that PCP causes a global stress response that resembles responses to proton motive force uncoupling and membrane disruption, while surprisingly, little of the response resembles the responses expected to be produced by the PCP degradation intermediates. Tn-seq was used to identify genes important for fitness in the presence of PCP. By comparing the genes that are important for fitness in wild-type S. chlorophenolicum and a non-PCP-degrading mutant, we identified genes that are important only when the PCP degradation intermediates are produced. These include genes encoding two enzymes that are likely to be involved in protection against ROS. In addition to these enzymes, the endogenous levels of other enzymes that protect cells from oxidative stress appear to mitigate the toxic effects of the chlorinated benzoquinone and hydroquinone metabolites of PCP. The combination of RNA-seq and Tn-seq results identify important mechanisms for defense against the toxicity of PCP. IMPORTANCE Phenolic compounds such as pentachlorophenol (PCP), triclosan, and 2,4-dichlorophenoxyacetic acid (2,4-D) represent a common class of anthropogenic biocides. Despite the novelty of these compounds, many can be degraded by microbes isolated from contaminated sites. However, degradation of this class of chemicals often generates toxic intermediates, which may contribute to their recalcitrance to biodegradation. We have addressed the stresses associated with degradation of PCP by Sphingobium chlorophenolicum by examining the transcriptional response after PCP exposure and identifying genes necessary for growth during both exposure to and degradation of PCP. This work identifies some of the mechanisms that protect cells from this toxic compound and facilitate its degradation. This information could be used to engineer strains capable of improved biodegradation of PCP or similar phenolic pollutants.
Collapse
Affiliation(s)
- Jake J. Flood
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Cooperative Institute for Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Cooperative Institute for Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Evaluating the Effects of Tetrachloro-1,4-benzoquinone, an Active Metabolite of Pentachlorophenol, on the Growth of Human Breast Cancer Cells. J Toxicol 2016; 2016:8253726. [PMID: 26981120 PMCID: PMC4769760 DOI: 10.1155/2016/8253726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Tetrachloro-1,4-benzoquinone (TCBQ), an active metabolite of pentachlorophenol (PCP), is genotoxic and potentially carcinogenic. As an electrophilic and oxidative molecule, TCBQ can conjugate with deoxyguanosine in DNA molecules and/or impose oxidative stress in cells. In the current study, we investigated the effects of TCBQ on intracellular ROS production, apoptosis, and cytotoxicity against three different subtypes of human breast cancer cells. Luminal A subtype MCF7 (ER+, PR+, HER2−) cells maintained the highest intracellular ROS level and were subjected to TCBQ-induced ROS reduction, apoptosis, and cytotoxicity. HER2 subtype Sk-Br-3 (ER−, PR−, HER2+) cells possessed the lowest intracellular ROS level. TCBQ promoted ROS production, inhibited apoptosis, and elevated cytotoxicity (due to necrosis) against Sk-Br-3 cells. Triple-negative/basal-like subtype MDA-MB-231 cells were less sensitive towards TCBQ treatment. Therefore, the effect of prolonged exposure to PCP and its active metabolites on cancer growth is highly cancer-cell-type specific.
Collapse
|
4
|
Chen Z, Zhou Q, Zou D, Tian Y, Liu B, Zhang Y, Wu Z. Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production in Escherichia coli. CHEMOSPHERE 2015; 135:379-386. [PMID: 25996850 DOI: 10.1016/j.chemosphere.2015.04.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Chloro-benzoquinones (CBQs) are a group of disinfection byproducts that are suspected to be potentially carcinogenic. Here, the mechanism of DNA damage caused by CBQs in the presence of ferrous ions was investigated in an Escherichia coli wild type M5 strain and a mutant L5 (ahpCF katEG mutant) strain that carried an enhanced green fluorescent protein reporter under the control of a SOS response gene (recA) promoter. All tested CBQs (including para-benzoquinone, 2-chloro-para-benzoquinone, and dichloro-para-benzoquinones with different substitutes) caused substantial oxidative DNA damage with EC50 values in the micromolar range. Moreover, 2,5-dichloro-para-benzoquinone (2,5-DCBQ), a typical CBQ, caused substantial ROS production in E. coli mutant cells. And ROS scavengers provided partial protective effects on genotoxicity of 2,5-DCBQ to E. coli mutant cells. The addition of Fe(2+) to the 2,5-DCBQ exposure system caused an increase in DNA oxidative damage; iron-chelating agents could partially prevent these cells from DNA damage. Finally, intracellular AhpCF, catalase E, and catalase G were all found to play an important role in the survival of E. coli cells exposed to CBQs, as indicated by an increased sensitivity of the ahpCF katEG mutant L5 strain to treatment compared with wild type M5 cells. Taken together, these results suggest that CBQs cause oxidative DNA damage in E. coli cells through the participation of iron-mediated ROS production.
Collapse
Affiliation(s)
- Zhilan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China.
| | - Dandan Zou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yun Tian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China.
| | - Yongyuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072, China
| |
Collapse
|
5
|
Endo R, Ohtsubo Y, Tsuda M, Nagata Y. Growth Inhibition by Metabolites of γ-Hexachlorocyclohexane inSphingobium japonicumUT26. Biosci Biotechnol Biochem 2014; 70:1029-32. [PMID: 16636477 DOI: 10.1271/bbb.70.1029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The growth of a gamma-hexachlorocyclohexane (gamma-HCH)-degrading bacterium Sphingobium japonicum (formerly Sphingomonas paucimobilis) UT26 in rich medium was inhibited by gamma-HCH. This growth inhibition was not observed in a mutant that lacked the initial or second step enzymatic activity for gamma-HCH degradation, suggesting that metabolites of gamma-HCH are toxic to UT26. Two metabolites of gamma-HCH, 2,5-dichlorophenol (2,5-DCP) and 2,5-dichlorohydroquinone (2,5-DCHQ), showed a direct toxic effect on UT26 and other sphingomonad strains. Because only 2,5-DCP accumulated during gamma-HCH degradation, 2,5-DCP is thought to be a main compound for growth inhibition.
Collapse
Affiliation(s)
- Ryo Endo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
6
|
Yadid I, Rudolph J, Hlouchova K, Copley SD. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol. Proc Natl Acad Sci U S A 2013; 110:E2182-90. [PMID: 23676275 PMCID: PMC3683723 DOI: 10.1073/pnas.1214052110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbes in contaminated environments often evolve new metabolic pathways for detoxification or degradation of pollutants. In some cases, intermediates in newly evolved pathways are more toxic than the initial compound. The initial step in the degradation of pentachlorophenol by Sphingobium chlorophenolicum generates a particularly reactive intermediate; tetrachlorobenzoquinone (TCBQ) is a potent alkylating agent that reacts with cellular thiols at a diffusion-controlled rate. TCBQ reductase (PcpD), an FMN- and NADH-dependent reductase, catalyzes the reduction of TCBQ to tetrachlorohydroquinone. In the presence of PcpD, TCBQ formed by pentachlorophenol hydroxylase (PcpB) is sequestered until it is reduced to the less toxic tetrachlorohydroquinone, protecting the bacterium from the toxic effects of TCBQ and maintaining flux through the pathway. The toxicity of TCBQ may have exerted selective pressure to maintain slow turnover of PcpB (0.02 s(-1)) so that a transient interaction between PcpB and PcpD can occur before TCBQ is released from the active site of PcpB.
Collapse
Affiliation(s)
| | | | | | - Shelley D. Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309
| |
Collapse
|
7
|
Kolvenbach B, Corvini PX. The degradation of alkylphenols by Sphingomonas sp. strain TTNP3 – a review on seven years of research. N Biotechnol 2012; 30:88-95. [DOI: 10.1016/j.nbt.2012.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/18/2012] [Accepted: 07/21/2012] [Indexed: 11/26/2022]
|
8
|
Hlouchova K, Rudolph J, Pietari JMH, Behlen LS, Copley SD. Pentachlorophenol hydroxylase, a poorly functioning enzyme required for degradation of pentachlorophenol by Sphingobium chlorophenolicum. Biochemistry 2012; 51:3848-60. [PMID: 22482720 DOI: 10.1021/bi300261p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several strains of Sphingobium chlorophenolicum have been isolated from soil that was heavily contaminated with pentachlorophenol (PCP), a toxic pesticide introduced in the 1930s. S. chlorophenolicum appears to have assembled a poorly functioning pathway for degradation of PCP by patching enzymes recruited via two independent horizontal gene transfer events into an existing metabolic pathway. Flux through the pathway is limited by PCP hydroxylase. PCP hydroxylase is a dimeric protein that belongs to the family of flavin-dependent phenol hydroxylases. In the presence of NADPH, PCP hydroxylase converts PCP to tetrachlorobenzoquinone (TCBQ). The k(cat) for PCP (0.024 s(-1)) is very low, suggesting that the enzyme is not well evolved for turnover of this substrate. Structure-activity studies reveal that substrate binding and activity are enhanced by a low pK(a) for the phenolic proton, increased hydrophobicity, and the presence of a substituent ortho to the hydroxyl group of the phenol. PCP hydroxylase exhibits substantial uncoupling; the C4a-hydroxyflavin intermediate, instead of hydroxylating the substrate, can decompose to produce H(2)O(2) in a futile cycle that consumes NADPH. The extent of uncoupling varies from 0 to 100% with different substrates. The extent of uncoupling is increased by the presence of bulky substituents at position 3, 4, or 5 and decreased by the presence of a chlorine in the ortho position. The effectiveness of PCP hydroxylase is additionally hindered by its promiscuous activity with tetrachlorohydroquinone (TCHQ), a downstream metabolite in the degradation pathway. The conversion of TCHQ to TCBQ reverses flux through the pathway. Substantial uncoupling also occurs during the reaction with TCHQ.
Collapse
Affiliation(s)
- Klara Hlouchova
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
9
|
Copley SD, Rokicki J, Turner P, Daligault H, Nolan M, Land M. The whole genome sequence of Sphingobium chlorophenolicum L-1: insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol Evol 2011; 4:184-98. [PMID: 22179583 PMCID: PMC3318906 DOI: 10.1093/gbe/evr137] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sphingobium chlorophenolicum Strain L-1 can mineralize the toxic pesticide pentachlorophenol (PCP). We have sequenced the genome of S. chlorophenolicum Strain L-1. The genome consists of a primary chromosome that encodes most of the genes for core processes, a secondary chromosome that encodes primarily genes that appear to be involved in environmental adaptation, and a small plasmid. The genes responsible for degradation of PCP are found on chromosome 2. We have compared the genomes of S. chlorophenolicum Strain L-1 and Sphingobium japonicum, a closely related Sphingomonad that degrades lindane. Our analysis suggests that the genes encoding the first three enzymes in the PCP degradation pathway were acquired via two different horizontal gene transfer events, and the genes encoding the final two enzymes in the pathway were acquired from the most recent common ancestor of these two bacteria.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, CO, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Sun W, Sammynaiken R, Chen L, Maley J, Schatte G, Zhou Y, Yang J. Sphingobium chlorophenolicum dichlorohydroquinone dioxygenase (PcpA) is alkaline resistant and thermally stable. Int J Biol Sci 2011; 7:1171-9. [PMID: 22043174 PMCID: PMC3204407 DOI: 10.7150/ijbs.7.1171] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/17/2011] [Indexed: 11/27/2022] Open
Abstract
Dichlorohydroquinone dioxygenase (PcpA) is the ring-cleavage enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum strain ATCC 39723. PcpA dehalogenates and oxidizes 2,6-dichlorohydroquinone to form 2-chloromaleylacetate, which is subsequently converted to succinyl coenzyme A and acetyl coenzyme A via 3-oxoadipate. Previous studies have shown that PcpA is highly substrate-specific and only uses 2,6-dichlorohydroquinone as its substrate. In the current study, we overexpressed and purified recombinant PcpA and showed that PcpA was highly alkaline resistant and thermally stable. PcpA exhibited two activity peaks at pH 7.0 and 10.0, respectively. The apparent kcat and Km were measured as 0.19 ± 0.01 s-1 and 0.24 ± 0.08 mM, respectively at pH 7.0, and 0.17 ± 0.01 s-1 and 0.77 ± 0.29 mM, respectively at pH 10.0. Electron paramagnetic resonance studies showed rapid oxidation of Fe(II) to Fe(III) in PcpA and the formation of a stable radical intermediate during the enzyme catalysis. The stable radical was predicted to be an epoxide type dichloro radical with the unpaired electron density localized on C3.
Collapse
Affiliation(s)
- Wanpeng Sun
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Anthropogenic compounds used as pesticides, solvents and explosives often persist in the environment and can cause toxicity to humans and wildlife. The persistence of anthropogenic compounds is due to their recent introduction into the environment; microbes in soil and water have had relatively little time to evolve efficient mechanisms for degradation of these new compounds. Some anthropogenic compounds are easily degraded, whereas others are degraded very slowly or only partially, leading to accumulation of toxic products. This review examines the factors that affect the ability of microbes to degrade anthropogenic compounds and the mechanisms by which new pathways emerge in nature. New approaches for engineering microbes with enhanced degradative abilities include assembly of pathways using enzymes from multiple organisms, directed evolution of inefficient enzymes, and genome shuffling to improve microbial fitness under the challenging conditions posed by contaminated environments.
Collapse
|
12
|
Cloning, overexpression, purification, and characterization of the maleylacetate reductase from Sphingobium chlorophenolicum strain ATCC 53874. Curr Microbiol 2009; 58:599-603. [PMID: 19242755 DOI: 10.1007/s00284-009-9377-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
The final enzyme in the pentachlorophenol (PCP) biodegradation pathway in Sphingobium chlorophenolicum is maleylacetate reductase (PcpE), which catalyzes the reductive dehalogenation of 2-chloromaleylacetate to maleylacetate and the subsequent reduction of malyelacetate to 3-oxoadipate. In this study, the pcpE gene was cloned from S. chlorophenolicum strain ATCC 53874 and overexpressed in Escherichia coli BL21-AI cells. The recombinant PcpE, purified to higher than 95% purity using affinity chromatography, exhibited optimal activity at pH 7.0. The kinetic parameters k(cat) and K(m) were 1.2 +/- 0.3 s(-1) and 0.09 +/- 0.04 mM, respectively, against maleylacetate under the optimal pH. In addition, the purified PcpE was able to restore PCP-degrading capability to S. chlorophenolicum strain ATCC 39723, implicating that there was no functional PcpE in the ATCC 39723 strain.
Collapse
|
13
|
Abstract
Bacterial glutathione transferases (GSTs) are part of a superfamily of enzymes that play a key role in cellular detoxification. GSTs are widely distributed in prokaryotes and are grouped into several classes. Bacterial GSTs are implicated in a variety of distinct processes such as the biodegradation of xenobiotics, protection against chemical and oxidative stresses and antimicrobial drug resistance. In addition to their role in detoxification, bacterial GSTs are also involved in a variety of distinct metabolic processes such as the biotransformation of dichloromethane, the degradation of lignin and atrazine, and the reductive dechlorination of pentachlorophenol. This review article summarizes the current status of knowledge regarding the functional and structural properties of bacterial GSTs.
Collapse
Affiliation(s)
- Nerino Allocati
- Dipartimento di Scienze Biomediche, Università G. d'Annunzio, Chieti, Italy.
| | | | | | | |
Collapse
|
14
|
Su Y, Chen L, Bandy B, Yang J. The Catalytic Product of Pentachlorophenol 4-Monooxygenase is Tetra-chlorohydroquinone rather than Tetrachlorobenzoquinone. Open Microbiol J 2008; 2:100-6. [PMID: 19088919 PMCID: PMC2593034 DOI: 10.2174/1874285800802010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/23/2006] [Accepted: 07/23/2008] [Indexed: 11/22/2022] Open
Abstract
Pentachlorophenol 4-monooxygenase (PcpB) catalyzes the hydroxylation of pentachlorophenol in the pentachlorophenol biodegradation pathway in Sphingobium chlorophenolicum. Previous studies from two different research groups proposed oppositely that the catalytic product of PcpB was tetrachlorohydroquinone (TCHQ) and tetrachlorobenzoquinone (TCBQ). We re-examined the identity of the catalytic product of PcpB, because TCHQ and TCBQ are present in a redox-equilibrium in aqueous solutions and the chemical reagents NADPH, ethyl acetate and glutathione used for the product detection in the previous studies may shift the redox-equilibrium. In this study, we investigated the effects of NADPH, ethyl acetate and glutathione on the redox-equilibrium and product distribution. Under newly designed experimental conditions, we confirmed unambiguously that the catalytic product of PcpB is TCHQ instead of TCBQ. We also propose that TCBQ may be produced non-specifically by peroxidases within the bacterial cells and that TCBQ reductase (PcpD) might act as a self-protective rather than a PCP-degradation enzyme.
Collapse
Affiliation(s)
- Yunyou Su
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9, Canada
| | | | | | | |
Collapse
|
15
|
Biochemical characterization of the tetrachlorobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int J Mol Sci 2008; 9:198-212. [PMID: 19325743 PMCID: PMC2635678 DOI: 10.3390/ijms9030198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/04/2008] [Accepted: 02/15/2008] [Indexed: 11/16/2022] Open
Abstract
Pentachlorophenol (PCP), a xenobiocide used to preserve lumbers, is a major environmental pollutant in North America. In spite of an expected high resistance to biodegradation, a number of aquatic and soil bacteria can degrade PCP. In this study, we cloned, expressed and purified tetrachlorobenzoquinone reductase (PcpD), the second enzyme in the PCP biodegradation pathway in Sphingobium chlorophenolicum. PcpD, present mainly as a homo-trimer, exhibited low but statistically significant activity in the reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone. The optimal pH for PcpD activity was 7.0. PcpD was stimulated by tetrachlorohydroquinone at low concentrations but inhibited at high concentrations. Because of the constitutive expression and relatively high catalytic efficiency of downstream enzyme tetrachlorohydroquinone reductive dehalogenase, tetrachlorohydroquinone was unlikely to accumulate in high concentrations, suggesting that PcpD would only be stimulated by tetrachlorohydroquinone under in vivo conditions. It was also shown that PcpD was inhibited by PCP in a concentration-dependent manner. Therefore, PcpD was regulated by tetrachlorohydroquinone and PCP using a possible "Yin-Yang" mechanism, which maintained tetrachlorobeanzoquinone at a level that would neither significantly decrease the biodegradation of PCP nor cause cytotoxicity in S. chlorophenolicum cells. Structural model of PcpD showed that the putative tetrachlorobenzoquinone binding site, adjacent to the cofactor flavin mononucleotide and the 2Fe2S cluster, was situated in a deep pit on the surface and slightly positively charged.
Collapse
|
16
|
Warner JR, Behlen LS, Copley SD. A trade-off between catalytic power and substrate inhibition in TCHQ dehalogenase. Biochemistry 2008; 47:3258-65. [PMID: 18275157 DOI: 10.1021/bi702431n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrachlorohydroquinone (TCHQ) dehalogenase is profoundly inhibited by its aromatic substrates, TCHQ and trichlorohydroquinone (TriCHQ). Surprisingly, mutations that change Ile12 to either Ser or Ala give an enzyme that shows no substrate inhibition. We have previously shown that TriCHQ is a noncompetitive inhibitor of the thiol-disulfide exchange reaction between glutathione and ESSG, a covalent adduct between Cys13 and glutathione formed during dehalogenation of the substrate. Substrate inhibition of the thiol-disulfide exchange reaction is less severe in the I12S and I12A mutant enzymes, primarily due to weaker binding of TriCHQ to ESSG. These mutations also result in a decrease in the rate of dehalogenation. Because the rate-limiting step in the I12S and I12A enzymes is dehalogenation, rather than the thiol-disulfide exchange reaction, the relatively modest inhibition of the thiol-disulfide exchange reaction does not affect the overall rate of turnover.
Collapse
Affiliation(s)
- Joseph R Warner
- Department of Molecular, Cellular, and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
17
|
Li C, Ji R, Vinken R, Hommes G, Bertmer M, Schäffer A, Corvini PFX. Role of dissolved humic acids in the biodegradation of a single isomer of nonylphenol by Sphingomonas sp. CHEMOSPHERE 2007; 68:2172-80. [PMID: 17367841 DOI: 10.1016/j.chemosphere.2007.01.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/22/2007] [Accepted: 01/30/2007] [Indexed: 05/14/2023]
Abstract
This study shows the important role of humic acids in the degradation of (14)C and (13)C labeled isomer of NP by Sphingomonas sp. strain TTNP3 and the detoxification of the resulting metabolites. Due to the association of NP with humic acids, its solubility in the medium was enhanced and the extent of mineralization of nonylphenol increased from 20% to above 35%. This was accompanied by the formation of significant amounts of NP residues bound to the humic acids, which also occurred via abiotic reactions of the major NP metabolite hydroquinone with the humic acids. Gel permeation chromatography showed a non-homogenous distribution of NP residues with humic acids molecules, with preference towards molecules with high-molecular-weight. Solid state (13)C nuclear magnetic resonance spectroscopy indicated that the nonextractable residues resulted exclusively from the metabolites. The chemical shifts of the labeled carbon indicated the possible covalent binding of hydroquinone to the humic acids via ester and possibly ether bonds, and the incorporation of degradation products of hydroquinone into the humic acids. This study provided evidences for the mediatory role of humic acids in the fate of NP as a sink for bacterial degradation intermediates of this compound.
Collapse
Affiliation(s)
- Chengliang Li
- Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Endo R, Ohtsubo Y, Tsuda M, Nagata Y. Identification and characterization of genes encoding a putative ABC-type transporter essential for utilization of gamma-hexachlorocyclohexane in Sphingobium japonicum UT26. J Bacteriol 2007; 189:3712-20. [PMID: 17369300 PMCID: PMC1913331 DOI: 10.1128/jb.01883-06] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingobium japonicum UT26 utilizes gamma-hexachlorocyclohexane (gamma-HCH) as its sole source of carbon and energy. In our previous studies, we cloned and characterized genes encoding enzymes for the conversion of gamma-HCH to beta-ketoadipate in UT26. In this study, we analyzed a mutant obtained by transposon mutagenesis and identified and characterized new genes encoding a putative ABC-type transporter essential for the utilization of gamma-HCH in strain UT26. This putative ABC transporter consists of four components, permease, ATPase, periplasmic protein, and lipoprotein, encoded by linK, linL, linM, and linN, respectively. Mutation and complementation analyses indicated that all the linKLMN genes are required, probably as a set, for gamma-HCH utilization in UT26. Furthermore, the mutant cells deficient in this putative ABC transporter showed (i) higher gamma-HCH degradation activity and greater accumulation of the toxic dead-end product 2,5-dichlorophenol (2,5-DCP), (ii) higher sensitivity to 2,5-DCP itself, and (iii) higher permeability of hydrophobic compounds than the wild-type cells. These results strongly suggested that LinKLMN are involved in gamma-HCH utilization by controlling membrane hydrophobicity. This study clearly demonstrated that a cellular factor besides catabolic enzymes and transcriptional regulators is essential for utilization of xenobiotic compounds in bacterial cells.
Collapse
Affiliation(s)
- Ryo Endo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
19
|
Crawford RL, Jung CM, Strap JL. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 2006; 18:525-39. [PMID: 17123025 DOI: 10.1007/s10532-006-9090-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/26/2006] [Indexed: 11/27/2022]
Abstract
Man-made polychlorinated phenols such as pentachlorophenol (PCP) have been used extensively since the 1920s as preservatives to prevent fungal attack on wood. During this time, they have become serious environmental contaminants. Despite the recent introduction of PCP in the environment on an evolutionary time scale, PCP-degrading bacteria are present in soils worldwide. The initial enzyme in the PCP catabolic pathway of numerous sphingomonads, PCP-4-monooxygenase (PcpB), catalyzes the para-hydroxylation of PCP to tetrachlorohydroquinone and is encoded by the pcpB gene. This review examines the literature concerning pcpB and supports the suggestion that pcpB/PcpB should be considered a model system for the study of recent evolution of catabolic pathways among bacteria that degrade xenobiotic molecules introduced into the environment during the recent past.
Collapse
Affiliation(s)
- Ronald L Crawford
- Environmental Biotechnology Institute, Food Research Center 202, University of Idaho, Moscow, ID 83844-1052, USA.
| | | | | |
Collapse
|
20
|
Zha J, Wang Z, Schlenk D. Effects of pentachlorophenol on the reproduction of Japanese medaka (Oryzias latipes). Chem Biol Interact 2006; 161:26-36. [PMID: 16620794 DOI: 10.1016/j.cbi.2006.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 11/15/2022]
Abstract
Pentachlorophenol (PCP) is widely used to control termites and protect wood from fungal-rot and wood-boring insects, and is often detected in the aquatic environment. Few studies have evaluated PCP as an environmental endocrine disruptor. In the present work, Japanese medaka (Oryzias latipes) was exposed to PCP for 28 days (F0 generation) with subsequent measurements of vitellogenin (VTG), hepatic 7-ethoxyresorufin-O-deethylase (EROD), and reproductive endpoints. Plasma VTG significantly increased in male fish treated with PCP concentrations lower than 200 microg/l and decreased in male and female animals exposed to 200 microg/l. Hepatic EROD from female fish increased when PCP exposure concentrations exceeded 20 microg/l, but decreased in the 200 microg/l PCP treatment group. Fecundity and mean fertility of female medaka decreased significantly in the second and third week following exposure concentrations greater than 100 microg/l, and testis-ova of male medaka was observed at PCP concentrations greater than 50 microg/l. Histological lesions of liver and kidney occurred when exposure concentrations exceeded 50 microg/l. In F1 generations, the hatching rates and time to hatch of offspring were significantly affected in fish exposed to 200 microg/l. These results indicated that PCP exposure caused responses consistent with estrogen and aryl hydrocarbon receptor activation as well as reproductive impairment at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, PR China
| | | | | |
Collapse
|
21
|
Corvini PFX, Hollender J, Ji R, Schumacher S, Prell J, Hommes G, Priefer U, Vinken R, Schäffer A. The degradation of α-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl Microbiol Biotechnol 2006; 70:114-22. [PMID: 16091931 DOI: 10.1007/s00253-005-0080-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/22/2005] [Accepted: 06/24/2005] [Indexed: 11/28/2022]
Abstract
The degradation of radiolabeled 4(3',5'-dimethyl-3'-heptyl)-phenol [nonylphenol (NP)] was tested with resting cells of Sphingomonas sp. strain TTNP3. Concomitantly to the degradation of NP, a metabolite identified as hydroquinone transiently accumulated and short-chain organic acids were then produced at the expense of hydroquinone. Two other radiolabeled isomers of NP, 4(2',6'-dimethyl-2'-heptyl)-phenol and 4(3',6'-dimethyl-3'-heptyl)-phenol, were synthesized. In parallel experiments, the 4(2',6'-dimethyl-2'-heptyl)-phenol was degraded more slowly than the other isomers of NP by strain TTNP3, possibly because of effects of the side-chain structure on the kinetics of degradation. Alkylbenzenediol and alkoxyphenol derivatives identified as metabolites during previous studies were synthesized and tested as substrates. The derivatives were not degraded, which indicated that the mineralization of NP does not proceed via alkoxyphenol as the principal intermediate. The results obtained led to the elucidation of the degradation pathway of NP isomers with a quaternary alpha-carbon. The proposed mechanism is a type II ipso substitution, leading to hydroquinone and nonanol as the main metabolites and to the dead-end metabolites alkylbenzenediol or alkoxyphenol, depending on the substitution at the alpha-carbon of the carbocationic intermediate formed.
Collapse
Affiliation(s)
- P F X Corvini
- Department of Environmental Research-Environmental Biology and Chemodynamics, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Corvini PFX, Meesters RJW, Schäffer A, Schröder HF, Vinken R, Hollender J. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl Environ Microbiol 2005; 70:6897-900. [PMID: 15528560 PMCID: PMC525215 DOI: 10.1128/aem.70.11.6897-6900.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingomonas sp. strain TTNP3 degrades 4(3',5'-dimethyl-3'-heptyl)-phenol and unidentified metabolites that were described previously. The chromatographic analyses of the synthesized reference compound and the metabolites led to their identification as 2(3',5'-dimethyl-3'-heptyl)-1,4-benzenediol. This finding indicates that the nonylphenol metabolism of this bacterium involves unconventional degradation pathways where an NIH shift mechanism occurs.
Collapse
Affiliation(s)
- P F X Corvini
- Department of Biology V, RWTH Aachen University, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Dai M, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol 2004; 70:2391-7. [PMID: 15066836 PMCID: PMC383174 DOI: 10.1128/aem.70.4.2391-2397.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pentachlorophenol (PCP), a highly toxic anthropogenic pesticide, can be mineralized by Sphingobium chlorophenolicum, a gram-negative bacterium isolated from PCP-contaminated soil. However, degradation of PCP is slow and S. chlorophenolicum cannot tolerate high levels of PCP. We have used genome shuffling to improve the degradation of PCP by S. chlorophenolicum. We have obtained several strains that degrade PCP faster and tolerate higher levels of PCP than the wild-type strain. Several strains obtained after the third round of shuffling can grow on one-quarter-strength tryptic soy broth plates containing 6 to 8 mM PCP, while the original strain cannot grow in the presence of PCP at concentrations higher than 0.6 mM. Some of the mutants are able to completely degrade 3 mM PCP in one-quarter-strength tryptic soy broth, whereas no degradation can be achieved by the wild-type strain. Analysis of several improved strains suggests that the improved phenotypes are due to various combinations of mutations leading to an enhanced growth rate, constitutive expression of the PCP degradation genes, and enhanced resistance to the toxicity of PCP and its metabolites.
Collapse
Affiliation(s)
- MingHua Dai
- Department of Molecular, Cellular, and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
24
|
Nakamura T, Motoyama T, Hirono S, Yamaguchi I. Identification, characterization, and site-directed mutagenesis of recombinant pentachlorophenol 4-monooxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1700:151-9. [PMID: 15262224 DOI: 10.1016/j.bbapap.2004.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/07/2004] [Accepted: 04/13/2004] [Indexed: 11/25/2022]
Abstract
In a previous study, we constructed a three-dimensional (3D) structure of pentachlorophenol 4-monooxygenase (PcpB). In this study, further analyses are performed to examine the important amino acid residues in the catalytic reaction by identification of the proteins with mass spectrometry, circular dichroism (CD) and UV spectrometry, and determination of kinetic parameters. Recombinant histidine-tagged PcpB protein was produced and shown to have a similar activity to the native protein. Mutant proteins of PcpB were then produced (F85A, Y216A, Y216F, R235A, R235E, R235K, Y397A and Y397F) on the basis of the proposed 3D structure. The CD spectra of the proteins showed that there were no major changes in the structures of the mutant proteins, with the exception of R235E. Steady-state kinetics showed a 20-fold reduction in k(cat)/K(m) and a ninefold increase in K(m) for Y216F and a threefold reduction in k(cat)/K(m) and a sixfold increase in K(m) for Y397F compared to the wild type. On the other hand, the value of k(cat)/K(m) of R235K mutant was the same as that of wild type. As a result, it was confirmed that Y216 and Y397 play an important role with respect to the recognition of the substrate.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory for Remediation Research, Environmental Plant Research Group, Plant Science Center, RIKEN Institute, 1-7-22 Suehiro, Tsurumi, Yokohama City, Kanagawa 230-0045, Japan.
| | | | | | | |
Collapse
|
25
|
Nakamura T, Motoyama T, Hirokawa T, Hirono S, Yamaguchi I. Computer-aided modeling of pentachlorophenol 4-monooxygenase and site-directed mutagenesis of its active site. Chem Pharm Bull (Tokyo) 2004; 51:1293-8. [PMID: 14600375 DOI: 10.1248/cpb.51.1293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homology modeling was used to construct a model of the three-dimensional structure of pentachlorophenol 4-monooxygenase (PcpB). A PSI-BLAST homology search was initially performed to identify the 3D structure of proteins homologous with PcpB. The feasibility of modeled structures of PcpB was evaluated by Verify3D, which calculated structural compatibility scores based on 3D-1D profiles. The predicted structure of PcpB had an acceptable 3D-1D self-compatibility score, beyond the incorrect fold score threshold. A PcpB-pentachlorophenol (PCP) complex was then constructed utilizing the modeled PcpB structure. After energy minimization of the complex, and successive minimizations of the system that consisted of the complex and the water layer surrounding the complex, the molecular dynamics of the system were simulated. The active-site residues of PcpB were identified on the basis of the modeled structure, and PcpB mutants were then designed to change the active site residues, expressed, and purified by affinity chromatography. The mutant activity was compared with that of the wild-type to investigate the validity of the modeled structure. The experimental results suggested that Phe85, Tyr216, and Arg235 were relevant to enzyme activity, and that Tyr397 and Phe87 were important for stabilization of the structure of PcpB.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory for Remediation Research, Environmental Plant Research Group, Plant Science Center, RIKEN Institute, yokohama, Konagawa, Japan.
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Dai M, Rogers JB, Warner JR, Copley SD. A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 2003; 185:302-10. [PMID: 12486067 PMCID: PMC141830 DOI: 10.1128/jb.185.1.302-310.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone.
Collapse
Affiliation(s)
- MingHua Dai
- Department of Molecular, Cellular, and Developmental Biology, and Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
28
|
Wang H, Marjomäki V, Ovod V, Kulomaa MS. Subcellular localization of pentachlorophenol 4-monooxygenase in Sphingobium chlorophenolicum ATCC 39723. Biochem Biophys Res Commun 2002; 299:703-9. [PMID: 12470635 DOI: 10.1016/s0006-291x(02)02719-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2-4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and periplasm. After 6 h, the majority of PCP4MO was in the periplasm and only small amount was bound to the inner membrane or present in the cytoplasm. The results indicate that after biosynthesis PCP4MO in S. chlorophenolicum is exported via the inner membrane to the final location in the periplasm.
Collapse
Affiliation(s)
- Hong Wang
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YAB), FIN-40014, Jyväskylä, Finland
| | | | | | | |
Collapse
|
29
|
Tiirola MA, Wang H, Paulin L, Kulomaa MS. Evidence for natural horizontal transfer of the pcpB gene in the evolution of polychlorophenol-degrading sphingomonads. Appl Environ Microbiol 2002; 68:4495-501. [PMID: 12200305 PMCID: PMC124104 DOI: 10.1128/aem.68.9.4495-4501.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
The chlorophenol degradation pathway in Sphingobium chlorophenolicum is initiated by the pcpB gene product, pentachlorophenol-4-monooxygenase. The distribution of the gene was studied in a phylogenetically diverse group of polychlorophenol-degrading bacteria isolated from contaminated groundwater in Kärkölä, Finland. All the sphingomonads isolated were shown to share pcpB gene homologs with 98.9 to 100% sequence identity. The gene product was expressed when the strains were induced by 2,3,4,6-tetrachlorophenol. A comparative analysis of the 16S rDNA and pcpB gene trees suggested that a recent horizontal transfer of the pcpB gene was involved in the evolution of the catabolic pathway in the Kärkölä sphingomonads. The full-length Kärkölä pcpB gene allele had approximately 70% identity with the three pcpB genes previously sequenced from sphingomonads. It was very closely related to the environmental clones obtained from chlorophenol-enriched soil samples (M. Beaulieu, V. Becaert, L. Deschenes, and R. Villemur, Microbiol. Ecol. 40:345-355, 2000). The gene was not present in polychlorophenol-degrading nonsphingomonads isolated from the Kärkölä source.
Collapse
Affiliation(s)
- Marja A Tiirola
- Department of Biological and Environmental Science, FIN-400014 University of Jyväskylä, Finland.
| | | | | | | |
Collapse
|
30
|
Wang H, Tiirola MA, Puhakka JA, Kulomaa MS. Production and characterization of the recombinant Sphingomonas chlorophenolica pentachlorophenol 4-monooxygenase. Biochem Biophys Res Commun 2001; 289:161-6. [PMID: 11708794 DOI: 10.1006/bbrc.2001.5915] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pentachlorophenol 4-monooxygenase (PCP4MO) from Sphingomonas chlorophenolica is a flavoprotein that hydroxylates PCP in the presence of NADPH and oxygen. In order to investigate the structure and function of active site, recombinant PCP4MO (rePCP4MO) was produced in Escherichia coli as a glutathione S-transferase (GST) fusion protein. Moreover, a tobacco etch virus (TEV) protease cleavage site (EKLYFQG) was introduced into GST-PCP4MO and a his-tagged TEV protease was employed. Hence, a two-step purification protocol was developed which allowed obtaining 15-20 mg of rePCP4MO from 1 L culture. The rePCP4MO revealed identity with native enzyme by SDS-PAGE and N-terminal sequence analyses. Furthermore, a polyclonal PCP4MO antibody was produced with GST-PCP4MO and purified by immunoaffinity chromatography, where both the native and recombinant forms of PCP4MO showed interaction. However, rePCP4MO was identified as apoprotein with no evidence for a typical flavoprotein spectrum. The catalytic activity could be detected in the presence of FAD. The K(m) and V(max) values for PCP were 50 microM and 30 nmol/min/mg, respectively.
Collapse
Affiliation(s)
- H Wang
- Department of Biological and Environmental Science, University of Jyväskylä, FIN-40351 Jyväskylä, Finland
| | | | | | | |
Collapse
|
31
|
Schmidt S, Kirby GW. Dioxygenative cleavage of C-methylated hydroquinones and 2,6-dichlorohydroquinone by Pseudomonas sp. HH35. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:83-9. [PMID: 11731089 DOI: 10.1016/s0304-4165(01)00204-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dioxygenolytic catabolism of five C-methylated hydroquinones and 2,6-dichlorohydroquinone in Pseudomonas sp. strain HH35 was elucidated. This organism, which is known to catabolise 2,6-dimethylhydroquinone by 1,2-cleavage, accumulated metabolites from 2-methyl-, 2,3-dimethyl-, 2,5-dimethyl-, 2,3,5-trimethyl- and 2,3,5,6-tetramethylhydroquinone which we isolated and characterised by mass spectrometry and (1)H NMR and UV spectroscopy. The identification of these metabolites defined the impact of methyl groups present in the hydroquinone and showed how each substitution pattern determined the site of the initial enzymic attack. With the exception of the 2,3,5,6-tetramethylhydroquinone, all C-methylated hydroquinones were catabolised by an initial dioxygenolytic cleavage occurring adjacent (1,2- or 3,4-cleavage) to a hydroxy group. In addition, our results indicated that the 2,6-dichlorohydroquinone is catabolised in a similar way by this strain.
Collapse
Affiliation(s)
- S Schmidt
- Abteilung für Mikrobiologie, Universität Hamburg, Germany.
| | | |
Collapse
|
32
|
Copley SD. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 2000; 25:261-5. [PMID: 10838562 DOI: 10.1016/s0968-0004(00)01562-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pathway for degradation of the xenobiotic pesticide pentachlorophenol in Sphingomonas chlorophenolica probably evolved in the past few decades by the recruitment of enzymes from two other catabolic pathways. The first and third enzymes in the pathway, pentachlorophenol hydroxylase and 2,6-dichlorohydroquinone dioxygenase, may have originated from enzymes in a pathway for degradation of a naturally occurring chlorinated phenol. The second enzyme, a reductive dehalogenase, may have evolved from a maleylacetoacetate isomerase normally involved in degradation of tyrosine. This apparently recently assembled pathway does not function very well: pentachlorophenol hydroxylase is quite slow, and tetrachlorohydroquinone dehalogenase is subject to severe substrate inhibition.
Collapse
Affiliation(s)
- S D Copley
- Dept of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Studies, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
33
|
Tayal AK, Das L, Kaur I. Biodegradation of pentachlorophenol (PCP) by white rot fungal strains screened from local sources and its estimation by high-performance liquid chromatography. Biomed Chromatogr 1999; 13:220-4. [PMID: 10375122 DOI: 10.1002/(sici)1099-0801(199905)13:3<220::aid-bmc823>3.0.co;2-e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
White rot fungal strains screened from local sources (wood trunks and from effluents of pulp and paper industry) were tested for their ability to biodegrade polymeric compounds, viz. polymeric dyes (crystal violet and brilliant green) and chlorinated phenol (pentachlorophenol). Two of the most promising strains showing maximum degradation of polymeric dyes were selected to study the biodegradation potential and pattern of biodegradation of pentachlorophenol (PCP), a commonly used leather preservative and a potential carcinogen. PCP was quantitatively estimated and analysed by high-performance liquid chromatography (HPLC). Conditions were optimized for the measurement of PCP on HPLC, which were: mobile phase, 60% acetonitrile and 40% water; flow rate, 1 mL/ min; column, mu Bondapack C18 RP and UV detector at 238 nm. One of the white rot fungal strains isolated from wood trunk showed a maximum 68% biodegradation of PCP in liquid-buffered medium in 16 days. The biodegradation pattern of PCP followed a pseudo-first-order kinetics. Studies on enhancement of biodegradation of polymeric dyes and PCP showed that the kinetics of biodegradation is greatly improved by the presence of manganese ions, H2O2 and glucose in the medium. This strongly suggests the involvement of peroxidase enzyme machinery of white rot fungus in the biodegradation process of PCP.
Collapse
Affiliation(s)
- A K Tayal
- Department of Biosciences and Biotechnology, University of Roorkee, India
| | | | | |
Collapse
|
34
|
Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756298007588] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
McCarthy DL, Louie DF, Copley SD. Identification of a Covalent Intermediate between Glutathione and Cysteine13 Formed during Catalysis by Tetrachlorohydroquinone Dehalogenase. J Am Chem Soc 1997. [DOI: 10.1021/ja9726365] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Darla L. McCarthy
- Department of Chemistry and Biochemistry, The Cooperative Institute for Research in Environmental Sciences and The Howard Hughes Medical Institute University of Colorado at Boulder Boulder, Colorado 80309
| | - Donna F. Louie
- Department of Chemistry and Biochemistry, The Cooperative Institute for Research in Environmental Sciences and The Howard Hughes Medical Institute University of Colorado at Boulder Boulder, Colorado 80309
| | - Shelley D. Copley
- Department of Chemistry and Biochemistry, The Cooperative Institute for Research in Environmental Sciences and The Howard Hughes Medical Institute University of Colorado at Boulder Boulder, Colorado 80309
| |
Collapse
|