1
|
Geng B, Jia X, Peng X, Han Y. Biosynthesis of value-added bioproducts from hemicellulose of biomass through microbial metabolic engineering. Metab Eng Commun 2022; 15:e00211. [PMID: 36311477 PMCID: PMC9597109 DOI: 10.1016/j.mec.2022.e00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Hemicellulose is the second most abundant carbohydrate in lignocellulosic biomass and has extensive applications. In conventional biomass refinery, hemicellulose is easily converted to unwanted by-products in pretreatment and therefore can't be fully utilized. The present study aims to summarize the most recent development of lignocellulosic polysaccharide degradation and fully convert it to value-added bioproducts through microbial and enzymatic catalysis. Firstly, bioprocess and microbial metabolic engineering for enhanced utilization of lignocellulosic carbohydrates were discussed. The bioprocess for degradation and conversion of natural lignocellulose to monosaccharides and organic acids using anaerobic thermophilic bacteria and thermostable glycoside hydrolases were summarized. Xylose transmembrane transporting systems in natural microorganisms and the latest strategies for promoting the transporting capacity by metabolic engineering were summarized. The carbon catabolite repression effect restricting xylose utilization in microorganisms, and metabolic engineering strategies developed for co-utilization of glucose and xylose were discussed. Secondly, the metabolic pathways of xylose catabolism in microorganisms were comparatively analyzed. Microbial metabolic engineering for converting xylose to value-added bioproducts based on redox pathways, non-redox pathways, pentose phosphate pathway, and improving inhibitors resistance were summarized. Thirdly, strategies for degrading lignocellulosic polysaccharides and fully converting hemicellulose to value-added bioproducts through microbial metabolic engineering were proposed.
Collapse
Affiliation(s)
- Biao Geng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Sharma J, Kumar V, Prasad R, Gaur NA. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges. Biotechnol Adv 2022; 56:107925. [DOI: 10.1016/j.biotechadv.2022.107925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/01/2023]
|
3
|
Lao-Martil D, Verhagen KJA, Schmitz JPJ, Teusink B, Wahl SA, van Riel NAW. Kinetic Modeling of Saccharomyces cerevisiae Central Carbon Metabolism: Achievements, Limitations, and Opportunities. Metabolites 2022; 12:74. [PMID: 35050196 PMCID: PMC8779790 DOI: 10.3390/metabo12010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Central carbon metabolism comprises the metabolic pathways in the cell that process nutrients into energy, building blocks and byproducts. To unravel the regulation of this network upon glucose perturbation, several metabolic models have been developed for the microorganism Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered multiple research questions, but no commonly applicable model has been presented. This review systematically evaluates the literature to describe the current advances, limitations, and opportunities. Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some uncertainties regarding model topology and parameter values still limit the application to specific cases. Progressive improvements in experimental measurement technologies as well as advances in computational tools create new opportunities to further extend the model scale. Notably, models need to be made more complex to consider the multiple layers of glycolytic regulation and external physiological variables regulating the bioprocess, opening new possibilities for extrapolation and validation. Finally, the onset of new data representative of individual cells will cause these models to evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity of the population, opening new and unseen possibilities for industrial fermentation improvement.
Collapse
Affiliation(s)
- David Lao-Martil
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
| | - Koen J. A. Verhagen
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Joep P. J. Schmitz
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands;
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - S. Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
- Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Gou M, Tang YQ. Improving xylitol yield by deletion of endogenous xylitol-assimilating genes: a study of industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. FEMS Yeast Res 2020; 20:5986616. [PMID: 33201998 DOI: 10.1093/femsyr/foaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/14/2020] [Indexed: 01/12/2023] Open
Abstract
Engineered Saccharomyces cerevisiae can reduce xylose to xylitol. However, in S.cerevisiae, there are several endogenous enzymes including xylitol dehydrogenase encoded by XYL2, sorbitol dehydrogenases encoded by SOR1/SOR2 and xylulokinase encoded by XKS1 may lead to the assimilation of xylitol. In this study, to increase xylitol accumulation, these genes were separately deleted through CRISPR/Cas9 system. Their effects on xylitol yield of an industrial S. cerevisiae CK17 overexpressing Candida tropicalis XYL1 (encoding xylose reductase) were investigated. Deletion of SOR1/SOR2 or XKS1 increased the xylitol yield in both batch and fed-batch fermentation with different concentrations of glucose and xylose. The analysis of the transcription level of key genes in the mutants during fed-batch fermentation suggests that SOR1/SOR2 are more crucially responsible for xylitol oxidation than XYL2 under the genetic background of S.cerevisiae CK17. The deletion of XKS1 gene could also weaken SOR1/SOR2 expression, thereby increasing the xylitol accumulation. The XKS1-deleted strain CK17ΔXKS1 produced 46.17 g/L of xylitol and reached a xylitol yield of 0.92 g/g during simultaneous saccharification and fermentation (SSF) of pretreated corn stover slurry. Therefore, the deletion of XKS1 gene provides a promising strategy to meet the industrial demands for xylitol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Ya-Jing Wu
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
5
|
da Silva JM, Ribeiro KC, Teles GH, Ribeiro E, de Morais Junior MA, de Barros Pita W. Fermentation profiles of the yeast Brettanomyces bruxellensis in d-xylose and l-arabinose aiming its application as a second-generation ethanol producer. Yeast 2020; 37:597-608. [PMID: 32889766 DOI: 10.1002/yea.3519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/07/2022] Open
Abstract
The yeast Brettanomyces bruxellensis is able to ferment the main sugars used in first-generation ethanol production. However, its employment in this industry is prohibitive because the ethanol productivity reached is significantly lower than the observed for Saccharomyces cerevisiae. On the other hand, a possible application of B. bruxellensis in the second-generation ethanol production has been suggested because this yeast is also able to use d-xylose and l-arabinose, the major pentoses released from lignocellulosic material. Although the latter application seems to be reasonable, it has been poorly explored. Therefore, we aimed to evaluate whether or not different industrial strains of B. bruxellensis are able to ferment d-xylose and l-arabinose, both in aerobiosis and oxygen-limited conditions. Three out of nine tested strains were able to assimilate those sugars. When in aerobiosis, B. bruxellensis cells exclusively used them to support biomass formation, and no ethanol was produced. Moreover, whereas l-arabinose was not consumed under oxygen limitation, d-xylose was only slightly used, which resulted in low ethanol yield and productivity. In conclusion, our results showed that d-xylose and l-arabinose are not efficiently converted to ethanol by B. bruxellensis, most likely due to a redox imbalance in the assimilatory pathways of these sugars. Therefore, despite presenting other industrially relevant traits, the employment of B. bruxellensis in second-generation ethanol production depends on the development of genetic engineering strategies to overcome this metabolic bottleneck.
Collapse
Affiliation(s)
| | | | | | - Ester Ribeiro
- Department of Antibiotics, Federal University of Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
6
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
van Dijk M, Erdei B, Galbe M, Nygård Y, Olsson L. Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2019; 292:121922. [PMID: 31398543 DOI: 10.1016/j.biortech.2019.121922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The limited tolerance of Saccharomyces cerevisiae to the inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. Short-term adaptation of the yeast to lignocellulosic hydrolysates during cell propagation has been shown to improve its tolerance, and thus its performance in lignocellulose fermentation. The aim of this study was to investigate the short-term adaptation effects in yeast strains with different genetic backgrounds. Fed-batch propagation cultures were supplemented with 40% wheat straw hydrolysate during the feed phase to adapt two different pentose-fermenting strains, CR01 and KE6-12. The harvested cells were used to inoculate fermentation media containing 80% or 90% wheat straw hydrolysate. The specific ethanol productivity during fermentation was up to 3.6 times higher for CR01 and 1.6 times higher for KE6-12 following adaptation. The influence of physiological parameters such as viability, storage carbohydrate content, and metabolite yields following short-term adaptation demonstrated that short-term adaptation was strain dependent.
Collapse
Affiliation(s)
- Marlous van Dijk
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Borbála Erdei
- Lund University, Dept. Chemical Engineering, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mats Galbe
- Lund University, Dept. Chemical Engineering, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yvonne Nygård
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Lisbeth Olsson
- Chalmers University of Technology, Dept. Biology and Bioengineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Farias D, Maugeri Filho F. Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Baptista SL, Cunha JT, Romaní A, Domingues L. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. BIORESOURCE TECHNOLOGY 2018; 267:481-491. [PMID: 30041142 DOI: 10.1016/j.biortech.2018.07.068] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-detoxified corn cob hydrolysates. Furthermore, a successful integrated strategy was developed for the production of xylitol from whole slurry corn cob in a presaccharification and simultaneous saccharification and fermentation process (15% solid loading and 36 FPU) reaching xylitol yield of 0.93 g/g and a productivity of 0.54 g/L·h. This novel approach results in an intensified valorization of lignocellulosic biomass for xylitol production in a fully integrated process and represents an advance towards a circular economy.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
11
|
Robak K, Balcerek M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol Biotechnol 2018; 56:174-187. [PMID: 30228792 PMCID: PMC6117988 DOI: 10.17113/ftb.56.02.18.5428] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/11/2018] [Indexed: 11/12/2022] Open
Abstract
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
Collapse
Affiliation(s)
- Katarzyna Robak
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
| | - Maria Balcerek
- Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology, Wolczanska 171/173, PL 90-924 Lodz, Poland
| |
Collapse
|
12
|
Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Althuri A, Chintagunta AD, Sherpa KC, Banerjee R. Simultaneous Saccharification and Fermentation of Lignocellulosic Biomass. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2018. [DOI: 10.1007/978-3-319-67678-4_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate. ACTA ACUST UNITED AC 2017; 44:961-971. [DOI: 10.1007/s10295-017-1914-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Abstract
Xylitol is commercially used in chewing gum and dental care products as a low calorie sweetener having medicinal properties. Industrial yeast strain of S. cerevisiae was genetically modified to overexpress an endogenous aldose reductase gene GRE3 and a xylose transporter gene SUT1 for the production of xylitol. The recombinant strain (XP-RTK) carried the expression cassettes of both the genes and the G418 resistance marker cassette KanMX integrated into the genome of S. cerevisiae. Short segments from the 5′ and 3′ delta regions of the Ty1 retrotransposons were used as homology regions for integration of the cassettes. Xylitol production by the industrial recombinant strain was evaluated using hemicellulosic hydrolysate of the corn cob with glucose as the cosubstrate. The recombinant strain XP-RTK showed significantly higher xylitol productivity (212 mg L−1 h−1) over the control strain XP (81 mg L−1 h−1). Glucose was successfully replaced by glycerol as a co-substrate for xylitol production by S. cerevisiae. Strain XP-RTK showed the highest xylitol productivity of 318.6 mg L−1 h−1 and titre of 47 g L−1 of xylitol at 12 g L−1 initial DCW using glycerol as cosubstrate. The amount of glycerol consumed per amount of xylitol produced (0.47 mol mol−1) was significantly lower than glucose (23.7 mol mol−1). Fermentation strategies such as cell recycle and use of the industrial nitrogen sources were demonstrated using hemicellulosic hydrolysate for xylitol production.
Collapse
|
15
|
Zhu JQ, Li X, Qin L, Li WC, Li HZ, Li BZ, Yuan YJ. In situ detoxification of dry dilute acid pretreated corn stover by co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae increases ethanol production. BIORESOURCE TECHNOLOGY 2016; 218:380-7. [PMID: 27387414 DOI: 10.1016/j.biortech.2016.06.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 05/15/2023]
Abstract
Co-culture of xylose-utilizing and inhibitor-tolerant Saccharomyces cerevisiae was developed for bioethanol production from undetoxified pretreated biomass in simultaneously saccharification and co-fermentation (SSCF) process. Glucose accumulation during late fermentation phase in SSCF using xylose-utilizing strain can be eliminated by the introduction of inhibitor-tolerant strain. Effect of different ratios of two strains was investigated and xylose-utilizing strain to inhibitor-tolerant strain ratio of 10:1 (w/w) showed the best xylose consumption and the highest ethanol yield. Inoculating of xylose-utilizing strain at the later stage of SSCF (24-48h) exhibited lower ethanol yield than inoculating at early stage (the beginning 0-12h), probably due to the reduced enzymatic efficiency caused by the unconsumed xylose and oligomeric sugars. Co-culture SSCF increased ethanol concentration by 21.2% and 41.0% comparing to SSCF using individual inhibitor-tolerant and xylose-utilizing strain (increased from 48.5 and 41.7g/L to 58.8g/L), respectively, which suggest this co-culture system was very promising.
Collapse
Affiliation(s)
- Jia-Qing Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Lei Qin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Wen-Chao Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Hui-Ze Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Center of Synthetic Biology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
16
|
|
17
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
18
|
Nozaki H, Suzuki SI, Tsuyoshi N, Yokozeki K. Production of D-Arabitol byMetschnikowia reukaufiiAJ14787. Biosci Biotechnol Biochem 2014; 67:1923-9. [PMID: 14519977 DOI: 10.1271/bbb.67.1923] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A potent producer of D-arabitol was isolated by screening of natural sources and identified as Metschnikowia reukaufii AJ14787. Resting cells of this strain can efficiently produce D-arabitol from D-glucose with a weight yield of more than 60%, and can also produce D-arabitol from several other types of sugars such as polyols, ketoses, and aldoses. To improve productivity, various culture conditions such as temperature and the concentrations of D-glucose and nitrogen sources were examined. Under optimal conditions, 206 g/l of D-arabitol was produced from D-glucose with a weight yield of 52% in 100 hours.
Collapse
Affiliation(s)
- Hiroyuki Nozaki
- Aminoscience Laboratories, Ajinomoto Co., Ltd., Kawasaki, Japan.
| | | | | | | |
Collapse
|
19
|
Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 2014; 98:3539-52. [PMID: 24419799 DOI: 10.1007/s00253-013-5501-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022]
Abstract
Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.
Collapse
Affiliation(s)
- Hairong Cheng
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | | | | | | | | | |
Collapse
|
20
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
21
|
Salusjärvi L, Kaunisto S, Holmström S, Vehkomäki ML, Koivuranta K, Pitkänen JP, Ruohonen L. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2013; 40:1383-92. [PMID: 24113892 DOI: 10.1007/s10295-013-1344-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/09/2013] [Indexed: 01/31/2023]
Abstract
Deviation from optimal levels and ratios of redox cofactors NAD(H) and NADP(H) is common when microbes are metabolically engineered. The resulting redox imbalance often reduces the rate of substrate utilization as well as biomass and product formation. An example is the metabolism of D-xylose by recombinant Saccharomyces cerevisiae strains expressing xylose reductase and xylitol dehydrogenase encoding genes from Scheffersomyces stipitis. This pathway requires both NADPH and NAD(+). The effect of overexpressing the glycosomal NADH-dependent fumarate reductase (FRD) of Trypanosoma brucei in D-xylose-utilizing S. cerevisiae alone and together with an endogenous, cytosol directed NADH-kinase (POS5Δ17) was studied as one possible solution to overcome this imbalance. Expression of FRD and FRD + POS5Δ17 resulted in 60 and 23 % increase in ethanol yield, respectively, on D-xylose under anaerobic conditions. At the same time, xylitol yield decreased in the FRD strain suggesting an improvement in redox balance. We show that fumarate reductase of T. brucei can provide an important source of NAD(+) in yeast under anaerobic conditions, and can be useful for metabolic engineering strategies where the redox cofactors need to be balanced. The effects of FRD and NADH-kinase on aerobic and anaerobic D-xylose and D-glucose metabolism are discussed.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT, Technical Research Centre of Finland, PO Box 1000, 02044, VTT, Finland,
| | | | | | | | | | | | | |
Collapse
|
22
|
Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. J Biotechnol 2013; 164:50-8. [DOI: 10.1016/j.jbiotec.2012.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022]
|
23
|
Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013; 8:e57048. [PMID: 23468911 PMCID: PMC3582614 DOI: 10.1371/journal.pone.0057048] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022] Open
Abstract
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.
Collapse
Affiliation(s)
- Soo Rin Kim
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeffrey M. Skerker
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Wei Kang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Anastashia Lesmana
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Na Wei
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Adam P. Arkin
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
24
|
Koppram R, Nielsen F, Albers E, Lambert A, Wännström S, Welin L, Zacchi G, Olsson L. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:2. [PMID: 23311728 PMCID: PMC3598390 DOI: 10.1186/1754-6834-6-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/07/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND While simultaneous saccharification and co-fermentation (SSCF) is considered to be a promising process for bioconversion of lignocellulosic materials to ethanol, there are still relatively little demo-plant data and operating experiences reported in the literature. In the current work, we designed a SSCF process and scaled up from lab to demo scale reaching 4% (w/v) ethanol using xylose rich corncobs. RESULTS Seven different recombinant xylose utilizing Saccharomyces cerevisiae strains were evaluated for their fermentation performance in hydrolysates of steam pretreated corncobs. Two strains, RHD-15 and KE6-12 with highest ethanol yield and lowest xylitol yield, respectively were further screened in SSCF using the whole slurry from pretreatment. Similar ethanol yields were reached with both strains, however, KE6-12 was chosen as the preferred strain since it produced 26% lower xylitol from consumed xylose compared to RHD-15. Model SSCF experiments with glucose or hydrolysate feed in combination with prefermentation resulted in 79% of xylose consumption and more than 75% of the theoretical ethanol yield on available glucose and xylose in lab and PDU scales. The results suggest that for an efficient xylose conversion to ethanol controlled release of glucose from enzymatic hydrolysis and low levels of glucose concentration must be maintained throughout the SSCF. Fed-batch SSCF in PDU with addition of enzymes at three different time points facilitated controlled release of glucose and hence co-consumption of glucose and xylose was observed yielding 76% of the theoretical ethanol yield on available glucose and xylose at 7.9% water insoluble solids (WIS). With a fed-batch SSCF in combination with prefermentation and a feed of substrate and enzymes 47 and 40 g l-1 of ethanol corresponding to 68% and 58% of the theoretical ethanol yield on available glucose and xylose were produced at 10.5% WIS in PDU and demo scale, respectively. The strain KE6-12 was able to completely consume xylose within 76 h during the fermentation of hydrolysate in a 10 m3 demo scale bioreactor. CONCLUSIONS The potential of SSCF is improved in combination with prefermentation and a feed of substrate and enzymes. It was possible to successfully reproduce the fed-batch SSCF at demo scale producing 4% (w/v) ethanol which is the minimum economical requirement for efficient lignocellulosic bioethanol production process.
Collapse
Affiliation(s)
- Rakesh Koppram
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | - Fredrik Nielsen
- Department of Chemical Engineering, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Eva Albers
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Göteborg SE-412 96, Sweden
- Taurus Energy AB, Ideon, Ole Römers väg 12, Lund, SE-223 70, Sweden
| | - Annika Lambert
- SEKAB E-Technology AB, P.O. Box 286, Örnsköldsvik, SE-891 26, Sweden
| | - Sune Wännström
- SEKAB E-Technology AB, P.O. Box 286, Örnsköldsvik, SE-891 26, Sweden
| | - Lars Welin
- Taurus Energy AB, Ideon, Ole Römers väg 12, Lund, SE-223 70, Sweden
| | - Guido Zacchi
- Department of Chemical Engineering, Lund University, P.O. Box 124, Lund, SE-221 00, Sweden
| | - Lisbeth Olsson
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| |
Collapse
|
25
|
dos Santos VC, Bragança CRS, Passos FJV, Passos FML. Kinetics of growth and ethanol formation from a mix of glucose/xylose substrate by Kluyveromyces marxianus UFV-3. Antonie van Leeuwenhoek 2012; 103:153-61. [PMID: 22965752 DOI: 10.1007/s10482-012-9794-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
Abstract
The fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted. A remarkable difference was observed when mixtures of 5 g L(-1) glucose/20 g L(-1) xylose and 20 g L(-1) glucose/20 g L(-1) xylose were used. In the former, the xylose consumption began immediately after the glucose depletion. Indeed, there was no striking diauxic phase, as observed in the latter condition, in which there was an interval of 30 h between glucose depletion and the beginning of xylose consumption. Ethanol production was always higher in a mixture of glucose and xylose than in glucose alone. The highest ethanol concentration (8.65 g L(-1)) and cell mass concentration (4.42 g L(-1)) were achieved after 8 and 74 h, respectively, in a mixture of 20 g L(-1) glucose/20 g L(-1) xylose. When inhibitors of respiration were added to the medium, glucose repression of xylose consumption was alleviated completely and K. marxianus was able to consume xylose and glucose simultaneously.
Collapse
Affiliation(s)
- Valdilene Canazart dos Santos
- Department of Microbiology, Institute for Biotechnology Applied to Agriculture and Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil
| | | | | | | |
Collapse
|
26
|
Zhou P, Li S, Xu H, Feng X, Ouyang P. Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from d-arabitol. Enzyme Microb Technol 2012; 51:119-24. [DOI: 10.1016/j.enzmictec.2012.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/03/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022]
|
27
|
Erdei B, Frankó B, Galbe M, Zacchi G. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:12. [PMID: 22410131 PMCID: PMC3350417 DOI: 10.1186/1754-6834-5-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/12/2012] [Indexed: 05/05/2023]
Abstract
BACKGROUND The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. RESULTS Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. CONCLUSIONS Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.
Collapse
Affiliation(s)
- Borbála Erdei
- Lund University, Department of Chemical Engineering, PO Box 124, SE-221 00 Lund, Sweden
| | - Balázs Frankó
- Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science, Szt Gellért tér 4, 1111 Budapest, Hungary
| | - Mats Galbe
- Lund University, Department of Chemical Engineering, PO Box 124, SE-221 00 Lund, Sweden
| | - Guido Zacchi
- Lund University, Department of Chemical Engineering, PO Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
28
|
Subtil T, Boles E. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:38. [PMID: 21992610 PMCID: PMC3216861 DOI: 10.1186/1754-6834-4-38] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/12/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is not able to ferment pentose sugars. Although D-xylose and L-arabinose fermenting S. cerevisiae strains have been constructed recently, pentose uptake is still a limiting step in mixed sugar fermentations. RESULTS Here we described the cloning and characterization of two sugar transporters, AraT from the yeast Scheffersomyces stipitis and Stp2 from the plant Arabidopsis thaliana, which mediate the uptake of L-arabinose but not of D-glucose into S. cerevisiae cells. A yeast strain lacking all of its endogenous hexose transporter genes and expressing a bacterial L-arabinose utilization pathway could no longer take up and grow with L-arabinose as the only carbon source. Expression of the heterologous transporters supported uptake and utilization of L-arabinose especially at low L-arabinose concentrations but did not, or only very weakly, support D-glucose uptake and utilization. In contrast, the S. cerevisiae D-galactose transporter, Gal2, mediated uptake of both L-arabinose and D-glucose, especially at high concentrations. CONCLUSIONS Using a newly developed screening system we have identified two heterologous sugar transporters from a yeast and a plant which can support uptake and utilization of L-arabinose in L-arabinose fermenting S. cerevisiae cells, especially at low L-arabinose concentrations.
Collapse
Affiliation(s)
- Thorsten Subtil
- Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase. Appl Microbiol Biotechnol 2011; 91:1553-9. [DOI: 10.1007/s00253-011-3357-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|
30
|
Olofsson K, Runquist D, Hahn-Hägerdal B, Lidén G. A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express 2011; 1:4. [PMID: 21906329 PMCID: PMC3159908 DOI: 10.1186/2191-0855-1-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/28/2011] [Indexed: 01/17/2023] Open
Abstract
Genetically engineered Saccharomyces cerevisiae strains are able to ferment xylose present in lignocellulosic biomass. However, better xylose fermenting strains are required to reach complete xylose uptake in simultaneous saccharification and co-fermentation (SSCF) of lignocellulosic hydrolyzates. In the current study, haploid Saccharomyces cerevisiae strains expressing a heterologous xylose pathway including either the native xylose reductase (XR) from P. stipitis, a mutated variant of XR (mXR) with altered co-factor preference, a glucose/xylose facilitator (Gxf1) from Candida intermedia or both mXR and Gxf1 were assessed in SSCF of acid-pretreated non-detoxified wheat straw. The xylose conversion in SSCF was doubled with the S. cerevisiae strain expressing mXR compared to the isogenic strain expressing the native XR, converting 76% and 38%, respectively. The xylitol yield was less than half using mXR in comparison with the native variant. As a result of this, the ethanol yield increased from 0.33 to 0.39 g g-1 when the native XR was replaced by mXR. In contrast, the expression of Gxf1 only slightly increased the xylose uptake, and did not increase the ethanol production. The results suggest that ethanolic xylose fermentation under SSCF conditions is controlled primarily by the XR activity and to a much lesser extent by xylose transport.
Collapse
|
31
|
The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 2011; 48:518-25. [PMID: 22113025 DOI: 10.1016/j.enzmictec.2011.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
Abstract
Ethanolic fermentation of lignocellulose raw materials requires industrial xylose-fermenting strains capable of complete and efficient D-xylose consumption. A central question in xylose fermentation by Saccharomyces cerevisiae engineered for xylose fermentation is to improve the xylose uptake. In the current study, the glucose/xylose facilitator Gxf1 from Candida intermedia, was expressed in three different xylose-fermenting S. cerevisiae strains of industrial origin. The in vivo effect on aerobic xylose growth and the initial xylose uptake rate were assessed. The expression of Gxf1 resulted in enhanced aerobic xylose growth only for the TMB3400 based strain. It displayed more than a 2-fold higher affinity for D-xylose than the parental strain and approximately 2-fold higher initial specific growth rate at 4 g/L D-xylose. Enhanced xylose consumption was furthermore observed when the GXF1-strain was assessed in simultaneous saccharification and co-fermentation (SSCF) of pretreated wheat straw. However, the ethanol yield remained unchanged due to increased by-product formation. Metabolic flux analysis suggested that the expression of the Gxf1 transporter had shifted the control of xylose catabolism from transport to the NAD(+) dependent oxidation of xylitol to xylulose.
Collapse
|
32
|
Madhavan A, Srivastava A, Kondo A, Bisaria VS. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Crit Rev Biotechnol 2011; 32:22-48. [PMID: 21204601 DOI: 10.3109/07388551.2010.539551] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.
Collapse
Affiliation(s)
- Anjali Madhavan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | | | | | | |
Collapse
|
33
|
Chen X, Jiang ZH, Chen S, Qin W. Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 2010; 6:834-44. [PMID: 21179590 PMCID: PMC3005349 DOI: 10.7150/ijbs.6.834] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/06/2010] [Indexed: 11/22/2022] Open
Abstract
D-Xylitol is found in low content as a natural constituent of many fruits and vegetables. It is a five-carbon sugar polyol and has been used as a food additive and sweetening agent to replace sucrose, especially for non-insulin dependent diabetics. It has multiple beneficial health effects, such as the prevention of dental caries, and acute otitis media. In industry, it has been produced by chemical reduction of D-xylose mainly from photosynthetic biomass hydrolysates. As an alternative method of chemical reduction, biosynthesis of D-xylitol has been focused on the metabolically engineered Saccharomyces cerevisiae and Candida strains. In order to detect D-xylitol in the production processes, several detection methods have been established, such as gas chromatography (GC)-based methods, high performance liquid chromatography (HPLC)-based methods, LC-MS methods, and capillary electrophoresis methods (CE). The advantages and disadvantages of these methods are compared in this review.
Collapse
Affiliation(s)
- Xi Chen
- Biorefining Research Initiative and Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | | | | |
Collapse
|
34
|
Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2010; 88:1077-85. [PMID: 20838789 PMCID: PMC2956055 DOI: 10.1007/s00253-010-2839-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.
Collapse
Affiliation(s)
- Jae-Han Kim
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David E. Block
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David A. Mills
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
35
|
Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF. Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:19. [PMID: 20809958 PMCID: PMC2940871 DOI: 10.1186/1754-6834-3-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 09/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Overexpression of the PGM2 gene encoding phosphoglucomutase (Pgm2p) has been shown to improve galactose utilization both under aerobic and under anaerobic conditions. Similarly, xylose utilization has been improved by overexpression of genes encoding xylulokinase (XK), enzymes from the non-oxidative pentose phosphate pathway (non-ox PPP) and deletion of the endogenous aldose reductase GRE3 gene in engineered Saccharomyces cerevisiae strains carrying either fungal or bacterial xylose pathways. In the present study, we investigated how the combination of these traits affect xylose and galactose utilization in the presence or absence of glucose in S. cerevisiae strains engineered with the xylose reductase (XR)-xylitol dehydrogenase (XDH) pathway. RESULTS In the absence of PGM2 overexpression, the combined overexpression of XK, the non-ox PPP and deletion of the GRE3 gene significantly delayed aerobic growth on galactose, whereas no difference was observed between the control strain and the xylose-engineered strain when the PGM2 gene was overexpressed. Under anaerobic conditions, the overexpression of the PGM2 gene increased the ethanol yield and the xylose consumption rate in medium containing xylose as the only carbon source. The possibility of Pgm2p acting as a xylose isomerase (XI) could be excluded by measuring the XI activity in both strains. The additional copy of the PGM2 gene also resulted in a shorter fermentation time during the co-consumption of galactose and xylose. However, the effect was lost upon addition of glucose to the growth medium. CONCLUSIONS PGM2 overexpression was shown to benefit xylose and galactose fermentation, alone and in combination. In contrast, galactose fermentation was impaired in the engineered xylose-utilizing strain harbouring extra copies of the non-ox PPP genes and a deletion of the GRE3 gene, unless PGM2 was overexpressed. These cross-reactions are of particular relevance for the fermentation of mixed sugars from lignocellulosic feedstock.
Collapse
Affiliation(s)
- Rosa Garcia Sanchez
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | |
Collapse
|
36
|
Olofsson K, Palmqvist B, Lidén G. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. BIOTECHNOLOGY FOR BIOFUELS 2010; 3:17. [PMID: 20678195 PMCID: PMC2923126 DOI: 10.1186/1754-6834-3-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/02/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Simultaneous saccharification and co-fermentation (SSCF) has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS) is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of Saccharomyces cerevisiae (TMB3400) was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw. RESULTS By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g-1. CONCLUSION A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.
Collapse
Affiliation(s)
- Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Benny Palmqvist
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
37
|
Saitoh S, Hasunuma T, Tanaka T, Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl Microbiol Biotechnol 2010; 87:1975-82. [DOI: 10.1007/s00253-010-2714-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
38
|
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 2010; 9:16. [PMID: 20219100 PMCID: PMC2847541 DOI: 10.1186/1475-2859-9-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Background In spite of the substantial metabolic engineering effort previously devoted to the development of Saccharomyces cerevisiae strains capable of fermenting both the hexose and pentose sugars present in lignocellulose hydrolysates, the productivity of reported strains for conversion of the naturally most abundant pentose, xylose, is still a major issue of process efficiency. Protein engineering for targeted alteration of the nicotinamide cofactor specificity of enzymes catalyzing the first steps in the metabolic pathway for xylose was a successful approach of reducing xylitol by-product formation and improving ethanol yield from xylose. The previously reported yeast strain BP10001, which expresses heterologous xylose reductase from Candida tenuis in mutated (NADH-preferring) form, stands for a series of other yeast strains designed with similar rational. Using 20 g/L xylose as sole source of carbon, BP10001 displayed a low specific uptake rate qxylose (g xylose/g dry cell weight/h) of 0.08. The study presented herein was performed with the aim of analysing (external) factors that limit qxylose of BP10001 under xylose-only and mixed glucose-xylose substrate conditions. We also carried out a comprehensive investigation on the currently unclear role of coenzyme utilization, NADPH compared to NADH, for xylose reduction during co-fermentation of glucose and xylose. Results BP10001 and BP000, expressing C. tenuis xylose reductase in NADPH-preferring wild-type form, were used. Glucose and xylose (each at 10 g/L) were converted sequentially, the corresponding qsubstrate values being similar for each strain (glucose: 3.0; xylose: 0.05). The distribution of fermentation products from glucose was identical for both strains whereas when using xylose, BP10001 showed enhanced ethanol yield (BP10001 0.30 g/g; BP000 0.23 g/g) and decreased yields of xylitol (BP10001 0.26 g/g; BP000 0.36 g/g) and glycerol (BP10001 0.023 g/g; BP000 0.072 g/g) as compared to BP000. Increase in xylose concentration from 10 to 50 g/L resulted in acceleration of substrate uptake by BP10001 (0.05 - 0.14 g/g CDW/h) and reduction of the xylitol yield (0.28 g/g - 0.15 g/g). In mixed substrate batches, xylose was taken up at low glucose concentrations (< 4 g/L) and up to fivefold enhanced xylose uptake rate was found towards glucose depletion. A fed-batch process designed to maintain a "stimulating" level of glucose throughout the course of xylose conversion provided a qxylose that had an initial value of 0.30 ± 0.04 g/g CDW/h and decreased gradually with time. It gave product yields of 0.38 g ethanol/g total sugar and 0.19 g xylitol/g xylose. The effect of glucose on xylose utilization appears to result from the enhanced flux of carbon through glycolysis and the pentose phosphate pathway under low-glucose reaction conditions. Conclusions Relative improvements in the distribution of fermentation products from xylose that can be directly related to a change in the coenzyme preference of xylose reductase from NADPH in BP000 to NADH in BP10001 increase in response to an increase in the initial concentration of the pentose substrate from 10 to 50 g/L. An inverse relationship between xylose uptake rate and xylitol yield for BP10001 implies that xylitol by-product formation is controlled not only by coenzyme regeneration during two-step oxidoreductive conversion of xylose into xylulose. Although xylose is not detectably utilized at glucose concentrations greater than 4 g/L, the presence of a low residual glucose concentration (< 2 g/L) promotes the uptake of xylose and its conversion into ethanol with only moderate xylitol by-product formation. A fed-batch reaction that maintains glucose in the useful concentration range and provides a constant qglucose may be useful for optimizing qxylose in processes designed for co-fermentation of glucose and xylose.
Collapse
|
39
|
Matsushika A, Oguri E, Sawayama S. Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 2010; 110:102-5. [PMID: 20541125 DOI: 10.1016/j.jbiosc.2010.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/25/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
We examined the evolutionary adaptation of recombinant shochu yeast by serial anaerobic cultivation in xylose-based minimal medium. Compared with the parental strain, the adapted strain MA-S4-M1 (M1) markedly improved the growth on xylose and the anaerobic xylose consumption rate. M1 gained improved xylose utilization properties by optimizing the metabolic pathway enzymes and enhancing the uptake of xylose.
Collapse
Affiliation(s)
- Akinori Matsushika
- Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology, 2-2-2 Hirosuehiro, Kure, Hiroshima 737-0197, Japan.
| | | | | |
Collapse
|
40
|
Olofsson K, Wiman M, Lidén G. Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 2010; 145:168-75. [DOI: 10.1016/j.jbiotec.2009.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/28/2009] [Accepted: 11/01/2009] [Indexed: 11/25/2022]
|
41
|
Sybesma WFH, Straathof AJJ, Jongejan JA, Pronk JT, Heijnen JJ. Reductions of 3-oxo Esters by Baker's Yeast: Current Status. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429809003616] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Souto-Maior AM, Runquist D, Hahn-Hägerdal B. Crabtree-negative characteristics of recombinant xylose-utilizing Saccharomyces cerevisiae. J Biotechnol 2009; 143:119-23. [PMID: 19560495 DOI: 10.1016/j.jbiotec.2009.06.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 03/13/2009] [Accepted: 06/18/2009] [Indexed: 11/28/2022]
Abstract
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.
Collapse
Affiliation(s)
- Ana Maria Souto-Maior
- Departamento de Antibióticos, UFPE, Cidade Universitária, 50.670-901 Recife-PE, Brazil
| | | | | |
Collapse
|
43
|
Bertilsson M, Olofsson K, Lidén G. Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce. BIOTECHNOLOGY FOR BIOFUELS 2009; 2:8. [PMID: 19356227 PMCID: PMC2671495 DOI: 10.1186/1754-6834-2-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 04/08/2009] [Indexed: 05/13/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) is a promising process option for ethanol production from lignocellulosic materials. However, both the overall ethanol yield and the final ethanol concentration in the fermentation broth must be high. Hence, almost complete conversion of both hexoses and pentoses must be achieved in SSF at a high solid content. A principal difficulty is to obtain an efficient pentose uptake in the presence of high glucose and inhibitor concentrations. Initial glucose present in pretreated spruce decreases the xylose utilization by yeast, due to competitive inhibition of sugar transport. In the current work, prefermentation was studied as a possible means to overcome the problem of competitive inhibition. The free hexoses, initially present in the slurry, were in these experiments fermented before adding the enzymes, thereby lowering the glucose concentration. RESULTS This work shows that a high degree of xylose conversion and high ethanol yields can be achieved in SSF of pretreated spruce with a xylose fermenting strain of Saccharomyces cerevisiae (TMB3400) at 7% and 10% water insoluble solids (WIS). Prefermentation and fed-batch operation, both separately and in combination, improved xylose utilization. Up to 77% xylose utilization and 85% of theoretical ethanol yield (based on total sugars), giving a final ethanol concentration of 45 g L-1, were obtained in fed-batch SSF at 10% WIS when prefermentation was applied. CONCLUSION Clearly, the mode of fermentation has a high impact on the xylose conversion by yeast in SSF. Prefermentation enhances xylose uptake most likely because of the reduced transport inhibition, in both batch and fed-batch operation. The process significance of this will be even greater for xylose-rich feedstocks.
Collapse
Affiliation(s)
- Magnus Bertilsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
44
|
Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of β-glucosidase on its cell surface. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Olofsson K, Bertilsson M, Lidén G. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:7. [PMID: 18471273 PMCID: PMC2397418 DOI: 10.1186/1754-6834-1-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/01/2008] [Indexed: 05/02/2023]
Abstract
Simultaneous saccharification and fermentation (SSF) is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH) for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37 degrees C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.
Collapse
Affiliation(s)
- Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | - Magnus Bertilsson
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
46
|
Olofsson K, Rudolf A, Lidén G. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 2008; 134:112-20. [PMID: 18294716 DOI: 10.1016/j.jbiotec.2008.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 12/06/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Wheat straw is an abundant agricultural residue which can be used as a raw material for bioethanol production. Due to the high xylan content in wheat straw, fermentation of both xylose and glucose is crucial to meet desired overall yields of ethanol. In the present work a recombinant xylose fermenting strain of Saccharomyces cerevisiae, TMB3400, cultivated aerobically on wheat straw hydrolysate, was used in simultaneous saccharification and fermentation (SSF) of steam pretreated wheat straw. The influence of fermentation strategy and temperature was studied in relation to xylose consumption, ethanol formation and by-product formation. In addition, model SSF experiments were made to further investigate the influence of temperature on xylose fermentation and by-product formation. In particular for SSF at the highest value of fibre content tested (9% water insoluble substance, WIS), it was found that a fed-batch strategy was clearly superior to the batch process in terms of ethanol yield, where the fed-batch gave 71% of the theoretical yield (based on all available sugars) in comparison to merely 59% for the batch. Higher ethanol yields, close to 80%, were obtained at a WIS-content of 7%. Xylose fermentation significantly contributed to the overall ethanol yields. The choice of temperature in the range 30-37 degrees C was found to be important, especially at higher contents of water insoluble solids (WIS). The optimum temperature was found to be 34 degrees C for the raw material and yeast strain studied. Model SSF experiments with defined medium showed strong temperature effects on the xylose uptake rate and xylitol yield.
Collapse
Affiliation(s)
- Kim Olofsson
- Department of Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
47
|
Molecular cloning and functional expression of a novelNeurospora crassa xylose reductase inSaccharomyces cerevisiae in the development of a xylose fermenting strain. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
48
|
A constitutive catabolite repression mutant of a recombinantSaccharomyces cerevisiae strain improves xylose consumption during fermentation. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Jin YS, Cruz J, Jeffries TW. Xylitol production by a Pichia stipitis D-xylulokinase mutant. Appl Microbiol Biotechnol 2005; 68:42-5. [PMID: 15635458 DOI: 10.1007/s00253-004-1854-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 11/01/2004] [Accepted: 11/12/2004] [Indexed: 11/25/2022]
Abstract
Xylitol production by Pichia stipitis FPL-YS30, a xyl3-delta1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-delta1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g xylitol/g xylose). However, xylose consumption increased five-fold under aerobic compared to oxygen-limited conditions. This suggests that the efficiency of the alternative route of xylose assimilation is affected by respiration. As a result, the FPL-YS30 strain produced 26 g/l of xylitol, and exhibited a higher volumetric productivity (0.22 g xylitol l(-1) h(-1)) under aerobic conditions.
Collapse
Affiliation(s)
- Yong-Su Jin
- Department of Food Science, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
50
|
Pitkänen JP, Rintala E, Aristidou A, Ruohonen L, Penttilä M. Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 2005; 67:827-37. [PMID: 15630585 DOI: 10.1007/s00253-004-1798-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/12/2004] [Accepted: 10/15/2004] [Indexed: 11/30/2022]
Abstract
The efficient conversion of xylose-containing biomass hydrolysate by the ethanologenic yeast Saccharomyces cerevisiae to useful chemicals such as ethanol still remains elusive, despite significant efforts in both strain and process development. This study focused on the recovery and characterization of xylose chemostat isolates of a S. cerevisiae strain that overexpresses xylose reductase- and xylitol dehydrogenase-encoding genes from Pichia stipitis and the gene encoding the endogenous xylulokinase. The isolates were recovered from aerobic chemostat cultivations on xylose as the sole or main carbon source. Under aerobic conditions, on minimal medium with 30 g l(-1) xylose, the growth rate of the chemostat isolates was 3-fold higher than that of the original strain (0.15 h(-1) vs 0.05 h(-1)). In a detailed characterization comparing the metabolism of the isolates with the metabolism of xylose, glucose, and ethanol in the original strain, the isolates showed improved properties in the assumed bottlenecks of xylose metabolism. The xylose uptake rate was increased almost 2-fold. Activities of the key enzymes in the pentose phosphate pathway (transketolase, transaldolase) increased 2-fold while the concentrations of their substrates (pentose 5-phosphates, sedoheptulose 7-phosphate) decreased correspondingly. Under anaerobic conditions, on minimal medium with 45 g l(-1) xylose, the ethanol productivity (in terms of cell dry weight; CDW) of one of the isolates increased from 0.012 g g(-1) CDW h(-1) to 0.017 g g(-1) CDW h(-1) and the yield from 0.09 g g(-1) xylose to 0.14 g g(-1) xylose, respectively.
Collapse
|