1
|
Wang T, Balla B, Kovács S, Kereszt A. Varietas Delectat: Exploring Natural Variations in Nitrogen-Fixing Symbiosis Research. FRONTIERS IN PLANT SCIENCE 2022; 13:856187. [PMID: 35481136 PMCID: PMC9037385 DOI: 10.3389/fpls.2022.856187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen-fixing symbiosis between leguminous plants and soil bacteria collectively called rhizobia plays an important role in the global nitrogen cycle and is an essential component of sustainable agriculture. Genetic determinants directing the development and functioning of the interaction have been identified with the help of a very limited number of model plants and bacterial strains. Most of the information obtained from the study of model systems could be validated on crop plants and their partners. The investigation of soybean cultivars and different rhizobia, however, has revealed the existence of ineffective interactions between otherwise effective partners that resemble gene-for-gene interactions described for pathogenic systems. Since then, incompatible interactions between natural isolates of model plants, called ecotypes, and different bacterial partner strains have been reported. Moreover, diverse phenotypes of both bacterial mutants on different host plants and plant mutants with different bacterial strains have been described. Identification of the genetic factors behind the phenotypic differences did already and will reveal novel functions of known genes/proteins, the role of certain proteins in some interactions, and the fine regulation of the steps during nodule development.
Collapse
Affiliation(s)
- Ting Wang
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Benedikta Balla
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
- Doctoral School in Biology, University of Szeged, Szeged, Hungary
| | - Szilárd Kovács
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Attila Kereszt
- Eötvös Loránd Research Network, Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| |
Collapse
|
2
|
Castellani LG, Luchetti A, Nilsson JF, Pérez-Giménez J, Wegener C, Schlüter A, Pühler A, Lagares A, Brom S, Pistorio M, Niehaus K, Torres Tejerizo GA. Exopolysaccharide Characterization of Rhizobium favelukesii LPU83 and Its Role in the Symbiosis With Alfalfa. FRONTIERS IN PLANT SCIENCE 2021; 12:642576. [PMID: 33643369 PMCID: PMC7902896 DOI: 10.3389/fpls.2021.642576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 05/03/2023]
Abstract
One of the greatest inputs of available nitrogen into the biosphere occurs through the biological N2-fixation to ammonium as result of the symbiosis between rhizobia and leguminous plants. These interactions allow increased crop yields on nitrogen-poor soils. Exopolysaccharides (EPS) are key components for the establishment of an effective symbiosis between alfalfa and Ensifer meliloti, as bacteria that lack EPS are unable to infect the host plants. Rhizobium favelukesii LPU83 is an acid-tolerant rhizobia strain capable of nodulating alfalfa but inefficient to fix nitrogen. Aiming to identify the molecular determinants that allow R. favelukesii to infect plants, we studied its EPS biosynthesis. LPU83 produces an EPS I identical to the one present in E. meliloti, but the organization of the genes involved in its synthesis is different. The main gene cluster needed for the synthesis of EPS I in E. meliloti, is split into three different sections in R. favelukesii, which probably arose by a recent event of horizontal gene transfer. A R. favelukesii strain devoided of all the genes needed for the synthesis of EPS I is still able to infect and nodulate alfalfa, suggesting that attention should be directed to other molecules involved in the development of the symbiosis.
Collapse
Affiliation(s)
- Lucas G. Castellani
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Abril Luchetti
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet F. Nilsson
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Pérez-Giménez
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Gonzalo A. Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM), CCT-La Plata, CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
3
|
Di Lorenzo F, Speciale I, Silipo A, Alías-Villegas C, Acosta-Jurado S, Rodríguez-Carvajal MÁ, Dardanelli MS, Palmigiano A, Garozzo D, Ruiz-Sainz JE, Molinaro A, Vinardell JM. Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. J Biol Chem 2020; 295:10969-10987. [PMID: 32546484 PMCID: PMC7415993 DOI: 10.1074/jbc.ra120.013393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Indexed: 11/06/2022] Open
Abstract
Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing β-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its α-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | | | | | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto-INBIAS, CONICET, Córdoba, Argentina
| | - Angelo Palmigiano
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | - Domenico Garozzo
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | | | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| |
Collapse
|
4
|
Nguyen MP, Tran LVH, Namgoong H, Kim YH. Applications of different solvents and conditions for differential extraction of lipopolysaccharide in Gram-negative bacteria. J Microbiol 2019; 57:644-654. [PMID: 31124046 DOI: 10.1007/s12275-019-9116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/05/2023]
Abstract
Lipopolysaccharide (LPS) is one of the major components in the outer membrane of Gram-negative bacteria. However, its heterogeneity and variability in different bacteria and differentiation conditions make it difficult to extract all of the structural variants. We designed a solution to improve quality and biological activity of LPS extracted from various bacteria with different types of LPS, as compared to conventional methods. We introduced a quality index as a simple measure of LPS purity in terms of a degree of polysaccharide content detected by absorbance at 204 nm. Further experiments using gel electrophoresis, endotoxin test, and macrophage activation test were performed to evaluate the performance and reliability of a proposed 'T-sol' method and the biological effectiveness and character of the LPS products. We presented that the T-sol method had differential effects on extraction of a RAW 264.7 cell-activating LPS, which was effective in the macrophage activation with similar effects in stimulating the production of TNF-alpha. In conclusion, the T-sol method provides a simple way to improve quality and biological activity of LPS with high yield.
Collapse
Affiliation(s)
- Mai Phuong Nguyen
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | - Le Viet Ha Tran
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea
| | | | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, 42472, Republic of Korea.
| |
Collapse
|
5
|
Stambulska UY, Bayliak MM. Legume-Rhizobium Symbiosis: Secondary Metabolites, Free Radical Processes, and Effects of Heavy Metals. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_43-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Abstract
Sialic acids are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. The history of their structural analysis, occurrence, and functions is fascinating and described in this review. Reports from different researchers on apparently similar substances from a variety of biological materials led to the identification of a 9-carbon monosaccharide, which in 1957 was designated "sialic acid." The most frequently occurring member of the sialic acid family is N-acetylneuraminic acid, followed by N-glycolylneuraminic acid and O-acetylated derivatives, and up to now over about 80 neuraminic acid derivatives have been described. They appeared first in the animal kingdom, ranging from echinoderms up to higher animals, in many microorganisms, and are also expressed in insects, but are absent in higher plants. Sialic acids are masks and ligands and play as such dual roles in biology. Their involvement in immunology and tumor biology, as well as in hereditary diseases, cannot be underestimated. N-Glycolylneuraminic acid is very special, as this sugar cannot be expressed by humans, but is a xenoantigen with pathogenetic potential. Sialidases (neuraminidases), which liberate sialic acids from cellular compounds, had been known from very early on from studies with influenza viruses. Sialyltransferases, which are responsible for the sialylation of glycans and elongation of polysialic acids, are studied because of their significance in development and, for instance, in cancer. As more information about the functions in health and disease is acquired, the use of sialic acids in the treatment of diseases is also envisaged.
Collapse
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Johannis P Kamerling
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Wang D, Couderc F, Tian CF, Gu W, Liu LX, Poinsot V. Conserved Composition of Nod Factors and Exopolysaccharides Produced by Different Phylogenetic Lineage Sinorhizobium Strains Nodulating Soybean. Front Microbiol 2018; 9:2852. [PMID: 30534119 PMCID: PMC6275314 DOI: 10.3389/fmicb.2018.02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
The structural variation of symbiotic signals released by rhizobia determines the specificity of their interaction with legume plants. Previous studies showed that Sinorhizobium strains from different phylogenetic lineages had different symbiotic performance on certain cultivated soybeans. Whether they released similar or different symbiotic signals remained unclear. In this study, we compared their nod and exo gene clusters and made a detailed structural analysis of Nod factors and EPS by ESI-MS/MS and two dimensions NMR. Even if there are some differences among nod or exo gene clusters; they produced much conserved Nod factor and EPS compositions. The Nod factors consist of a cocktail of β-(1, 4)-linked tri-, tetra-, and pentamers of N-acetyl-D-glucosamine (GlcNAc). The C2 position on the non-reducing terminal end is modified by a lipid chain that contains 16 or 18 atoms of carbon–with or without unsaturations-, and the C6 position on the reducing residue is decorated by a fucose or a 2-O-methylfucose. Their EPS are composed of glucose, galactose, glucuronic acid, pyruvic acid in the ratios 5:1:2:1 or 6:1:2:1. These findings indicate that soybean cultivar compatibility of Sinorhizobium strains does not result from Nod factor or EPS structure variations. The structure comparison of the soybean microbionts with other Sinorhizobium strains showed that Nod factor structures of soybean microbionts are much conserved, although there are no specific genes shared by the soybean microsymbionts. EPS produced by Sinorhizobium strains are different from those of Bradyrhizobium. All above is consistent with the previous deduction that Nod factor structures are related to host range, while those of EPS are connected with phylogeny.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China.,Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France.,State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - François Couderc
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Verena Poinsot
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| |
Collapse
|
8
|
Contreras Sánchez-Matamoros R, Gil-Serrano AM, Espuny MR, Ollero FJ, Megías M, Rodríguez-Carvajal MA. Structure of surface polysaccharides from Aeromonas sp. AMG272, a plant-growth promoting rhizobacterium isolated from rice rhizosphere. Carbohydr Res 2018; 462:1-6. [PMID: 29604473 DOI: 10.1016/j.carres.2018.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
Aeromonas sp. AMG272 is a Gram-negative bacterium that has been isolated from agricultural soil and studied for its plant growth-promoting activities. Structures of the O-specific polysaccharide chain of the AMG272 lipopolysaccharide and its capsular polysaccharide were elucidated using GLC-MS and NMR spectroscopy. The structure of the O-specific polysaccharide, →4)-α-l-Rhap-(1 → 3)-β-d-GlcpNAc-(1→, has been found in other Aeromonas strains and related bacteria, whereas the structure of the capsular polysaccharide has not been reported before: →6)[β-d-Fucp3NAc4Ac-(1 → 3)]-α-d-GlcpNAc-(1 → 4)-α-d-Galp-(1 → 3)-α-d-GalpNAc-(1 → 4)-α-d-Galp-(1 → .
Collapse
Affiliation(s)
| | - Antonio M Gil-Serrano
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Profesor García González, 1, 41012, Seville, Spain
| | - M Rosario Espuny
- Department of Microbiology, Faculty of Biology, University of Seville, Avenida Reina Mercedes, s/n, 41012, Seville, Spain
| | - Francisco Javier Ollero
- Department of Microbiology, Faculty of Biology, University of Seville, Avenida Reina Mercedes, s/n, 41012, Seville, Spain
| | - Manuel Megías
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Profesor García González 2, 41012, Seville, Spain
| | - Miguel A Rodríguez-Carvajal
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Profesor García González, 1, 41012, Seville, Spain.
| |
Collapse
|
9
|
Benforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, Tribelli PM. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One 2018; 13:e0192559. [PMID: 29415056 PMCID: PMC5802925 DOI: 10.1371/journal.pone.0192559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/25/2018] [Indexed: 11/19/2022] Open
Abstract
Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.
Collapse
Affiliation(s)
- Florencia C. Benforte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria A. Colonnella
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias, CONICET, Buenos Aires, Argentina
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| | - Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
- * E-mail: (NIL); (PMT)
| |
Collapse
|
10
|
Kim S, Yoon H, Ryu S. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii. Sci Rep 2018; 8:835. [PMID: 29339761 PMCID: PMC5770445 DOI: 10.1038/s41598-018-19306-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/29/2017] [Indexed: 01/13/2023] Open
Abstract
Cronobacter sakazakii is an opportunistic pathogen that can cause meningitis and necrotizing enterocolitis in premature infants, but its virulence determinants remain largely unknown. In this study, a transposon-mediated random-mutant library of C. sakazakii was used to identify new virulence factors. Compared to wild-type bacteria, a mutant lacking CSK29544_02616 (referred to as labp) was defective in invasion into intestinal epithelial cells (by at least 1000-fold) and showed less phagocytosis by macrophages (by at least 50-fold). The lack of labp in C. sakazakii changed the profile of outer membrane proteins, decreased the production of lipopolysaccharides, and increased the production of membrane phospholipids. Bacterial physiological characteristics including surface hydrophobicity and motility were also altered in the absence of labp, presumably because of changes in the bacterial-envelope structure. To systematically determine the role of labp, ligand fishing was conducted using Labp as a bait, which revealed LpxA as a binding partner of Labp. LpxA is UDP-N-acetylglucosamine (GlcNAc) acyltransferase, the first enzyme in the pathway of lipid A biosynthesis. Labp increased the enzymatic activity of LpxA without influencing lpxA expression. Considering multifaceted roles of lipopolysaccharides in virulence regulation, Labp is a novel virulence factor that promotes the production of lipid A by LpxA in Cronobacter.
Collapse
Affiliation(s)
- Seongok Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.,Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
11
|
Ghosh PK, Maiti TK. Structure of Extracellular Polysaccharides (EPS) Produced by Rhizobia and their Functions in Legume–Bacteria Symbiosis: — A Review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.als.2016.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Copper-induced modifications in early symbiotic signaling factors of Ensifer (Sinorhizobium)–Medicago interactions. Arch Microbiol 2016; 198:701-9. [DOI: 10.1007/s00203-016-1242-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 03/07/2016] [Accepted: 05/09/2016] [Indexed: 12/18/2022]
|
13
|
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int J Mol Sci 2016; 17:E755. [PMID: 27213334 PMCID: PMC4881576 DOI: 10.3390/ijms17050755] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.
Collapse
Affiliation(s)
- Francisco J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain.
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| |
Collapse
|
14
|
Matsuhashi A, Tahara H, Ito Y, Uchiyama J, Ogawa S, Ohta H. Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803. PHOTOSYNTHESIS RESEARCH 2015; 125:267-277. [PMID: 25822232 DOI: 10.1007/s11120-015-0129-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Living organisms must defend themselves against various environmental stresses. Extracellular polysaccharide-producing cells exhibit enhanced tolerance toward adverse environmental stress. In Synechocystis sp. PCC6803 (Synechocystis), lipopolysaccharide (LPS) may play a role in this protection. To examine the relationship between stress tolerance of Synechocystis and LPS, we focused on Slr2019 because Slr2019 is homologous to MsbA in Escherichia coli, which is related to LPS synthesis. First, to obtain a defective mutant of LPS, we constructed the slr2019 insertion mutant (slr2019) strain. Sodium deoxycholate-polyacrylamide gel electrophoresis indicated that slr2019 strain did not synthesize normal LPS. Second, to clarify the participation of LPS in acid tolerance, wild type (WT) and slr2019 strain were grown under acid stress; slr2019 strain growth was significantly weaker than WT growth. Third, to examine influences on stress tolerance, slr2019 strain was grown under various stresses. Under salinity and temperature stress, slr2019 strain grew significantly slower than WT. To confirm cell morphology, cell shape and envelope of slr2019 strain were observed by transmission electron microscopy; slr2019 cells contained more electron-transparent bodies than WT cells. Finally, to confirm whether electron-transparent bodies are poly-3-hydroxybutyrate (PHB), slr2019 strain was stained with Nile Blue A, a PHB detector, and observed by fluorescence microscopy. The PHB granule content ratio of WT and slr2019 strain grown at BG-11 pH 8.0 was each 7.18 and 8.41 %. At pH 6.0, the PHB granule content ratio of WT and slr2019 strain was 2.99 and 2.60 %. However, the PHB granule content ratio of WT and slr2019 strain grown at BG-11N-reduced was 10.82 and 0.56 %. Because slr2019 strain significantly decreased PHB under BG-11N-reduced compared with WT, LPS synthesis may be related to PHB under particular conditions. These results indicated that Slr2019 is necessary for Synechocystis survival in various stresses.
Collapse
Affiliation(s)
- Ayumi Matsuhashi
- Graduate School of Mathematics and Science Education, Tokyo University of Science, Shinjuku-ku, Tokyo, 162-8601, Japan,
| | | | | | | | | | | |
Collapse
|
15
|
Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis. Appl Environ Microbiol 2014; 80:5265-73. [PMID: 24951786 DOI: 10.1128/aem.01393-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.
Collapse
|
16
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
17
|
Kim M, Ryu S. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol Microbiol 2012; 86:411-25. [PMID: 22928771 DOI: 10.1111/j.1365-2958.2012.08202.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 01/21/2023]
Abstract
As natural killers of bacteria, bacteriophages have forced bacteria to develop a variety of defence mechanisms. The alteration of host receptors is one of the most common bacterial defence strategies against phage infection, which completely blocks phage attachment but comes at a potential fitness cost to the bacteria. Here, we report the cost-free, transient emergence of phage resistance in Salmonella enterica subspecies enterica serovar Typhimurium through a phase-variable modification of the O-antigen. Phage SPC35 typically requires BtuB as a host receptor but also uses the Salmonella O12-antigen as an adsorption-assisting apparatus for the successful infection of S. Typhimurium. The α-1,4-glucosylation of galactose residues in the O12-antigen by phase variably expressed O-antigen glucosylating genes, designated the (LT) (2) gtrABC1 cluster, blocks the adsorption-assisting function of the O12-antigen. Consequently, it confers transient SPC35 resistance to Salmonella without any mutations to the btuB gene. This temporal switch-off of phage adsorption through phase-variable antigenic modification may be widespread among Gram-negative bacteria-phage systems.
Collapse
Affiliation(s)
- Minsik Kim
- Department of Food and Animal Biotechnology, Seoul, Korea
| | | |
Collapse
|
18
|
Jaradat ZW, Rashdan AM, Ababneh QO, Jaradat SA, Bhunia AK. Characterization of surface proteins of Cronobacter muytjensii using monoclonal antibodies and MALDI-TOF Mass spectrometry. BMC Microbiol 2011; 11:148. [PMID: 21702985 PMCID: PMC3224122 DOI: 10.1186/1471-2180-11-148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cronobacter spp. is a newly emerging pathogen that causes meningitis in infants and other diseases in elderly and immunocompromised individuals. This study was undertaken to investigate surface antigenic determinants in Cronobacter spp. using monoclonal antibodies (MAbs) and MALDI-TOF Mass spectrometry. RESULTS Spleenocytes from mice that were immunized with heat-killed (20 min, 80°C) Cronobacter cells were fused with SP2 myeloma cells. Five desirable MAbs (A1, B5, 2C2, C5 and A4) were selected. MAbs A1, B5, 2C2 and C5 were of IgG2a isotype while A4 was an IgM. Specificity of the MAbs was determined by using immunoblotting with outer membrane protein preparations (OMPs) extracted from 12 Cronobacter and 6 non-Cronobacter bacteria. All MAbs recognized proteins with molecular weight ranging between 36 and 49 kDa except for one isolate (44) in which no OMPs were detected. In addition, MAbs recognized two bands (38-41 kDa) in four of the non-Cronobacter bacteria. Most of the proteins recognized by the MAbs were identified by MALDI-TOF peptide sequencing and appeared to be heterogeneous with the identities of some of them are still unknown. All MAbs recognized the same epitope as determined by an additive Index ELISA with their epitopes appeared to be conformational rather than sequential. Further, none of the MAbs recognized purified LPS from Cronobacter spp. Specificity of the MAbs toward OMPs was further confirmed by transmission electron microscopy. CONCLUSIONS Results obtained in this study highlight the immunological cross-reactivity among Cronobacter OMPs and their Enterobacteriaceae counterparts. Nevertheless, the identity of the identified proteins appeared to be different as inferred from the MALDI-TOF sequencing and identification.
Collapse
Affiliation(s)
- Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, PO Box 3030, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | | | | | | | | |
Collapse
|
19
|
Coulon C, Vinogradov E, Filloux A, Sadovskaya I. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. PLoS One 2010; 5:e14220. [PMID: 21151973 PMCID: PMC2997053 DOI: 10.1371/journal.pone.0014220] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/08/2010] [Indexed: 11/20/2022] Open
Abstract
Background Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures. Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P. aeruginosa strain PA14, the “scaffolding” polysaccharides of the biofilm matrix, and the molecules responsible for the structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the chemical structure of the LPS O-antigen of PA14 has not yet been elucidated. Principal Findings In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure: -4)-α-L-GalNAcA-(1–3)-α-D-QuiNAc-(1–3)- α-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the glycerol-phosphorylated cyclic β-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to eDNA, important quantities (at least ∼20% of dry weight) of LPS-like material. Conclusions We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide is an abundant extracellular carbohydrate of PA14. We present evidence that LPS-like material is found as a component of a biofilm matrix of P. aeruginosa.
Collapse
Affiliation(s)
- Charlène Coulon
- Université Lille Nord de France, Lille, France
- Université du Littoral-Côte d'Opale, LR2B, Bassin Napoléon, Boulogne sur Mer, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Canada
| | - Alain Filloux
- Division of Cell and Molecular Biology, Faculty of Natural Science, Centre for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Irina Sadovskaya
- Université Lille Nord de France, Lille, France
- Université du Littoral-Côte d'Opale, UMT 08, Boulogne sur Mer, France
- * E-mail:
| |
Collapse
|
20
|
Hidalgo Á, Margaret I, Crespo-Rivas JC, Parada M, Murdoch PDS, López A, Buendía-Clavería AM, Moreno J, Albareda M, Gil-Serrano AM, Rodríguez-Carvajal MA, Palacios JM, Ruiz-Sainz JE, Vinardell JM. The rkpU gene of Sinorhizobium fredii HH103 is required for bacterial K-antigen polysaccharide production and for efficient nodulation with soybean but not with cowpea. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3398-3411. [PMID: 20688828 DOI: 10.1099/mic.0.042499-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S. fredii HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of rkpU in KPS production has been studied in rhizobia. Both rkpJ and rkpU mutants were unable to produce KPS. The rkpU derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor rkpJ and rkpU expression was affected by the presence of the flavonoid genistein. Soybean (Glycine max) plants inoculated with the S. fredii HH103 rkpU and rkpJ mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the rkpJ nor the rkpU mutants were significantly impaired in their symbiotic interaction with cowpea (Vigna unguiculata). Thus, we demonstrate for the first time to our knowledge the involvement of the rkpU gene in rhizobial KPS production and also show that the symbiotic relevance of the S. fredii HH103 KPS depends on the specific bacterium-legume interaction.
Collapse
Affiliation(s)
- Ángeles Hidalgo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Isabel Margaret
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Juan C Crespo-Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Maribel Parada
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Piedad Del Socorro Murdoch
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Abigail López
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Ana M Buendía-Clavería
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - Marta Albareda
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, Km. 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Antonio M Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo. 553. 41071-Sevilla, Spain
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo. 553. 41071-Sevilla, Spain
| | - Jose M Palacios
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, and Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M40, Km. 37.7, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| |
Collapse
|
21
|
Wang C, Kemp J, Da Fonseca IO, Equi RC, Sheng X, Charles TC, Sobral BWS. Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:153-160. [PMID: 20064059 DOI: 10.1094/mpmi-23-2-0153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial two-component regulatory systems (TCS) are common components of complex regulatory networks and cascades. In Sinorhizobium meliloti, the TCS ExoS/ChvI controls exopolysaccharide succinoglycan production and flagellum biosynthesis. Although this system plays a crucial role in establishing the symbiosis between S. meliloti and its host plant, it is not well characterized. Attempts to generate complete loss-of-function mutations in either exoS or chvI in S. meliloti have been unsuccessful; thus, it was previously suggested that exoS or chvI are essential genes for bacterial cell growth. We constructed a chvI mutant by completely deleting the open reading frame encoding this gene. The mutant strain failed to grow on complex medium, exhibited lower tolerance to acidic condition, produced significantly less poly-3-hydroxybutyrate than the wild type, was hypermotile, and exhibited an altered lipopolysaccharide profile. In addition, this mutant was defective in symbiosis with Medicago truncatula and M. sativa (alfalfa), although it induced root hair deformation as efficiently as the wild type. Together, our results demonstrate that ChvI is intimately involved in regulatory networks involving the cell envelope and metabolism; however, its precise role within the regulatory network remains to be determined.
Collapse
Affiliation(s)
- Chunxia Wang
- Virginia Bioinformatics Instutue, Virginia Polytechnic Institute and STate University, Blacksburg 24061, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The establishment of nitrogen-fixing symbiosis between a legume plant and its rhizobial symbiont requires that the bacterium adapt to changing conditions that occur with the host plant that both promotes and allows infection of the host root nodule cell, regulates and resists the host defense response, permits the exchange of metabolites, and contributes to the overall health of the host. This adaptive process involves changes to the bacterial cell surface and, therefore, structural modifications to the lipopolysaccharide (LPS). In this chapter, we describe the structures of the LPSs from symbiont members of the Rhizobiales, the genetics and mechanism of their biosynthesis, the modifications that occur during symbiosis, and their possible functions.
Collapse
|
23
|
Dávila-Martínez Y, Ramos-Vega AL, Contreras-Martínez S, Encarnación S, Geiger O, López-Lara IM. SMc01553 is the sixth acyl carrier protein in Sinorhizobium meliloti 1021. Microbiology (Reading) 2010; 156:230-239. [DOI: 10.1099/mic.0.033480-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acyl carrier proteins (ACPs) are required for the transfer of acyl intermediates during fatty acid and polyketide syntheses. In Sinorhizobium meliloti 1021 there are five known ACPs: AcpP, NodF, AcpXL, the ACP domain in RkpA and SMb20651. The genome sequence of S. meliloti 1021 also reveals the ORF SMc01553, annotated as a putative ACP. smc01553 is part of a 6.6 kb DNA region that is duplicated in the chromosome and in the pSymb plasmid, the result of a recent duplication event. SMc01553 overexpressed in Escherichia coli was labelled in vivo with [3H]β-alanine, a biosynthetic building block of the 4′-phosphopantetheine prosthetic group of ACPs. The purified SMc01553 was modified with 4′-phosphopantetheine in the presence of S. meliloti holo-ACP synthase, and this modification resulted in a major conformational change of the protein structure, since the holo-form runs faster in native PAGE than the apo-form. SMc01553 could not be loaded with a malonyl group by malonyl-CoA-ACP transacylase from S. meliloti. Using RT-PCR we could show the presence of mRNA for SMc01553 and of the duplicated ORF SMb22007 in cultures of S. meliloti. However, a mutant in which the two duplicated regions were deleted did not show any different phenotype with respect to the wild-type in the free-living or symbiotic lifestyle.
Collapse
Affiliation(s)
- Yadira Dávila-Martínez
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| | - Ana Laura Ramos-Vega
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| | - Sandra Contreras-Martínez
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| | - Sergio Encarnación
- Programa de Genómica Funcional de Procariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| | - Otto Geiger
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| | - Isabel M. López-Lara
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, C.P. 62251, Mexico
| |
Collapse
|
24
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
25
|
The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology (Reading) 2009; 155:4058-4068. [DOI: 10.1099/mic.0.031807-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azospirillum brasilense is a plant root-colonizing bacterium that exerts beneficial effects on the growth of many agricultural crops. Extracellular polysaccharides of the bacterium play an important role in its interactions with plant roots. The pRhico plasmid of A. brasilense Sp7, also named p90, carries several genes involved in synthesis and export of cell surface polysaccharides. We generated two Sp7 mutants impaired in two pRhico-located genes, noeJ and noeL, encoding mannose-6-phosphate isomerase and GDP-mannose 4,6-dehydratase, respectively. Our results demonstrate that in A. brasilense Sp7, noeJ and noeL are involved in lipopolysaccharide and exopolysaccharide synthesis. noeJ and noeL mutant strains were significantly altered in their outer membrane and cytoplasmic/periplasmic protein profiles relative to the wild-type strain. Moreover, both noeJ and noeL mutations significantly affected the bacterial responses to several stresses and antimicrobial compounds. Disruption of noeL, but not noeJ, affected the ability of the A. brasilense Sp7 to form biofilms. The pleiotropic alterations observed in the mutants could be due, at least partially, to their altered lipopolysaccharides and exopolysaccharides relative to the wild-type.
Collapse
|
26
|
Müller MG, Forsberg LS, Keating DH. The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti strain Rm1021. J Bacteriol 2009; 191:6988-7000. [PMID: 19734304 PMCID: PMC2772494 DOI: 10.1128/jb.00466-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022] Open
Abstract
Under conditions of nitrogen stress, leguminous plants form symbioses with soil bacteria called rhizobia. This partnership results in the development of structures called root nodules, in which differentiated endosymbiotic bacteria reduce molecular dinitrogen for the host. The establishment of rhizobium-legume symbioses requires the bacterial synthesis of oligosaccharides, exopolysaccharides, and capsular polysaccharides. Previous studies suggested that the 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo) homopolymeric capsular polysaccharide produced by strain Sinorhizobium meliloti Rm1021 contributes to symbiosis with Medicago sativa under some conditions. However, a conclusive symbiotic role for this polysaccharide could not be determined due to a lack of mutants affecting its synthesis. In this study, we have further characterized the synthesis, secretion, and symbiotic function of the Kdo homopolymeric capsule. We showed that mutants lacking the enigmatic rkp-1 gene cluster fail to display the Kdo capsule on the cell surface but accumulate an intracellular polysaccharide of unusually high M(r). In addition, we have demonstrated that mutations in kdsB2, smb20804, and smb20805 affect the polymerization of the Kdo homopolymeric capsule. Our studies also suggest a role for the capsular polysaccharide in symbiosis. Previous reports have shown that the overexpression of rkpZ from strain Rm41 allows for the symbiosis of exoY mutants of Rm1021 that are unable to produce the exopolysaccharide succinoglycan. Our results demonstrate that mutations in the rkp-1 cluster prevent this phenotypic suppression of exoY mutants, although mutations in kdsB2, smb20804, and smb20805 have no effect.
Collapse
Affiliation(s)
- Maike G. Müller
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lennart S. Forsberg
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - David H. Keating
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
27
|
Pálvölgyi A, Deák V, Poinsot V, Nagy T, Nagy E, Kerepesi I, Putnoky P. Genetic analysis of the rkp-3 gene region in Sinorhizobium meliloti 41: rkpY directs capsular polysaccharide synthesis to KR5 antigen production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1422-1430. [PMID: 19810811 DOI: 10.1094/mpmi-22-11-1422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rhizobial surface polysaccharides, including capsular polysaccharides (KPS), are involved in symbiotic infection. The rkp-3 locus of Sinorhizobium meliloti 41 is responsible for the production of pseudaminic acid, one of the components of the KR5 antigen, a strain-specific KPS. We have extended the sequence determination and genetic dissection of the rkp-3 region to clarify the structure and function of the rkpY gene and to identify additional rkp genes. Except for rkpY, no other genes were found where mutation affected the KPS structure and symbiosis. These mutants show a unique phenotype producing a low molecular weight polysaccharide (LMW PS). Creating double mutants, we have shown that biosynthesis genes of the KR5 antigen except rkpZ are not necessary for the production of this LMW PS. Polysaccharide analysis of genetically modified strains suggests that rkpY has pleiotropic effects on polysaccharide production. It directs KPS synthesis to the KR5 antigen and influences lipo-oligo 3-deoxy-d-manno-2 octulosonic acid (Kdo) production in S. meliloti 41. In addition, rkpY suppresses the lipo-oligoKdo production when it is introduced into S. meliloti 1021.
Collapse
Affiliation(s)
- Adrienn Pálvölgyi
- Department of Genetics and Molecular Biology, University of Pécs, P.O. Box 266, H-7604 Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
28
|
Simsek S, Ojanen-Reuhs T, Marie C, Reuhs BL. An apigenin-induced decrease in K-antigen production by Sinorhizobium sp. NGR234 is y4gM- and nodD1-dependent. Carbohydr Res 2009; 344:1947-50. [DOI: 10.1016/j.carres.2009.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
29
|
Snyder DS, Brahamsha B, Azadi P, Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol 2009; 191:5499-509. [PMID: 19581366 PMCID: PMC2725629 DOI: 10.1128/jb.00121-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 06/24/2009] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is the first defense against changing environmental factors for many bacteria. Here, we report the first structure of the LPS from cyanobacteria based on two strains of marine Synechococcus, WH8102 and CC9311. While enteric LPS contains some of the most complex carbohydrate residues in nature, the full-length versions of these cyanobacterial LPSs have neither heptose nor 3-deoxy-D-manno-octulosonic acid (Kdo) but instead 4-linked glucose as their main saccharide component, with low levels of glucosamine and galacturonic acid also present. Matrix-assisted laser desorption ionization mass spectrometry of the intact minimal core LPS reveals triacylated and tetraacylated structures having a heterogeneous mix of both hydroxylated and nonhydroxylated fatty acids connected to the diglucosamine backbone and a predominantly glucose outer core-like region for both strains. WH8102 incorporated rhamnose in this region as well, contributing to differences in sugar composition and possibly nutritional differences between the strains. In contrast to enteric lipid A, which can be liberated from LPS by mild acid hydrolysis, lipid A from these organisms could be produced by only two novel procedures: triethylamine-assisted periodate oxidation and acetolysis. The lipid A contains odd-chain hydroxylated fatty acids, lacks phosphate, and contains a single galacturonic acid. The LPS lacks any limulus amoebocyte lysate gelation activity. The highly simplified nature of LPSs from these organisms leads us to believe that they may represent either a primordial structure or an adaptation to the relatively higher salt and potentially growth-limiting phosphate levels in marine environments.
Collapse
Affiliation(s)
- D Scott Snyder
- Complex Carbohydrate Research Center, Athens, Georgia 30602-4712, USA
| | | | | | | |
Collapse
|
30
|
Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 2009; 75:4035-45. [PMID: 19376903 DOI: 10.1128/aem.00515-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 is a unique alphaproteobacterium (order Rhizobiales) that forms nitrogen-fixing nodules with more legumes than any other microsymbiont. We report here that the 3.93-Mbp chromosome (cNGR234) encodes most functions required for cellular growth. Few essential functions are encoded on the 2.43-Mbp megaplasmid (pNGR234b), and none are present on the second 0.54-Mbp symbiotic plasmid (pNGR234a). Among many striking features, the 6.9-Mbp genome encodes more different secretion systems than any other known rhizobia and probably most known bacteria. Altogether, 132 genes and proteins are linked to secretory processes. Secretion systems identified include general and export pathways, a twin arginine translocase secretion system, six type I transporter genes, one functional and one putative type III system, three type IV attachment systems, and two putative type IV conjugation pili. Type V and VI transporters were not identified, however. NGR234 also carries genes and regulatory networks linked to the metabolism of a wide range of aromatic and nonaromatic compounds. In this way, NGR234 can quickly adapt to changing environmental stimuli in soils, rhizospheres, and plants. Finally, NGR234 carries at least six loci linked to the quenching of quorum-sensing signals, as well as one gene (ngrI) that possibly encodes a novel type of autoinducer I molecule.
Collapse
|
31
|
Lerner A, Okon Y, Burdman S. The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology (Reading) 2009; 155:791-804. [DOI: 10.1099/mic.0.021824-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several genes involved in the interaction between Azospirillum brasilense Sp7 and plants are located on the pRhico plasmid. Here we report the characterization of an Sp7 mutant strain with impairment of the pRhico-located gene wzm. This gene encodes an inner-membrane component of an ATP-binding cassette (ABC) transporter with similarity to transporters involved in surface polysaccharide export. Indeed, SDS-PAGE revealed that LPS synthesis is affected in the wzm mutant. No significant differences were observed between wild-type and mutant strains in exopolysaccharide (EPS) amount; however, several differences were observed between them in EPS monosaccharide composition, and only wild-type colonies stained positively with Congo red. Microscopy revealed that wzm mutant cells are longer and thinner, and exhibit several differences in their cell surface relative to the wild-type. The wzm mutant was more resistant to oxidative stress, starvation, desiccation, heat and osmotic shock than the wild-type. In contrast, the mutant was more susceptible than the wild-type to UV radiation and saline stress. The strains also differed in their susceptibility to different antibiotics. Differences between the strains were also observed in their outer-membrane protein composition. No differences were observed between strains in their ability to attach to sweet corn roots and seeds, and to promote growth under the tested conditions. As LPS plays an important role in cell envelope structural integrity, we propose that the pleiotropic phenotypic changes observed in the wzm mutant are due to its altered LPS relative to the wild-type.
Collapse
Affiliation(s)
- Anat Lerner
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yaacov Okon
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
32
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
33
|
Bogomolnaya LM, Santiviago CA, Yang HJ, Baumler AJ, Andrews-Polymenis HL. 'Form variation' of the O12 antigen is critical for persistence of Salmonella Typhimurium in the murine intestine. Mol Microbiol 2008; 70:1105-19. [PMID: 18826410 DOI: 10.1111/j.1365-2958.2008.06461.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.
Collapse
Affiliation(s)
- Lydia M Bogomolnaya
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | |
Collapse
|
34
|
Forsberg LS, Carlson RW. Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: a unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, n-acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid). J Biol Chem 2008; 283:16037-50. [PMID: 18387959 DOI: 10.1074/jbc.m709615200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobium are Gram-negative bacteria that survive intracellularly, within host membrane-derived plant cell compartments called symbiosomes. Within the symbiosomes the bacteria differentiate to bacteroids, the active form that carries out nitrogen fixation. The progression from free-living bacteria to bacteroid is characterized by physiological and morphological changes at the bacterial surface, a phase shift with an altered array of cell surface glycoconjugates. Lipopolysaccharides undergo structural changes upon differentiation from the free living to the bacteroid (intracellular) form. The array of carbohydrate structures carried on lipopolysaccharides confer resistance to plant defense mechanisms and may serve as signals that trigger the plant to allow the infection to proceed. We have determined the structure of the major O-polysaccharide (OPS) isolated from free living Rhizobium leguminosarum 3841, a symbiont of Pisum sativum, using chemical methods, mass spectrometry, and NMR spectroscopy analysis. The OPS is composed of several unusual glycosyl residues, including 6-deoxy-3-O-methyl-d-talose and 2-acetamido-2deoxy-l-quinovosamine. In addition, a new glycosyl residue, 3-acetimidoylamino-3-deoxy-d-gluco-hexuronic acid was identified and characterized, a novel hexosaminuronic acid that does not have an amino group at the 2-position. The OPS is composed of three to four tetrasaccharide repeating units of -->4)-beta-dGlcp3NAmA-(1-->4)-[2-O-Ac-3-O-Me-alpha-d-6dTalp-(1-->3)]-alpha-l-Fucp-(1-->3)-alpha-l-QuipNAc-(1-->. The unique 3-amino hexuronate residue, rhizoaminuronic acid, is an attractive candidate for selective inhibition of OPS synthesis.
Collapse
Affiliation(s)
- L Scott Forsberg
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA
| | | |
Collapse
|
35
|
Chataigné G, Couderc F, Poinsot V. Polysaccharides analysis of sinorhizobial capside by on-line anion exchange chromatography with pulsed amperometric detection and mass spectrometry coupling. J Chromatogr A 2008; 1185:241-50. [PMID: 18275965 DOI: 10.1016/j.chroma.2008.01.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 11/27/2022]
Abstract
High performance anion exchange chromatography (HPAEC)-pulsed amperometric detection (PAD) is a performing technique for carbohydrate analysis, due to the selectivity and sensitivity of the detection. The identification occurs through retention times. In absence of standards, structural characterization of complex polysaccharides requests the coupling of HPAEC-PAD with electrospray ionization (ESI)-MS. This is a technological challenge, due to the non-volatility and high conductance of the eluents. Therefore, a desalting device has been installed on-line between the PAD and the MS. On-line HPAEC-MS has only been rarely described. We report here successful analysis of biological acidic oligosaccharides, allowing for the first time to demonstrate that membrane anchored 3-deoxy-D-manno-2 octulosonic acid (Kdo) homopolymers are consensus sinorhizobial capsular polysaccharide (KPS).
Collapse
Affiliation(s)
- G Chataigné
- Laboratoire des IMRCP, UMR5623, Université Paul Sabatier, Université de Toulouse, Toulouse, France
| | | | | |
Collapse
|
36
|
Choudhury B, Carlson RW, Goldberg JB. Characterization of the lipopolysaccharide from a wbjE mutant of the serogroup O11 Pseudomonas aeruginosa strain, PA103. Carbohydr Res 2007; 343:238-48. [PMID: 18039536 DOI: 10.1016/j.carres.2007.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/26/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
The lipopolysaccharide (LPS) of a wbjE mutant of Pseudomonas aeruginosa PA103, a serogroup O11 strain consists of both high and low molecular weight (HMW and LMW) LPSs. The HMW LPS consisted exclusively of rhamnan A-band LPS and no B-band LPS was detected in the wbjE mutant. Interestingly, the LMW LPS from the wbjE mutant showed that it contained a variety of oligosaccharides, each with two or three phosphate groups present as mono- or pyrophosphates. These oligosaccharides consisted of the complete core octasaccharide. The GalN residue was present as an N-acetylated residue in all of these oligosaccharides except the tetrasaccharide in which it is present as an N-alanylated residue. None of these oligosaccharides contained either a d- or l-FucpNAc residue. These results are discussed with regard to the role of wbjE in the biosynthesis of P. aeruginosa PA103 B-band LPS.
Collapse
Affiliation(s)
- Biswa Choudhury
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | | | | |
Collapse
|
37
|
LaFrentz BR, Lindstrom NM, LaPatra SE, Call DR, Cain KD. Electrophoretic and Western blot analyses of the lipopolysaccharide and glycocalyx of Flavobacterium psychrophilum. FISH & SHELLFISH IMMUNOLOGY 2007; 23:770-80. [PMID: 17420143 DOI: 10.1016/j.fsi.2007.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/12/2007] [Accepted: 02/15/2007] [Indexed: 05/14/2023]
Abstract
Flavobacterium psychrophilum is the aetiological agent of bacterial coldwater disease (CWD) and rainbow trout fry syndrome (RTFS) and it has emerged as one of the most significant bacterial pathogens in salmonid aquaculture worldwide. Previous studies have suggested that the O-polysaccharide (O-PS) component of the lipopolysaccharide (LPS) of F. psychrophilum is highly immunogenic and may be involved in eliciting a protective immune response in rainbow trout (Oncorhynchus mykiss Walbaum). In the present study, SDS-PAGE and Western blotting techniques were used to analyse the carbohydrate antigens of F. psychrophilum. Our analysis identified two distinct carbohydrate-banding patterns. One banding pattern corresponds with LPS, and we hypothesise that the other carbohydrate-banding pattern is that of the loosely associated glycocalyx of F. psychrophilum. Electron microscopy of F. psychrophilum cells immunogold labelled with a monoclonal antibody specific for this banding pattern supports this hypothesis as the outermost layer of the bacterium was heavily labelled. This is a significant finding because the immunogenic antigens that have been referred to as the O-PS of LPS, and implicated as potential vaccine candidate antigens, appear to be components of the glycocalyx of F. psychrophilum. This research suggests that the glycocalyx of F. psychrophilum may be an important antigen to consider for the development of a vaccine to control CWD and RTFS.
Collapse
Affiliation(s)
- Benjamin R LaFrentz
- Department of Fish and Wildlife Resources and the Aquaculture Research Institute, University of Idaho, Moscow, ID 83844-1136, USA
| | | | | | | | | |
Collapse
|
38
|
Simsek S, Ojanen-Reuhs T, Stephens SB, Reuhs BL. Strain-ecotype specificity in Sinorhizobium meliloti-Medicago truncatula symbiosis is correlated to succinoglycan oligosaccharide structure. J Bacteriol 2007; 189:7733-40. [PMID: 17766412 PMCID: PMC2168717 DOI: 10.1128/jb.00739-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular signals, including Nod factors and succinoglycan, are necessary for the establishment of nitrogen-fixing nodules (Fix+) in Medicago truncatula-Sinorhizobium meliloti symbiosis. This report shows that M. truncatula-S. meliloti interactions involve ecotype-strain specificity, as S. meliloti Rm41 and NRG247 are Fix+ (compatible) on M. truncatula A20 and Fix- (incompatible) on M. truncatula A17, the Fix phenotypes are reversed with S. meliloti NRG185 and NRG34, and there is a correlation between the host specificity and succinoglycan oligosaccharide structure. S. meliloti NRG185 produces oligosaccharides that are almost fully succinylated, with two succinate groups per subunit, whereas the oligosaccharides produced by S. meliloti Rm41 include many nonsuccinylated subunits, as well as subunits with a single succinate group and others with malate. The results of this study demonstrated the following: (i) incompatibility is not a consequence of an avirulence factor or lack of Nod factor activity; (ii) the Fix+ phenotypes are succinoglycan dependent; (iii) there is structural variability in the succinoglycan oligosaccharide populations between S. meliloti strains; (iv) the structural nature of the succinoglycan oligosaccharides is correlated to compatibility; most importantly, (v) an S. meliloti Rm41 derivative, carrying exo genes from an M. truncatula A17-compatible strain, produced a modified population of succinoglycan oligosaccharides (similar to the donor strain) and was Fix+ on A17.
Collapse
Affiliation(s)
- Senay Simsek
- Whistler Center for Carbohydrate Research, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | | | | | | |
Collapse
|
39
|
Jackson CL, Dreaden TM, Theobald LK, Tran NM, Beal TL, Eid M, Gao MY, Shirley RB, Stoffel MT, Kumar MV, Mohnen D. Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiology 2007; 17:805-19. [PMID: 17513886 DOI: 10.1093/glycob/cwm054] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Treatment options for androgen-independent prostate cancer cells are limited. Therefore, it is critical to identify agents that induce death of both androgen-responsive and androgen-insensitive cells. Here we demonstrate that a product of plant cell walls, pectin, is capable of inducing apoptosis in androgen-responsive (LNCaP) and androgen-independent (LNCaP C4-2) human prostate cancer cells. Commercially available fractionated pectin powder (FPP) induced apoptosis (approximately 40-fold above non-treated cells) in both cell lines as determined by the Apoptosense assay and activation of caspase-3 and its substrate, poly(ADP-ribose) polymerase. Conversely, citrus pectin (CP) and the pH-modified CP, PectaSol, had little or no apoptotic activity. Glycosyl residue composition and linkage analyses revealed no significant differences among the pectins. Mild base treatment to remove ester linkages destroyed FPP's apoptotic activity and yielded homogalacturonan (HG) oligosaccharides. The treatment of FPP with pectinmethylesterase to remove galacturonosyl carboxymethylesters and/or with endopolygalacturonase to cleave nonmethylesterified HG caused no major reduction in apoptotic activity, implicating the requirement for a base-sensitive linkage other than the carboxymethylester. Heat treatment of CP (HTCP) led to the induction of significant levels of apoptosis comparable to FPP, suggesting a means for generating apoptotic pectic structures. These results indicate that specific structural elements within pectin are responsible for the apoptotic activity, and that this structure can be generated, or enriched for, by heat treatment of CP. These findings provide the foundation for mechanistic studies of pectin apoptotic activity and a basis for the development of pectin-based pharmaceuticals, nutraceuticals, or recommended diet changes aimed at combating prostate cancer occurrence and progression.
Collapse
Affiliation(s)
- Crystal L Jackson
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
D'Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW. Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 2007; 282:17101-13. [PMID: 17420254 DOI: 10.1074/jbc.m611669200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.
Collapse
Affiliation(s)
- Wim D'Haeze
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
41
|
Suo Z, Yang X, Avci R, Kellerman L, Pascual DW, Fries M, Steele A. HEPES-stabilized encapsulation of Salmonella typhimurium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1365-74. [PMID: 17241060 DOI: 10.1021/la0621721] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Most bacteria, planktonic and sessile, are encapsulated inside loosely bound extracellular polymeric substance (EPS) in their physiological environment. Imaging a bacterium with its capsule requires lengthy sample preparation to enhance the capsular contrast. In this study, Salmonella typhimurium was investigated using atomic force microscopy for a practical means of imaging an encapsulated bacterium in air. The investigation further aimed to determine the relation between the buffers used for preparing the bacterium and the preservation of the capsular material surrounding it. It was observed that rinsing bacteria with HEPES buffer could stabilize and promote capsule formation, while rinsing with PBS, Tris, or glycine removes most of the capsular EPS. For bacteria rinsed with HEPES and air-dried, the height images showed only the contour of the capsular material, while the phase and amplitude images presented the detailed structures of the bacterial surface, including the flagella encapsulated inside the capsular EPS. The encapsulation was attributed to the cross-linking of the acidic exopolysaccharides mediated by the piperazine moiety of HEPES through electrostatic attraction. This explanation is supported by encapsulated bacteria observed for samples rinsed with N,N'-bis(2-hydroxyethyl)-piperazine solution and by the presence of entrapped HEPES within the dry capsular EPS suggested by micro-Raman spectroscopy.
Collapse
Affiliation(s)
- Zhiyong Suo
- Imaging and Chemical Analysis Laboratory, Department of Physics, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Townsend GE, Forsberg LS, Keating DH. Mesorhizobium loti produces nodPQ-dependent sulfated cell surface polysaccharides. J Bacteriol 2006; 188:8560-72. [PMID: 17028279 PMCID: PMC1698228 DOI: 10.1128/jb.01035-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/27/2006] [Indexed: 11/20/2022] Open
Abstract
Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of sulfated cell surface polysaccharides is unclear, although mutants of S. meliloti with reduced LPS sulfation exhibit symbiotic abnormalities. Using a bioinformatic approach, we identified a homolog of the S. meliloti carbohydrate sulfotransferase, LpsS, in Mesorhizobium loti. M. loti participates in a determinate symbiosis with the legume Lotus japonicus. We showed that M. loti produces sulfated forms of LPS and capsular polysaccharide (KPS). To investigate the physiological function of sulfated polysaccharides in M. loti, we identified and disabled an M. loti homolog of the sulfate-activating genes, nodPQ, which resulted in undetectable amounts of sulfated cell surface polysaccharides and a cysteine auxotrophy. We concomitantly disabled an M. loti cysH homolog, which disrupted cysteine biosynthesis without reducing cell surface polysaccharide sulfation. Our experiments demonstrated that the nodPQ mutant, but not the cysH mutant, showed an altered KPS structure and a diminished ability to elicit nodules on its host legume, Lotus japonicus. Interestingly, the nodPQ mutant also exhibited a more rapid growth rate and appeared to outcompete wild-type M. loti for nodule colonization. These results suggest that sulfated cell surface polysaccharides are required for optimum nodule formation but limit growth rate and nodule colonization in M. loti.
Collapse
Affiliation(s)
- Guy E Townsend
- Department of Microbiology and Immunology, Loyola University Chicago, Building 105, 2160 S. First Ave., Maywood, IL 60153, USA
| | | | | |
Collapse
|
44
|
Broughton WJ, Hanin M, Relic B, Kopciñska J, Golinowski W, Simsek S, Ojanen-Reuhs T, Reuhs B, Marie C, Kobayashi H, Bordogna B, Le Quéré A, Jabbouri S, Fellay R, Perret X, Deakin WJ. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. strain NGR234-legume symbioses. J Bacteriol 2006; 188:3654-63. [PMID: 16672619 PMCID: PMC1482867 DOI: 10.1128/jb.188.10.3654-3663.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 produces a flavonoid-inducible rhamnose-rich lipopolysaccharide (LPS) that is important for the nodulation of legumes. Many of the genes encoding the rhamnan part of the molecule lie between 87 degrees and 110 degrees of pNGR234a, the symbiotic plasmid of NGR234. Computational methods suggest that 5 of the 12 open reading frames (ORFs) within this arc are involved in synthesis (and subsequent polymerization) of L-rhamnose. Two others probably play roles in the transport of carbohydrates. To evaluate the function of these ORFs, we mutated a number of them and tested the ability of the mutants to nodulate a variety of legumes. At the same time, changes in the production of surface polysaccharides (particularly the rhamnan O antigen) were examined. Deletion of rmlB to wbgA and mutation in fixF abolished rhamnan synthesis. Mutation of y4gM (a member of the ATP-binding cassette transporter family) did not abolish production of the rhamnose-rich LPS but, unexpectedly, the mutant displayed a symbiotic phenotype very similar to that of strains unable to produce the rhamnan O antigen (NGRDeltarmlB-wbgA and NGROmegafixF). At least two flavonoid-inducible regulatory pathways are involved in synthesis of the rhamnan O antigen. Mutation of either pathway reduces rhamnan production. Coordination of rhamnan synthesis with rhizobial release from infection threads is thus part of the symbiotic interaction.
Collapse
|
45
|
Le Quéré AJL, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg LS. Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp. NGR234: deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. J Biol Chem 2006; 281:28981-92. [PMID: 16772294 DOI: 10.1074/jbc.m513639200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many early molecular events in symbiotic infection have been documented, although factors enabling Rhizobium to progress within the plant-derived infection thread and ultimately survive within the intracellular symbiosome compartment as mature nitrogen-fixing bacteroids are poorly understood. Rhizobial surface polysaccharides (SPS), including the capsular polysaccharides (K-antigens), exist in close proximity to plant-derived membranes throughout the infection process. SPSs are essential for bacterial survival, adaptation, and as potential determinants of nodulation and/or host specificity. Relatively few studies have examined the role of K-antigens in these events. However, we constructed a mutant that lacks genes essential for the production of the K-antigen strain-specific sugar precursor, pseudaminic acid, in the broad host range Rhizobium sp. NGR234. The complete structure of the K-antigen of strain NGR234 was established, and it consists of disaccharide repeating units of glucuronic and pseudaminic acid having the structure -->4)-beta-d-glucuronic acid-(1-->4)-beta-5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic acid-(2-->. Deletion of three genes located in the rkp-3 gene cluster, rkpM, rkpN, and part of rkpO, abolished pseudaminic acid synthesis, yielding a mutant in which the strain-specific K-antigen was totally absent: other surface glycoconjugates, including the lipopolysaccharides, exopolysaccharides, and flagellin glycoprotein appeared unaffected. The NGRDeltarkpMNO mutant was symbiotically defective, showing reduced nodulation efficiency on several legumes. K-antigen production was found to decline after rhizobia were exposed to plant flavonoids, and the decrease coincided with induction of a symbiotically active (bacteroid-specific) rhamnan-LPS, suggesting an exchange of SPS occurs during bacterial differentiation in the developing nodule.
Collapse
Affiliation(s)
- Antoine J-L Le Quéré
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Université de Genève, 1292 Genève, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Kim S, Burgula Y, Ojanen-Reuhs T, Cousin MA, Reuhs BL, Mauer LJ. Differentiation of Crude Lipopolysaccharides from Escherichia coli Strains Using Fourier Transform Infrared Spectroscopy and Chemometrics. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2006.tb08908.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Vanbleu E, Choudhury BP, Carlson RW, Vanderleyden J. The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environ Microbiol 2006; 7:1769-74. [PMID: 16232291 DOI: 10.1111/j.1462-2920.2005.00930.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report on the presence of sulfated lipopolysaccharide molecules in Azospirillum brasilense, a plant growth-promoting rhizosphere bacterium. Chemical analysis provided structural data on the O-antigen composition and demonstrated the possible involvement of the nodPQ genes in O-antigen sulfation.
Collapse
Affiliation(s)
- Els Vanbleu
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
48
|
Skorupska A, Janczarek M, Marczak M, Mazur A, Król J. Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 2006; 5:7. [PMID: 16483356 PMCID: PMC1403797 DOI: 10.1186/1475-2859-5-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/16/2006] [Indexed: 11/10/2022] Open
Abstract
Specific complex interactions between soil bacteria belonging to Rhizobium, Sinorhizobium, Mesorhizobium, Phylorhizobium, Bradyrhizobium and Azorhizobium commonly known as rhizobia, and their host leguminous plants result in development of root nodules. Nodules are new organs that consist mainly of plant cells infected with bacteroids that provide the host plant with fixed nitrogen. Proper nodule development requires the synthesis and perception of signal molecules such as lipochitooligosaccharides, called Nod factors that are important for induction of nodule development. Bacterial surface polysaccharides are also crucial for establishment of successful symbiosis with legumes. Sugar polymers of rhizobia are composed of a number of different polysaccharides, such as lipopolysaccharides (LPS), capsular polysaccharides (CPS or K-antigens), neutral β-1, 2-glucans and acidic extracellular polysaccharides (EPS). Despite extensive research, the molecular function of the surface polysaccharides in symbiosis remains unclear. This review focuses on exopolysaccharides that are especially important for the invasion that leads to formation of indetermined (with persistent meristem) type of nodules on legumes such as clover, vetch, peas or alfalfa. The significance of EPS synthesis in symbiotic interactions of Rhizobium leguminosarum with clover is especially noticed. Accumulating data suggest that exopolysaccharides may be involved in invasion and nodule development, bacterial release from infection threads, bacteroid development, suppression of plant defense response and protection against plant antimicrobial compounds. Rhizobial exopolysaccharides are species-specific heteropolysaccharide polymers composed of common sugars that are substituted with non-carbohydrate residues. Synthesis of repeating units of exopolysaccharide, their modification, polymerization and export to the cell surface is controlled by clusters of genes, named exo/exs, exp or pss that are localized on rhizobial megaplasmids or chromosome. The function of these genes was identified by isolation and characterization of several mutants disabled in exopolysaccharide synthesis. The effect of exopolysaccharide deficiency on nodule development has been extensively studied. Production of exopolysaccharides is influenced by a complex network of environmental factors such as phosphate, nitrogen or sulphur. There is a strong suggestion that production of a variety of symbiotically active polysaccharides may allow rhizobial strains to adapt to changing environmental conditions and interact efficiently with legumes.
Collapse
Affiliation(s)
- Anna Skorupska
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Małgorzata Marczak
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Andrzej Mazur
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| | - Jarosław Król
- Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19 st., 20-033 Lublin, Poland
| |
Collapse
|
49
|
Kim S, Reuhs BL, Mauer LJ. Use of Fourier transform infrared spectra of crude bacterial lipopolysaccharides and chemometrics for differentiation of Salmonella enterica serotypes. J Appl Microbiol 2006; 99:411-7. [PMID: 16033474 DOI: 10.1111/j.1365-2672.2005.02621.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate Fourier transform infrared spectroscopy (FTIR) and chemometrics for differentiating intact cells and crude lipopolysaccharide (LPS) extracts from Salmonella serotypes. METHODS AND RESULTS Intact cells and crude LPS extracts from six different Salmonella enterica serotypes (Typhimurium, Enteritidis, Thomasville, Brandenburg, Hadar and Seftenberg) were used. The crude Salmonella LPS extracts were visualized using deoxycholic acid-polyacrylamide gel electrophoresis (DOC-PAGE) and appeared heterogeneous on the gel with two exceptions: S. Enteritidis and S. Brandenburg, and S. Thomasville and S. Seftenberg. Canonical variate analysis (CVA) of spectra of crude LPS extracts provided 100% correct classification. CVA of spectra of intact cells was not useful for classifying the Salmonella serotypes, having only 47 and 50% correct classifications in the 1200-900 and 4000-700 cm(-1) regions respectively. These data were confirmed by greater Mahalanobis distances between crude LPS spectra than intact cell spectra. CONCLUSIONS CVA of FTIR spectra of crude LPS extracts from Salmonella serotypes provided a 100% correct serotype classification. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that the FTIR analytical procedure provides chemical detail as well as a better separation of Salmonella serotypes using spectra of crude LPS extracts than analysis using DOC-PAGE.
Collapse
Affiliation(s)
- S Kim
- Department of Food Science, Purdue University, West Lafayette, IN 47907-2009, USA
| | | | | |
Collapse
|
50
|
Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Gutiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ, Gil-Serrano AM, Rodríguez-Carvajal MA, Moreno J, Ruiz-Sainz JE. Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:43-52. [PMID: 16404952 DOI: 10.1094/mpmi-19-0043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharides (KPS) production, was isolated and sequenced. The organization of the S. fredii genes identified, rkpUAGHIJ and kpsF3, was identical to that described for S. meliloti 1021 but different from that of S. meliloti AK631. The long rkpA gene (7.5 kb) of S. fredii HH103 and S. meliloti 1021 appears as a fusion of six clustered AK631 genes, rkpABCDEF. S. fredii HH103-Rif(r) mutants affected in rkpH or rkpG were constructed. An exoA mutant unable to produce exopolysaccharide (EPS) and a double mutant exoA rkpH also were obtained. Glycine max (soybean) and Cajanus cajan (pigeon pea) plants inoculated with the rkpH, rkpG, and rkpH exoA derivatives of S. fredii HH103 showed reduced nodulation and severe symptoms of nitrogen starvation. The symbiotic capacity of the exoA mutant was not significantly altered. All these results indicate that KPS, but not EPS, is of crucial importance for the symbiotic capacity of S. fredii HH103-Rif(r). S. meliloti strains that produce only EPS or KPS are still effective with alfalfa. In S. fredii HH103, however, EPS and KPS are not equivalent, because mutants in rkp genes are symbiotically impaired regardless of whether or not EPS is produced.
Collapse
Affiliation(s)
- Maribel Parada
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Av. Reina Mercedes 6. 41012-Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|