1
|
Millen AM, Romero DA, Horvath P, Magill D, Simdon L. Host-encoded, cell surface-associated exopolysaccharide required for adsorption and infection by lactococcal P335 phage subtypes. Front Microbiol 2022; 13:971166. [PMID: 36267184 PMCID: PMC9576995 DOI: 10.3389/fmicb.2022.971166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lactococcus lactis and Lactococcus cremoris compose commercial starter cultures widely used for industrial dairy fermentations. Some lactococcal strains may produce exopolysaccharides (EPS), which have technological applications, including texture production and phage resistance. Two distinct gene clusters associated with EPS production, designated 6073-like and 7127-like, were identified on plasmids in lactococcal strains. Infectivity of two subsets of P335 group phages, distinguished based on their single-component baseplate/receptor-binding protein nucleotide sequences, was correlated to the presence of a host-encoded 6073-like or 7127-like eps gene cluster. Furthermore, phages belonging to these subsets differentially adsorbed to lactococcal strains harboring the respective eps gene cluster. Loss of the respective EPS-encoding plasmid from a fully phage-sensitive strain resulted in loss of phage adsorption and resistance to the phage. Transmission electron microscopy (TEM) showed that the EPS produced by strains encoding the 6073-like or 7127-like eps gene clusters are cell-surface associated, which, coupled with phage plaquing and adsorption data, shows that specific capsular EPS are involved in host recognition by certain P335 phage subgroups. To our knowledge, this is the first description of the involvement of EPS produced via the Wzx/Wzy-dependent pathway in phage sensitivity of L. lactis or L. cremoris. This study also shows strains that do not appear to be phage-related based on plaque formation may still be related by phage adsorption and indicates that optimal formulation of phage-robust cultures should take into account the EPS type of individual strains.
Collapse
Affiliation(s)
- Anne M. Millen
- Health and Biosciences, IFF, Madison, WI, United States
- *Correspondence: Anne M. Millen,
| | | | | | - Damian Magill
- Health and Biosciences, IFF, Dangé-Saint-Romain, France
| | - Laura Simdon
- Health and Biosciences, IFF, Madison, WI, United States
| |
Collapse
|
2
|
Canon F, Briard-Bion V, Jardin J, Thierry A, Gagnaire V. Positive Interactions Between Lactic Acid Bacteria Could Be Mediated by Peptides Containing Branched-Chain Amino Acids. Front Microbiol 2022; 12:793136. [PMID: 35087496 PMCID: PMC8789265 DOI: 10.3389/fmicb.2021.793136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022] Open
Abstract
Lactic acid bacteria (LAB) are responsible for the sanitary, organoleptic, and health properties of most fermented products. Positive interactions between pairs of LAB strains, based on nitrogen dependencies, were previously demonstrated. In a chemically defined medium, using milk and lupin proteins as sole nitrogen source, two proteolytic strains were able to sustain the growth of non-proteolytic strains, but one did not. The objective of the present study was, thus, to determine which specific peptides were implicated in the positive interactions observed. Peptides produced and involved in the bacterial interactions were quantified using tandem mass spectrometry (LC-MS/MS). About 2,000 different oligopeptides ranging from 6 to more than 50 amino acids in length were identified during the time-course of the experiment. We performed a clustering approach to decipher the differences in peptide production during fermentation by the three proteolytic strains tested. We also performed sequence alignments on parental proteins and identified the cleavage site profiles of the three bacterial strains. Then, we characterized the peptides that were used by the non-proteolytic strains in monocultures. Hydrophobic and branched-chain amino acids within peptides were identified as essential in the interactions. Ultimately, better understanding how LAB can positively interact could be useful in multiple food-related fields, e.g., production of fermented food products with enhanced functional properties, or fermentation of new food matrices.
Collapse
Affiliation(s)
- Fanny Canon
- UMR STLO, INRAE, Institut Agro, Rennes, France
| | | | | | | | | |
Collapse
|
3
|
Chen L, Wang L, Li J, Shu G. Antihypertensive potential of fermented milk: the contribution of lactic acid bacteria proteolysis system and the resultant angiotensin-converting enzyme inhibitory peptide. Food Funct 2021; 12:11121-11131. [PMID: 34657947 DOI: 10.1039/d1fo02435c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension has become an increasing health concern given that it is a major risk for cardiovascular disease. Synthetic antihypertensive drugs, including angiotensin-converting enzyme (ACE) inhibitors, effectively control high blood pressure but are associated with unpleasant side effects. Milk fermented by certain lactic acid bacteria (LAB) provides energetic contributions to the management of hypertension, especially the regulation of ACE. LAB are important food-grade microbial organisms that release ACE inhibitory peptides through their unique proteolysis system, which consists of cell-envelope proteinases (CEPs), transporter systems, and intracellular peptidases. Thus, the description of LAB proteolysis system genes and their contributions to ACE inhibitory peptide production is a challenging but promising study. This review provides a survey of LABs with potential ACE inhibitory activity and investigates the research progress of LAB proteolytic systems with an emphasis on the correlation of their components and ACE inhibitory activity. Subsequently, a depiction of the ACE inhibitory peptide action mechanism, structure-activity relationship and bioavailability is presented. The improved functional annotation of LAB proteolytic system genes will provide an excellent framework for future experimental validations of predicted ACE inhibitory activity in fermented milk.
Collapse
Affiliation(s)
- Li Chen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Linlin Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Guowei Shu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
4
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
5
|
Proteolysis, lipolysis, texture and sensory properties of cheese ripened by Monascus fumeus. Food Res Int 2020; 137:109657. [DOI: 10.1016/j.foodres.2020.109657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/03/2020] [Accepted: 08/29/2020] [Indexed: 11/18/2022]
|
6
|
Settier-Ramírez L, López-Carballo G, Gavara R, Hernández-Muñoz P. PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. Int J Food Microbiol 2020; 322:108545. [DOI: 10.1016/j.ijfoodmicro.2020.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/02/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
|
7
|
Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09890-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Growth kinetics and lactic acid production of Lactobacillus plantarum NRRL B-4496, L. acidophilus NRRL B-4495, and L. reuteri B-14171 in media containing egg white hydrolysates. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Proust L, Sourabié A, Pedersen M, Besançon I, Haudebourg E, Monnet V, Juillard V. Insights Into the Complexity of Yeast Extract Peptides and Their Utilization by Streptococcus thermophilus. Front Microbiol 2019; 10:906. [PMID: 31133999 PMCID: PMC6524704 DOI: 10.3389/fmicb.2019.00906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 11/23/2022] Open
Abstract
Streptococcus thermophilus, an extensively used lactic starter, is generally produced in yeast extract-based media containing a complex mixture of peptides whose exact composition remains elusive. In this work, we aimed at investigating the peptide content of a commercial yeast extract (YE) and identifying dynamics of peptide utilization during the growth of the industrial S. thermophilus N4L strain, cultivated in 1 l bioreactors under pH-regulation. To reach that goal, we set up a complete analytical workflow based on mass spectrometry (peptidomics). About 4,600 different oligopeptides ranging from 6 to more than 30 amino acids in length were identified during the time-course of the experiment. Due to the low spectral abundance of individual peptides, we performed a clustering approach to decipher the rules of peptide utilization during fermentation. The physicochemical characteristics of consumed peptides perfectly matched the known affinities of the oligopeptide transport system of S. thermophilus. Moreover, by analyzing such a large number of peptides, we were able to establish that peptide net charge is the major factor for oligopeptide transport in S. thermophilus N4L.
Collapse
Affiliation(s)
- Lucas Proust
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Procelys, Lesaffre Group, Maisons-Alfort, France
| | | | | | | | - Eloi Haudebourg
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Véronique Monnet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Juillard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
10
|
Norcross S, Sunderraj A, Tantama M. pH- and Temperature-Dependent Peptide Binding to the Lactococcus lactis Oligopeptide-Binding Protein A Measured with a Fluorescence Anisotropy Assay. ACS OMEGA 2019; 4:2812-2822. [PMID: 30842982 PMCID: PMC6396125 DOI: 10.1021/acsomega.8b02427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 05/03/2023]
Abstract
Bacterial ATP-binding cassette transporters are a superfamily of transport systems involved in the import of various molecules including amino acids, ions, sugars, and peptides. In the lactic acid bacteria Lactococcus lactis, the oligopeptide-binding protein A (OppA) binds peptides for import to support nitrogen metabolism and cell growth. The OppA protein is of great interest because it can bind peptides over a broad variety of lengths and sequences; however, current methods to study peptide binding have employed low throughput, endpoint, or low dynamic range techniques. Therefore, in this study, we developed a fluorescence anisotropy-based peptide-binding assay that can be readily employed to quantify OppA function. To test the utility of our assay, we characterized the pH dependence of oligopeptide binding because L. lactis is commonly used in fermentation and often must survive in low pH environments caused by lactic acid export. We determined that OppA affinity increases as pH or temperature decreases, and circular dichroism spectroscopy further indicated that acidic conditions increase the thermal stability of the protein, increasing the unfolding transition temperature by 10 °C from pH 8 to pH 6. Thus, our fluorescence anisotropy assay provides an easy technique to measure peptide binding, and it can be used to understand molecular aspects of OppA function under stress conditions experienced during fermentation and other biotechnology applications.
Collapse
Affiliation(s)
- Stevie Norcross
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Ashwin Sunderraj
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
| | - Mathew Tantama
- Department
of Chemistry, Institute for Integrative Neuroscience, and Institute for
Inflammation, Immunology, and Infectious Disease, Purdue University, 560 Oval Drive Box 68, West Lafayette, Indiana 47907, United States
- E-mail: . Phone: 765-494-5312
| |
Collapse
|
11
|
Bounouala FZ, Roudj S, Karam NE, Recio I, Miralles B. Casein Hydrolysates by Lactobacillus brevis and Lactococcus lactis Proteases: Peptide Profile Discriminates Strain-Dependent Enzyme Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9324-9332. [PMID: 28965394 DOI: 10.1021/acs.jafc.7b03203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Casein from ovine and bovine milk were hydrolyzed with two extracellular protease preparations from Lactobacillus brevis and Lactococcus lactis. The hydrolysates were analyzed by HPLC-MS/MS for peptide identification. A strain-dependent peptide profile could be observed, regardless of the casein origin, and the specificity of these two proteases could be computationally ascribed. The cleavage pattern yielding phenylalanine, leucine, or tyrosine at C-terminal appeared both at L. lactis and Lb. brevis hydrolysates. However, the cleavage C-terminal to lysine was favored with Lb. brevis protease. The hydrolysates showed ACE-inhibitory activity with IC50 in the 16-70 μg/mL range. Ovine casein hydrolysates yielded greater ACE-inhibitory activity. Previously described antihypertensive and opioid peptides were found in these ovine and bovine casein hydrolysates and prediction of the antihypertensive activity of the sequences based on quantitative structure and activity relationship (QSAR) was performed. This approach might represent a useful classification tool regarding health-related properties prior to further purification.
Collapse
Affiliation(s)
- Fatima Zohra Bounouala
- Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CIAL, CSIC-UAM) , Nicolás Cabrera 9, 28049 Madrid, Spain
- Laboratoire de Biologie des Microorganismes et Biotechnologie (LBMB). Université d'Oran 1 Ahmed Ben Bella , BP 1524 Oran El Mnaouer, 31000, Oran, Algérie
| | - Salima Roudj
- Laboratoire de Biologie des Microorganismes et Biotechnologie (LBMB). Université d'Oran 1 Ahmed Ben Bella , BP 1524 Oran El Mnaouer, 31000, Oran, Algérie
| | - Nour-Eddine Karam
- Laboratoire de Biologie des Microorganismes et Biotechnologie (LBMB). Université d'Oran 1 Ahmed Ben Bella , BP 1524 Oran El Mnaouer, 31000, Oran, Algérie
| | - Isidra Recio
- Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CIAL, CSIC-UAM) , Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Beatriz Miralles
- Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CIAL, CSIC-UAM) , Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
12
|
Ahtesh FB, Stojanovska L, Mathai ML, Apostolopoulos V, Mishra VK. Proteolytic and angiotensin-converting enzyme-inhibitory activities of selected probiotic bacteria. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fatah B. Ahtesh
- Center for Chronic Disease; College of Health and Biomedicine; Victoria University; Werribee Campus PO Box 14428 Melbourne Vic. 8001 Australia
| | - Lily Stojanovska
- Center for Chronic Disease; College of Health and Biomedicine; Victoria University; Werribee Campus PO Box 14428 Melbourne Vic. 8001 Australia
| | - Michael L. Mathai
- Center for Chronic Disease; College of Health and Biomedicine; Victoria University; Werribee Campus PO Box 14428 Melbourne Vic. 8001 Australia
| | - Vasso Apostolopoulos
- Center for Chronic Disease; College of Health and Biomedicine; Victoria University; Werribee Campus PO Box 14428 Melbourne Vic. 8001 Australia
| | - Vijay K. Mishra
- Center for Chronic Disease; College of Health and Biomedicine; Victoria University; Werribee Campus PO Box 14428 Melbourne Vic. 8001 Australia
| |
Collapse
|
13
|
Fiołka M, Grzywnowicz K, Rzymowska J, Lewtak K, Szewczyk R, Mendyk E, Keller R. Antitumour and apoptotic effects of a novel Tris-peptide complex obtained after isolation of Raoultella ornithinolytica
extracellular metabolites. J Appl Microbiol 2015; 118:1357-69. [DOI: 10.1111/jam.12806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M.J. Fiołka
- Department of Immunobiology; Institute of Biology and Biochemistry; Maria Curie-Skłodowska University; Lublin Poland
| | - K. Grzywnowicz
- Department of Biochemistry; Institute of Biology and Biochemistry; Maria Curie-Skłodowska University; Lublin Poland
| | - J. Rzymowska
- Department of Biology and Genetics; Medical University of Lublin; Poland
| | - K. Lewtak
- Department of Plant Anatomy and Cytology; Institute of Biology and Biochemistry; Maria Curie-Skłodowska University; Lublin Poland
| | - R. Szewczyk
- Department of Biotechnology and Industrial Microbiology; Institute of Microbiology, Biotechnology and Immunology; University of Łódź; Poland
| | - E. Mendyk
- Analytical Laboratory; Faculty of Chemistry; Maria Curie-Skłodowska University; Lublin Poland
| | - R. Keller
- Analytical Laboratory; Faculty of Chemistry; Maria Curie-Skłodowska University; Lublin Poland
| |
Collapse
|
14
|
Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol 2013; 195:1845-55. [PMID: 23396911 DOI: 10.1128/jb.02196-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In streptococci, ComX is the alternative sigma factor controlling the transcription of the genes encoding the genetic transformation machinery. In Streptococcus thermophilus, comX transcription is controlled by a complex consisting of a transcriptional regulator of the Rgg family, ComR, and a signaling peptide, ComS, which controls ComR activity. Following its initial production, ComS is processed, secreted, and imported back into the cell by the Ami oligopeptide transporter. We characterized these steps and the partners interacting with ComS during its extracellular circuit in more detail. We identified the mature form of ComS and demonstrated the involvement of the membrane protease Eep in ComS processing. We found that ComS was secreted but probably not released into the extracellular medium. Natural competence was first discovered in a chemically defined medium without peptides. We show here that the presence of a high concentration of nutritional peptides in the medium prevents the triggering of competence. In milk, the ecological niche of S. thermophilus, competence was found to be functional, suggesting that the concentration of nutritional peptides was too low to interfere with ComR activation. The kinetics of expression of the comS, comR, and comX genes and of a late competence gene, dprA, in cultures inoculated at different initial densities revealed that the activation mechanism of ComR by ComS is more a timing device than a quorum-sensing mechanism sensu stricto. We concluded that the ComS extracellular circuit facilitates tight control over the triggering of competence in S. thermophilus.
Collapse
|
15
|
Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B. Antihypertensive peptides from food proteins: a review. Food Funct 2012; 3:350-61. [DOI: 10.1039/c2fo10192k] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Abstract
Lactococcal oligopeptide-binding protein A (OppA) binds peptides with widely varied lengths and sequences. We previously hypothesized that a hydrophobic pocket in OppA preferentially binds a hydrophobic peptide side chain and thus determines its binding register. Two crystal structures of OppA with different nonapeptides now indeed show binding in different registers.
Collapse
|
17
|
Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci 2011; 165:23-35. [PMID: 21185549 DOI: 10.1016/j.cis.2010.11.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 11/25/2010] [Accepted: 11/27/2010] [Indexed: 02/05/2023]
Abstract
Bioactive food peptides are encrypted within the sequence of food proteins but can be released during food processing (by enzymatic hydrolysis or fermentation) or during gastrointestinal transit. Among bioactive food peptides, those with antihypertensive activity are receiving special attention due to the high prevalence of hypertension in the Western countries and its role in cardiovascular diseases. This paper reviews the current literature on antihypertensive food peptides, focusing on the main methodologies for their production, such as enzymatic hydrolysis, fermentation and the use of recombinant bacteria. This paper also describes the structure/activity relationship of angiotensin-converting enzyme (ACE)-inhibitory peptides, as well as their bioavailability, physiological effects demonstrated by both in vitro and in vivo assays, and the contribution of mechanisms of action other than ACE inhibition. Finally, current reported strategies for incorporation of antihypertensive peptides into foods and their effects on both availability and activity are revised in this manuscript.
Collapse
|
18
|
Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int J Food Microbiol 2011; 146:1-13. [DOI: 10.1016/j.ijfoodmicro.2011.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
|
19
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Kinetic study of Lactococcus lactis strains (SLT6 and SLT10) growth on papain-hydrolysed whey. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Jäkälä P, Vapaatalo H. Antihypertensive Peptides from Milk Proteins. Pharmaceuticals (Basel) 2010; 3:251-272. [PMID: 27713251 PMCID: PMC3991029 DOI: 10.3390/ph3010251] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 02/07/2023] Open
Abstract
Dietary proteins possess a wide range of nutritional and functional properties. They are used as a source of energy and amino acids, which are needed for growth and development. Many dietary proteins, especially milk proteins, contain physiologically active peptides encrypted in the protein sequence. These peptides may be released during gastrointestinal digestion or food processing and once liberated, cause different physiological functions. Milk-derived bioactive peptides are shown to have antihypertensive, antimicrobial, immunomodulatory, antioxidative and mineral-binding properties. During the fermentation of milk with certain lactobacilli, two interesting tripeptides Ile-Pro-Pro and Val-Pro-Pro are released from casein to the final product. These lactotripeptides have attenuated the development of hypertension in several animal models and lowered blood pressure in clinical studies. They inhibit ACE in vitro at micromolar concentrations, protect endothelial function in vitro and reduce arterial stiffness in humans. Thus, milk as a traditional food product can after certain processing serve as a functional food and carry specific health-promoting effects, providing an option to control blood pressure.
Collapse
Affiliation(s)
- Pauliina Jäkälä
- Institute of Biomedicine, Pharmacology, University of Helsinki, P.O. Box 63, 00014, University of Helsinki, Finland.
| | - Heikki Vapaatalo
- Institute of Biomedicine, Pharmacology, University of Helsinki, P.O. Box 63, 00014, University of Helsinki, Finland
| |
Collapse
|
22
|
Jung HJ, Min BK, Kwak HS. Physiological Effects of Casein-derived Bioactive Peptides. Korean J Food Sci Anim Resour 2009. [DOI: 10.5851/kosfa.2009.29.6.659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2009.06.001] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Haro C, Lazarte S, Zelaya H, Alvarez S, Agüero G. Yogurt: effect on leukocytes and blood coagulation in an acute liver injury model. J Med Food 2009; 12:796-802. [PMID: 19735179 DOI: 10.1089/jmf.2008.0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study determined whether cow or goat yogurt administration has a preventive effect on the hepatic damage undergone during an acute liver injury. Acute liver injury was induced by an intraperitoneal injection of d-galactosamine. Groups of mice were fed with cow or goat yogurt for 2 days or 7 days before the d-galactosamine injection. Blood and liver samples were obtained 12 hours after d-galactosamine inoculation. d-Galactosamine induced an increase in serum amino-transaminases, a reduction in the number of blood leukocytes, an enhancement in neutrophil myeloperoxidase activity, a recruitment of leukocytes toward the liver, an increase in cell death, and an alteration in prothrombin time, activated partial thromboplastin time, and fibrinogen levels. Treatment with cow or goat yogurt was effective at increasing leukocyte number and decrease myeloperoxidase activity. We also observed a decrease in leukocyte accumulation in the liver and a reduction in cell death. Activated partial thromboplastin time and fibrinogen were normalized, but prothrombin time only showed an improvement without reaching normal values. Cow or goat yogurts were effective at protecting against an experimental acute liver injury, especially when administered for 7 days.
Collapse
Affiliation(s)
- Cecilia Haro
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Savijoki K, Ingmer H, Varmanen P. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 2006; 71:394-406. [PMID: 16628446 DOI: 10.1007/s00253-006-0427-1] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 11/28/2022]
Abstract
Lactic acid bacteria (LAB) have a very long history of use in the manufacturing processes of fermented foods and a great deal of effort was made to investigate and manipulate the role of LAB in these processes. Today, the diverse group of LAB includes species that are among the best-studied microorganisms and proteolysis is one of the particular physiological traits of LAB of which detailed knowledge was obtained. The proteolytic system involved in casein utilization provides cells with essential amino acids during growth in milk and is also of industrial importance due to its contribution to the development of the organoleptic properties of fermented milk products. For the most extensively studied LAB, Lactococcus lactis, a model for casein proteolysis, transport, peptidolysis, and regulation thereof is now established. In addition to nutrient processing, cellular proteolysis plays a critical role in polypeptide quality control and in many regulatory circuits by keeping basal levels of regulatory proteins low and removing them when they are no longer needed. As part of the industrial processes, LAB are challenged by various stress conditions that are likely to affect metabolic activities, including proteolysis. While environmental stress responses of LAB have received increasing interest in recent years, our current knowledge on stress-related proteolysis in LAB is almost exclusively based on studies on L. lactis. This review provides the current status in the research of proteolytic systems of LAB with industrial relevance.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, Helsinki, 00014, Finland.
| | | | | |
Collapse
|
27
|
Juille O, Bars DL, Juillard V. The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. MICROBIOLOGY-SGM 2005; 151:1987-1994. [PMID: 15942005 DOI: 10.1099/mic.0.27730-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptide transport is a crucial step in the growth of Streptococcus thermophilus in protein- or peptide-containing media. The objective of the present work was to determine the specificity of peptide utilization by this widely used lactic acid bacterium. To reach that goal, complementary approaches were employed. The capability of a proteinase-negative S. thermophilus strain to grow in a chemically defined medium containing a mixture of peptides isolated from milk as the source of amino acids was analysed. Peptides were separated into three size classes by ultrafiltration. The strain was able to use peptides up to 3.5 kDa during growth, as revealed by liquid chromatography and mass spectrometry analyses. The same strain was grown in chemically defined medium containing a tryptic digest of casein, and the respective time-course consumption of the peptides during growth was estimated. The ability to consume large peptides (up to 23 residues) was confirmed, as long as they are cationic and hydrophobic. These results were confirmed by peptide transport studies. Extension of the study to 11 other strains revealed that they all shared these preferences.
Collapse
Affiliation(s)
- Odile Juille
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Dominique Le Bars
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| | - Vincent Juillard
- Useful Bacterial Surface Proteins, Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, 78352 Jouy-en-Josas Cedex, France
| |
Collapse
|
28
|
Picon A, de Torres B, Gaya P, Nuñez M. Cheesemaking with a Lactococcus lactis strain expressing a mutant oligopeptide binding protein as starter results in a different peptide profile. Int J Food Microbiol 2005; 104:299-307. [PMID: 15975677 DOI: 10.1016/j.ijfoodmicro.2005.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 01/22/2005] [Accepted: 03/12/2005] [Indexed: 11/26/2022]
Abstract
Lactic starters used for cheese manufacture play an important role in the production of bitter peptides and their degradation to non-bitter products. The oligopeptide transport system (Opp) of lactococci is essential for milk peptide utilization. The periplasmic substrate binding protein serves to capture the substrate with high affinity and to deliver it to a membrane-bound complex that translocates it inside the cell. Prt(+)- and Lac(+)-derivatives of MG1363 DeltaoppA strains expressing a wild-type MG1363 OppA or a mutant OppA with a single point mutation at residue 471 (OppA(D471R)) from a plasmid were constructed. These strains were used as lactic starters in cheese manufacture to improve flavour quality by removing hydrophobic peptides from the cheese matrix, through their preferential transport by OppA(D471R). Cheeses made with these strains were not significantly different from control cheeses after 1 day of ripening with respect to bacterial counts, pH and proteolysis, and only slight differences were recorded after 9 and 20 days of ripening. HPLC chromatograms of the hydrophilic and hydrophobic peptides present in the water-soluble fraction of experimental cheeses showed significant differences in peptide content as well as in peak profiles. These results suggest a different peptide utilization in the strain expressing OppA(D471R) and make it suitable for use as starter to improve cheese quality.
Collapse
Affiliation(s)
- A Picon
- Departamento de Tecnología de Alimentos, SGIT-INIA, Crtra de La Coruña Km 7.5, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
29
|
Taylor DL, Ward PN, Rapier CD, Leigh JA, Bowler LD. Identification of a differentially expressed oligopeptide binding protein (OppA2) in Streptococcus uberis by representational difference analysis of cDNA. J Bacteriol 2003; 185:5210-9. [PMID: 12923094 PMCID: PMC181005 DOI: 10.1128/jb.185.17.5210-5219.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus uberis is an increasingly significant cause of intramammary infection in the dairy cow, presently responsible for approximately 33% of all cases of bovine mastitis in the United Kingdom. Following experimentally induced infection of the lactating mammary gland, S. uberis is found predominantly in the luminal areas of secretory alveoli and ductular tissue, indicating that much of the bacterial growth occurs in residual and newly synthesized milk. With the objective of identifying potential virulence determinants in a clinical isolate of S. uberis, we have used representational difference analysis of cDNA to identify genes that show modified expression in milk. We have identified a number of differentially expressed genes that may contribute to the overall pathogenicity of the organism. Of these, a transcript encoding a putative oligopeptide binding protein (OppA) was further characterized. We have found that S. uberis possesses two oppA-like open reading frames, oppA1 and oppA2, which are up-regulated to different degrees following growth in milk. Mutants lacking either oppA1 or oppA2 are viable and have an increased resistance to the toxic peptide derivative aminopterin; however, only mutants lacking oppA1 display a lower rate of growth in milk. In addition, expression of the oppA genes appears to be coordinated by different mechanisms. We conclude that the oppA genes encode oligopeptide binding proteins, possibly displaying different specificities, required for the efficient growth of S. uberis in milk.
Collapse
Affiliation(s)
- D L Taylor
- Trafford Centre for Graduate Medical Education and Research, University of Sussex, Falmer, Brighton BN1 9RY, UK.
| | | | | | | | | |
Collapse
|
30
|
Helinck S, Charbonnel P, Foucaud-Scheunemann C, Piard JC, Juillard V. Charged casein-derived oligopeptides competitively inhibit the transport of a reporter oligopeptide by Lactococcus lactis. J Appl Microbiol 2003; 94:900-7. [PMID: 12694456 DOI: 10.1046/j.1365-2672.2003.01922.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM To study the effect of casein-derived peptides, accumulated during growth of Lactococcus lactis in milk, on its oligopeptide transport (Opp) function. METHODS AND RESULTS This effect was estimated by analysing the ability of casein-derived peptides to compete for the transport of a reporter peptide by whole L. lactis cells. The transport of the reported peptide was monitored by determining the intracellular concentrations of the corresponding amino acids by means of reverse-phase high-performance liquid chromatography (HPLC). Uptake of the reporter peptide was competitively inhibited by casein-derived peptides. The competition was only because of charged casein-derived peptides, including anionic peptides. The design of specific pure peptides made it possible to evidence for a positive (or negative) influence exerted by the positively (or negatively) charged side chain of the N-terminal amino acid on the competition. CONCLUSIONS Charged casein-derived peptides impaired the oligopeptide transport function of L. lactis. SIGNIFICANCE AND IMPACT OF THE STUDY These results demonstrate an inhibition of Opp when too many peptides are produced by the proteinase. Peptide transport by Opp therefore represents a bottleneck for increasing the growth rate of L. lactis in milk.
Collapse
Affiliation(s)
- S Helinck
- INRA-URLGA, Useful Bacterial Surface Proteins Group, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Curley P, van der Does C, Driessen AJM, Kok J, van Sinderen D. Purification and characterisation of a lactococcal aminoacylase. Arch Microbiol 2003; 179:402-8. [PMID: 12682714 DOI: 10.1007/s00203-003-0544-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 02/28/2003] [Accepted: 03/10/2003] [Indexed: 11/28/2022]
Abstract
The amd1-encoded aminoacylase from Lactococcus lactis MG1363 was cloned and overexpressed in Escherichia coli and purified. The assumed dimeric enzyme has a subunit molecular mass of about 42 kDa and contains 2.0+/-0.1 g-atoms of zinc and cobalt, in equimolar amounts, per subunit of Amd1. The enzyme was characterised with respect to substrate specificity, pH, temperature and metal dependence. Amd1 exhibited a broad activity range towards N-acetylated- l-amino acids with a strong preference towards those containing neutral aliphatic and aromatic side chains. It hydrolysed N-acetyl- l-alanine most efficiently, and exhibited temperature and pH optima of 30 degrees C and 7.0, respectively. The activity of Amd1 towards N-acetyl- l-alanine was enhanced by the divalent cation Co(2+), while Cd(2+ )inhibited activity. Interestingly, Amd1 was shown to catalyse the hydrolysis of several dipeptides at pH 7.0, although with reduced V(max) values as compared to hydrolysis of N-acetylated- l-amino acids. This characteristic has also biological significance since Amd1 was able to complement a growth deficiency in a L. lactis triple peptidase mutant.
Collapse
Affiliation(s)
- Peter Curley
- Department of Microbiology, National University of Ireland, Western Road, Cork, Ireland
| | | | | | | | | |
Collapse
|
32
|
Charbonnel P, Lamarque M, Piard JC, Gilbert C, Juillard V, Atlan D. Diversity of oligopeptide transport specificity in Lactococcus lactis species. A tool to unravel the role of OppA in uptake specificity. J Biol Chem 2003; 278:14832-40. [PMID: 12590143 DOI: 10.1074/jbc.m212454200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specific oligopeptide transport system Opp is essential for growth of Lactococcus lactis in milk. We examined the biodiversity of oligopeptide transport specificity in the L. lactis species. Six strains were tested for (i) consumption of peptides during growth in a chemically defined medium and (ii) their ability to transport these peptides. Each strain demonstrated some specific preferences for peptide utilization, which matched the specificity of peptide transport. Sequencing of the binding protein OppA in some strains revealed minor differences at the amino acid level. The differences in specificity were used as a tool to unravel the role of the binding protein in transport specificity. The genes encoding OppA in four strains were cloned and expressed in L. lactis MG1363 deleted for its oppA gene. The substrate specificity of these engineered strains was found to be similar to that of the L. lactis MG1363 parental strain, whichever oppA gene was expressed. In situ binding experiments demonstrated the ability of OppA to interact with non-transported peptides. Taken together, these results provide evidence for a new concept. Despite that fact that OppA is essential for peptide transport, it is not the (main) determinant of peptide transport specificity in L. lactis.
Collapse
Affiliation(s)
- Pascale Charbonnel
- Useful Bacterial Surface Proteins, Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
LeBlanc JG, Matar C, Valdéz JC, LeBlanc J, Perdigon G. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J Dairy Sci 2002; 85:2733-42. [PMID: 12487440 DOI: 10.3168/jds.s0022-0302(02)74360-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effect of peptides released during the fermentation of milk on the humoral immune system and on fibrosarcoma growth was studied. Lactobacillus helveticus was able to release peptidic compounds during milk fermentation due to its high proteolytic activity, as was shown by the degree of proteolysis and size-exclusion HPLC elution profiles. Three fractions of these compounds were separated and fed to mice during different periods (2, 5, and 7 d). The humoral immune response was assessed by following the number of IgA-secreting cells, and the antitumor activity was monitored by studying the regression of subcutaneously implanted fibrosarcomas. Feeding during 2 and 7 d with the medium-sized fraction (Fraction II) significantly increased the IgA-producing cells in the intestines, whereas feeding with the large compound fraction (Fraction I) during 5 d and the small compound fraction (Fraction III) during all three feeding periods provided similar increases. A double dose of Fraction II showed the highest IgA-producing cell count. The increase by Fraction III was shown to be caused by the presence of L-Tryptophan. Fraction II significantly decreased the size of fibrosarcoma when previously fed during 7 d, and feeding with Fraction I during 5 d decreased significantly its size after 35 d of growth. Although the mechanisms by which lactic acid bacteria enhance the immune system are not clear, this study clearly shows that bioactive compounds released in fermented milks contribute to the immunoenhancing and antitumor properties of these products. The release of bioactive peptides by lactic acid bacteria can have important implications on the modulation of the cellular immune response.
Collapse
Affiliation(s)
- J G LeBlanc
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB, Canada EIA 3E9
| | | | | | | | | |
Collapse
|
34
|
Garault P, Le Bars D, Besset C, Monnet V. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J Biol Chem 2002; 277:32-9. [PMID: 11602593 DOI: 10.1074/jbc.m107002200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functions necessary for bacterial growth strongly depend on the features of the bacteria and the components of the growth media. Our objective was to identify the functions essential to the optimum growth of Streptococcus thermophilus in milk. Using random insertional mutagenesis on a S. thermophilus strain chosen for its ability to grow rapidly in milk, we obtained several mutants incapable of rapid growth in milk. We isolated and characterized one of these mutants in which an amiA1 gene encoding an oligopeptide-binding protein (OBP) was interrupted. This gene was a part of an operon containing all the components of an ATP binding cassette transporter. Three highly homologous amiA genes encoding OBPs work with the same components of the ATP transport system. Their simultaneous inactivation led to a drastic diminution in the growth rate in milk and the absence of growth in chemically defined medium containing peptides as the nitrogen source. We constructed single and multiple negative mutants for AmiAs and cell wall proteinase (PrtS), the only proteinase capable of hydrolyzing casein oligopeptides outside the cell. Growth experiments in chemically defined medium containing peptides indicated that AmiA1, AmiA2, and AmiA3 exhibited overlapping substrate specificities, and that the whole system allows the transport of peptides containing from 3 to 23 residues.
Collapse
Affiliation(s)
- Peggy Garault
- Unité de Biochimie et Structure des Protéines, Institut National de la Recherche Agronomique, 78352 Jouy en Josas cedex, France
| | | | | | | |
Collapse
|
35
|
Thiele C, Gänzle MG, Vogel RF. Contribution of Sourdough Lactobacilli, Yeast, and Cereal Enzymes to the Generation of Amino Acids in Dough Relevant for Bread Flavor. Cereal Chem 2002. [DOI: 10.1094/cchem.2002.79.1.45] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- C. Thiele
- Lehrstuhl für Technische Mikrobiologie TU-Muenchen-Weihenstephan, Weihenstephaner Steig 16, D-85350 Freising, Germany
| | - M. G. Gänzle
- Lehrstuhl für Technische Mikrobiologie TU-Muenchen-Weihenstephan, Weihenstephaner Steig 16, D-85350 Freising, Germany
- Corresponding author. E-mail: Phone: + 49 8161 71 3204. Fax: + 49 8161 71 3327
| | - R. F. Vogel
- Lehrstuhl für Technische Mikrobiologie TU-Muenchen-Weihenstephan, Weihenstephaner Steig 16, D-85350 Freising, Germany
| |
Collapse
|
36
|
Guédon E, Renault P, Ehrlich SD, Delorme C. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 2001; 183:3614-22. [PMID: 11371525 PMCID: PMC95238 DOI: 10.1128/jb.183.12.3614-3622.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of 16 genes encoding 12 peptidases (pepC, pepN, pepX, pepP, pepA, pepF2, pepDA1, pepDA2, pepQ, pepT, pepM, and pepO1), P(I) and P(III) proteinases (prtP1 and prtP3), and three transport systems (dtpT, dtpP, and opp-pepO1) of Lactococcus lactis MG1363 was analyzed in response to different environmental factors. Promoter fusions with luciferase reporter genes and/or mRNA analysis were used to study the effects of sugar sources, growth at 37 degrees C, and peptide supply on the transcription of these genes. Only transcription of the pepP gene is modulated by the source of sugar. The presence of potential catabolite-responsive element (CRE) boxes in its promoter region suggests that expression of this gene is directly controlled by catabolic repression. Elevated temperature had no significant effect on the level of transcription of these genes. prtP1, prtP3, pepC, pepN, pepX, and the opp-pepO1 operon are the most highly expressed genes in chemically defined medium, and their expression is repressed 5- to 150-fold by addition of peptide sources such as Casitone in the medium. Moreover, the transcription of prtP1, prtP3, pepC, pepN, and the opp-pepO1 operon is repressed two- to eight-fold by the dipeptides leucylproline and prolylleucine. The transcription of pepDA2 might also be repressed by the peptide sources, but this effect is not observed on the regulation of dtpT, pepP, pepA, pepF2, pepDA1, pepQ, pepT, pepM, and the dtpP operon. The significance of these results with respect to the functions of different components of the proteolytic system in L. lactis are discussed.
Collapse
Affiliation(s)
- E Guédon
- Laboratoire de Génétique Microbienne, Institut National de Recherches Agronomiques, 78352 Jouy-en-Josas Cedex, France
| | | | | | | |
Collapse
|
37
|
Guédon E, Serror P, Ehrlich SD, Renault P, Delorme C. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol 2001; 40:1227-39. [PMID: 11401725 DOI: 10.1046/j.1365-2958.2001.02470.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteolysis is essential for supplying Lactococcus lactis with amino acids during growth in milk. Expression of the major components of the L. lactis proteolytic system, including the cell wall proteinase (PrtP), the oligopeptide transport system (Opp) and at least four intracellular peptidases (PepO1, PepN, PepC, PepDA2), was shown previously to be controlled negatively by a rich nitrogen source. The transcription of prtP, opp-pepO1, pepN and pepC genes is regulated by dipeptides in the medium. Random insertion mutants derepressed for nitrogen control in the expression of the oligopeptide transport system were isolated using an opp-lacZ fusion. A third of the mutants were targeted in the same locus. The product of the inactivated gene shared 48% identity with CodY from Bacillus subtilis, a pleiotropic repressor of the dipeptide permease operon (dpp) and several genes including genes involved in amino acid degradation and competence induction. The signal controlling CodY-dependent repression was searched for by analysing the response of the opp-lux fusion to the addition of 67 dipeptides with different amino acid compositions. Full correlation was found between the dipeptide content in branched-chain amino acids (BCAA; isoleucine, leucine or valine) and their ability to mediate the repression of opp-pepO1 expression. The repressive effect resulting from specific regulatory dipeptides was abolished in L. lactis mutants affected in terms of their transport or degradation into amino acids, showing that the signal was dependent on the BCAA pool in the cell. Lastly, the repression of opp-pepO1 expression was stronger in a mutant unable to degrade BCAAs, underlining the central role of BCAAs as a signal for CodY activity. This pattern of regulation suggests that, in L. lactis and possibly other Gram-positive bacteria, CodY is a pleiotropic repressor sensing nutritional supply as a function of the BCAA pool in the cell.
Collapse
Affiliation(s)
- E Guédon
- Laboratoire de Génétique Microbienne, Institut National de Recherches Agronomiques, 78352 Jouy-en-Josas cedex, France
| | | | | | | | | |
Collapse
|
38
|
Gendrot F, Ferchichi M, Winters DA, Hemme D. Valine transport and biodiversity of Leuconostoc wild strains from French raw milk cheeses. Syst Appl Microbiol 2000; 23:461-8. [PMID: 11249015 DOI: 10.1016/s0723-2020(00)80019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rate of L-valine transport in whole cells of Leuconostoc was at the maximum at 30 degrees C, pH 6.0 in the presence of an energy source. Transport was inhibited by 40-55%, in the presence of the ionophores (valinomycin, nigericin or monensin), and uncouplers (carbonyl cyanide-m-chloro-phenylhydrazone or 2,4-dinitrophenol) confirming the previously described delta p-driven branched-chain amino acid transport system described in cytoplasmic membranes (Winters et al., 1991, Appl. Environ. Microbiol., 57, 3350-3354). Sulfhydryl group reagents (p-chloro-mercuribenzoate, iodoacetate and N-ethyl maleimide) all inhibited valine transport by 60-70%, indicating that valine is actively transported at high valine concentration. Three kinetically distinguishable transport systems were identified for each strain using whole cells, confirming results obtained with membranes. L-valine transport Kt and Vmax could be an additional tool to estimate the biodiversity of 18 Leuconostoc strains belonging to the dominant flora of French raw milk cheeses. Kt values varied from 20 to 510 nmol/l for the very high affinity system, from 26 to 427 pmol/l for the high affinity system and from 0.65 to 4.40 mmol/l for the low affinity system. No correlation existed between valine transport rates and a particular strain's ability to acidify milk or complex media, suggesting that valine transport is not a growth-limiting function in species of the genus Leuconostoc.
Collapse
Affiliation(s)
- F Gendrot
- Institut National de la Recherche Agronomique, Centre de Recherches de Jouy-en-Josas, France
| | | | | | | |
Collapse
|
39
|
Flambard B, Juillard V. The autoproteolysis of Lactococcus lactis lactocepin III affects its specificity towards beta-casein. Appl Environ Microbiol 2000; 66:5134-40. [PMID: 11097880 PMCID: PMC92434 DOI: 10.1128/aem.66.12.5134-5140.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of autoproteolysis of Lactococcus lactis lactocepin III on its specificity towards beta-casein was investigated. beta-Casein degradation was performed by using either an autolysin-defective derivative of L. lactis MG1363 carrying the proteinase genes of L. lactis SK11, which was unable to transport oligopeptides, or autoproteolyzed enzyme purified from L. lactis SK11. Comparison of the peptide pools by high-performance liquid chromatography analysis revealed significant differences. To analyze these differences in more detail, the peptides released by the cell-anchored proteinase were identified by on-line coupling of liquid chromatography to mass spectrometry. More than 100 oligopeptides were released from beta-casein by the cell-anchored proteinase. Analysis of the cleavage sites indicated that the specificity of peptide bond cleavage by the cell-anchored proteinase differed significantly from that of the autoproteolyzed enzyme.
Collapse
Affiliation(s)
- B Flambard
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, F-78350 Jouy-en-Josas, France
| | | |
Collapse
|
40
|
Etoh S, Sonomoto K, Ishizaki A. Complementary effects of bifidogenic growth stimulators and ammonium sulfate in natural rubber serum powder on Bifidobacterium bifidum. Biosci Biotechnol Biochem 1999; 63:627-31. [PMID: 10361675 DOI: 10.1271/bbb.63.627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural rubber serum powder, rich in crude protein and carbohydrates, had a strong growth-stimulating activity for Bifidobacterium bifidum JCM 1254, which was unable to grow in a fully synthetic medium, B12 assay medium. Natural rubber serum powder was fractionated by ultrafiltration (molecular weight cutoff 1000). The active ultrafiltrate was further concentrated and desalted with an adsorptive microconcentrator, which adsorbs virtually all amino acids and peptides. Through this purification step, it was found that the adsorbed fraction obtained did not stimulate growth independently but acted complementarily with a small amount of ammonium sulfate. The adsorbed fraction was subsequently analyzed on reversed-phase high pressure liquid chromatography, and the activities of the eluates were measured on B12 assay medium with ammonium sulfate. Consequently, it was proved that several peptidic ingredients in the adsorbed fraction increased the growth of B. bifidum.
Collapse
Affiliation(s)
- S Etoh
- Department of Food Science and Technology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
41
|
Fadda S, Sanz Y, Vignolo G, Aristoy M, Oliver G, Toldrá F. Hydrolysis of pork muscle sarcoplasmic proteins by lactobacillus curvatus and lactobacillus sake. Appl Environ Microbiol 1999; 65:578-84. [PMID: 9925585 PMCID: PMC91064 DOI: 10.1128/aem.65.2.578-584.1999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus curvatus CECT 904 and Lactobacillus sake CECT 4808 were selected on the basis of their proteolytic activities against synthetic substrates. Further, the effects of whole cells, cell extracts, and a combination of both enzymatic sources on muscle sarcoplasmic proteins were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse-phase high-performance liquid chromatography analyses. Strains of both species displayed proteinase activities on five sarcoplasmic proteins. The inoculation of whole cells caused a degradation of peptides, whereas the addition of cell extracts resulted in the generation of both hydrophilic and hydrophobic peptides. This phenomenon was remarkably more pronounced when L. curvatus was involved. Whole cells also consumed a great amount of free amino acids, while the addition of intracellular enzymes contributed to their generation. L. sake accounted for a greater release of free amino acids. In general, cell viability and also proteolytic events were promoted when cell suspensions were provided with cell extracts as an extra source of enzymes.
Collapse
Affiliation(s)
- S Fadda
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), 46100 Burjassot (Valencia), Spain
| | | | | | | | | | | |
Collapse
|
42
|
Flambard B, Helinck S, Richard J, Juillard V. The contribution of caseins to the amino acid supply for Lactococcus lactis depends on the type of cell envelope proteinase. Appl Environ Microbiol 1998; 64:1991-6. [PMID: 9603805 PMCID: PMC106269 DOI: 10.1128/aem.64.6.1991-1996.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability of caseins to fulfill the amino acid requirements of Lactococcus lactis for growth was studied as a function of the type of cell envelope proteinase (PI versus PIII type). Two genetically engineered strains of L. lactis that differed only in the type of proteinase were grown in chemically defined media containing alphas1-, beta-, and kappa-caseins (alone or in combination) as the sources of amino acids. Casein utilization resulted in limitation of the growth rate, and the extent of this limitation depended on the type of casein and proteinase. Adding different mixtures of essential amino acids to the growth medium made it possible to identify the nature of the limitation. This procedure also made it possible to identify the amino acid deficiency which was growth rate limiting for L. lactis in milk (S. Helinck, J. Richard, and V. Juillard, Appl. Environ. Microbiol. 63:2124-2130, 1997) as a function of the type of proteinase. Our results were compared with results from previous in vitro experiments in which casein degradation by purified proteinases was examined. The results were in agreement only in the case of the PI-type proteinase. Therefore, our results bring into question the validity of the in vitro approach to identification of casein-derived peptides released by a PIII-type proteinase.
Collapse
Affiliation(s)
- B Flambard
- Unité de Recherches Laitières et Génétique Appliquée, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|