1
|
Molecular evidence of parallel evolution in a cyanophage. PLoS One 2023; 18:e0281537. [PMID: 36757931 PMCID: PMC9910659 DOI: 10.1371/journal.pone.0281537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Antagonistic interactions between bacteriophage (phage) and its bacterial host drives the continual selection for resistance and counter-defence. To date, much remains unknown about the genomic evolution that occurs as part of the underlying mechanisms. Such is the case for the marine cyanobacteria Synechococcus and viruses (cyanophages) that infect them. Here, we monitored host and phage abundances, alongside genomic changes to the phage populations, in a 500-day (~55 bacterial generations) infection experiment between Synechococcus sp. WH7803 and the T4-type cyanophage S-PM2d, run parallel in three replicate chemostats (plus one control chemostat). Flow cytometric count of total abundances revealed relatively similar host-phage population dynamics across the chemostats, starting with a cycle of host population collapse and recovery that led to phases of host-phage coexistence. Whole-genome analysis of the S-PM2d populations detected an assemblage of strongly selected and repeatable genomic changes, and therefore parallel evolution in the phage populations, early in the experiment (sampled on day 39). These consisted mostly of non-synonymous single-nucleotide-polymorphisms and a few instances of indel, altogether affecting 18 open-reading-frames, the majority of which were predicted to encode virion structures including those involved in phage adsorption onto host (i.e., baseplate wedge, short tail fibre, adhesin component). Mutations that emerged later (sampled on day 500), on the other hand, were found at a larger range of frequencies, with many lacking repeatability across the chemostats. This is indicative of some degree of between-population divergence in the phage evolutionary trajectory over time. A few of the early and late mutations were detected within putative auxiliary metabolic genes, but these generally occurred in only one or two of the chemostats. Less repeatable mutations may have higher fitness costs, thus drawing our attention onto the role of trade-offs in modulating the trajectory of a host-phage coevolution.
Collapse
|
2
|
Bartlau N, Wichels A, Krohne G, Adriaenssens EM, Heins A, Fuchs BM, Amann R, Moraru C. Highly diverse flavobacterial phages isolated from North Sea spring blooms. THE ISME JOURNAL 2022; 16:555-568. [PMID: 34475519 PMCID: PMC8776804 DOI: 10.1038/s41396-021-01097-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
It is generally recognized that phages are a mortality factor for their bacterial hosts. This could be particularly true in spring phytoplankton blooms, which are known to be closely followed by a highly specialized bacterial community. We hypothesized that phages modulate these dense heterotrophic bacteria successions following phytoplankton blooms. In this study, we focused on Flavobacteriia, because they are main responders during these blooms and have an important role in the degradation of polysaccharides. A cultivation-based approach was used, obtaining 44 lytic flavobacterial phages (flavophages), representing twelve new species from two viral realms. Taxonomic analysis allowed us to delineate ten new phage genera and ten new families, from which nine and four, respectively, had no previously cultivated representatives. Genomic analysis predicted various life styles and genomic replication strategies. A likely eukaryote-associated host habitat was reflected in the gene content of some of the flavophages. Detection in cellular metagenomes and by direct-plating showed that part of these phages were actively replicating in the environment during the 2018 spring bloom. Furthermore, CRISPR/Cas spacers and re-isolation during two consecutive years suggested that, at least part of the new flavophages are stable components of the microbial community in the North Sea. Together, our results indicate that these diverse flavophages have the potential to modulate their respective host populations.
Collapse
Affiliation(s)
- Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Biologische Anstalt Helgoland, Heligoland, Germany
| | - Georg Krohne
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Anneke Heins
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Rogovski P, Cadamuro RD, da Silva R, de Souza EB, Bonatto C, Viancelli A, Michelon W, Elmahdy EM, Treichel H, Rodríguez-Lázaro D, Fongaro G. Uses of Bacteriophages as Bacterial Control Tools and Environmental Safety Indicators. Front Microbiol 2021; 12:793135. [PMID: 34917066 PMCID: PMC8670004 DOI: 10.3389/fmicb.2021.793135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages are bacterial-specific viruses and the most abundant biological form on Earth. Each bacterial species possesses one or multiple bacteriophages and the specificity of infection makes them a promising alternative for bacterial control and environmental safety, as a biotechnological tool against pathogenic bacteria, including those resistant to antibiotics. This application can be either directly into foods and food-related environments as biocontrol agents of biofilm formation. In addition, bacteriophages are used for microbial source-tracking and as fecal indicators. The present review will focus on the uses of bacteriophages like bacterial control tools, environmental safety indicators as well as on their contribution to bacterial control in human, animal, and environmental health.
Collapse
Affiliation(s)
- Paula Rogovski
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Estêvão Brasiliense de Souza
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Charline Bonatto
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | | | | | - Elmahdy M. Elmahdy
- Laboratory of Environmental Virology, Environmental Research Division, Department of Water Pollution Research, National Research Centre, Giza, Egypt
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul (UFFS), Erechim, Brazil
| | - David Rodríguez-Lázaro
- Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain
- Centre for Emerging Pathogens and Global Health, Universidad de Burgos, Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-Like and T7-Like Cyanophages Using the Polony Method Show They Are Significant Members of the Virioplankton in the North Pacific Subtropical Gyre. Front Microbiol 2020; 11:1210. [PMID: 32612586 PMCID: PMC7308941 DOI: 10.3389/fmicb.2020.01210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The North Pacific Subtropical Gyre (NPSG) is one of the largest biomes on Earth, with the cyanobacterium Prochlorococcus being the most abundant primary producer year-round. Viruses that infect cyanobacteria (cyanophages) influence cyanobacterial mortality, diversity and evolution. Two major cyanophage families are the T4-like cyanomyoviruses and T7-like cyanopodoviruses, yet their abundances and distribution patterns remain unknown due to difficulty in quantifying their populations. To address this limitation, we previously adapted the polony method (for PCR colony) to quantify T7-like cyanophages and applied it to spring populations in the Red Sea. Here, we further adapted the method for the quantification of T4-like cyanophages and analyzed the abundances of T4-like and T7-like cyanophage populations in the photic zone of the NPSG in summer 2015 and spring 2016. Combined, the peak abundances of these two cyanophage families reached 2.8 × 106 and 1.1 × 106 cyanophages ⋅ ml–1 in the summer and spring, respectively. They constituted between 3 and 16% of total virus-like particles (VLPs), comprising a substantial component of the virioplankton in the NPSG. While both cyanophage families were highly abundant, the T4-like cyanophages were generally 1.3–4.4 fold more so. In summer, cyanophages had similar and reproducible distribution patterns with depth. Abundances were relatively low in the upper mixed layer and increased to form a pronounced subsurface peak at 100 m (1.9 × 106 and 9.1 × 105 phages ⋅ ml–1 for the T4-like and T7-like cyanophages, respectively), coincident with the maximum in Prochlorococcus populations. Less vertical structure in cyanophage abundances was apparent in the spring profile, despite a subsurface peak in Prochlorococcus numbers. In the summer upper mixed layer, cyanophages constituted a smaller proportion of VLPs than below it and cyanophage to cyanobacteria ratios were considerably lower (1.3–2.8) than those of VLPs to bacteria (8.1–21.2). Differences in abundances between the two families and their contribution to VLPs with depth suggest differences in cyanophage production and/or decay processes relative to other members of the virioplankton in the upper mixed layer. These findings highlight the importance of quantifying distinct populations within the virioplankton to gain accurate understanding of their distribution patterns.
Collapse
Affiliation(s)
- Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Metagenomic Analysis of Virioplankton from the Pelagic Zone of Lake Baikal. Viruses 2019; 11:v11110991. [PMID: 31671744 PMCID: PMC6893740 DOI: 10.3390/v11110991] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022] Open
Abstract
This study describes two viral communities from the world’s oldest lake, Lake Baikal. For the analysis, we chose under-ice and late spring periods of the year as the most productive for Lake Baikal. These periods show the maximum seasonal biomass of phytoplankton and bacterioplankton, which are targets for viruses, including bacteriophages. At that time, the main group of viruses were tailed bacteriophages of the order Caudovirales that belong to the families Myoviridae, Siphoviridae and Podoviridae. Annotation of functional genes revealed that during the under-ice period, the “Phages, Prophages, Transposable Elements and Plasmids” (27.4%) category represented the bulk of the virome. In the late spring period, it comprised 9.6% of the virome. We assembled contigs by two methods: Separately assembled in each virome or cross-assembled. A comparative analysis of the Baikal viromes with other aquatic environments indicated a distribution pattern by soil, marine and freshwater groups. Viromes of lakes Baikal, Michigan, Erie and Ontario form the joint World’s Largest Lakes clade.
Collapse
|
6
|
Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, Klenk HP, Wittmann J. Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya. PLoS One 2019; 14:e0215734. [PMID: 31022240 PMCID: PMC6483233 DOI: 10.1371/journal.pone.0215734] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
As a step towards better understanding of diversity and biology of phages and their hosts in haloalkaline Lake Elmenteita, phages were isolated from sediment samples and overlying water using indigenous bacteria as hosts. 17 seemingly different phages of diverse morphotypes with different dimensions and partly exhibiting remarkably unusual ultrastructures were revealed by transmission electron microscopy. 12 clonal phage isolates were further characterized. Infection capability of the phages was optimum at 30-35°C and in alkali condition with optimum at pH 10-12. Structural protein profiles and restriction fragment length polymorphism analyses patterns were distinct for each of the phage type. Complete nucleotide sequences of phages vB-VmeM-32, vB_EauS-123 and vB_BhaS-171 genomes varied in size from 30,926-199,912 bp and G + C content of between 36.25-47.73%. A range of 56-260 potential open reading frames were identified and annotated. The results showed that the 12 phages were distinct from each other and confirmed the presence and diversity of phages in extreme environment of haloalkaline Lake Elmenteita. The phages were deposited at the German Collection of Microorganisms and Cell Cultures and three of their genomes uploaded to NCBI GenBank.
Collapse
Affiliation(s)
- Juliah Khayeli Akhwale
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- * E-mail:
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Braunschweig, Germany
| | - Christine Rohde
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johannes Wittmann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
7
|
Potapov S, Belykh O, Krasnopeev A, Gladkikh A, Kabilov M, Tupikin A, Butina T. Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiol Lett 2018; 365:4693836. [PMID: 29228190 DOI: 10.1093/femsle/fnx264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Based on second generation sequencing (MiSeq platform, Illumina), we determined the genetic diversity of T4-like bacteriophages of the family Myoviridae by analysing fragments of the major capsid protein gene g23 in the plankton of Lake Baikal. The sampling depth in our study was significantly higher than in those obtained by the Sanger method before. We obtained 33 701 sequences of the g23 gene fragments, 141 operational taxonomic units (OTUs) of which were identified. 86 OTUs (60.9%) had the closest relatives from lakes Bourget and Annecy, and 28 OTUs (19.8%) had the highest identity with the Baikal g23 clones, which had been previously identified in the northern and southern basins of the lake by the Sanger method. The remaining OTUs were similar to the clones from other ecosystems. We showed a high genetic diversity of T4-type bacteriophages and a genetic difference with the phage communities from other ecosystems.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Belykh
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Andrey Krasnopeev
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anna Gladkikh
- Laboratory of Cholera, Irkutsk Antiplague Research Institute of Siberia and Far East, Irkutsk 664047, Russia
| | - Marsel Kabilov
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Aleksey Tupikin
- Chemical Biology and Fundamental Medicine Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Tatyana Butina
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|
8
|
Fan N, Qi R, Yang M. Isolation and characterization of a virulent bacteriophage infecting Acinetobacter johnsonii from activated sludge. Res Microbiol 2017; 168:472-481. [DOI: 10.1016/j.resmic.2017.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/17/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
|
9
|
Peters DL, Stothard P, Dennis JJ. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6. PLoS One 2017; 12:e0173341. [PMID: 28291834 PMCID: PMC5349666 DOI: 10.1371/journal.pone.0173341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is ‘phage therapy’, the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.
Collapse
Affiliation(s)
- Danielle L. Peters
- 6-065 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- 6-065 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
10
|
Gao EB, Huang Y, Ning D. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution. Genes (Basel) 2016; 7:genes7100080. [PMID: 27690109 PMCID: PMC5083919 DOI: 10.3390/genes7100080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/30/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.
Collapse
Affiliation(s)
- E-Bin Gao
- School of The Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, Xingangxi Road, Haizhu District, Guangzhou 5103401, Guangdong Province, China.
| | - Degang Ning
- ACS Key Laboratory of Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7, Donghu South Road, Wuchang District, Wuhan 430072, Hubei Province, China.
| |
Collapse
|
11
|
Dickinson I, Goodall-Copestake W, Thorne MAS, Schlitt T, Ávila-Jiménez ML, Pearce DA. Extremophiles in an Antarctic Marine Ecosystem. Microorganisms 2016; 4:microorganisms4010008. [PMID: 27681902 PMCID: PMC5029513 DOI: 10.3390/microorganisms4010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/28/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.
Collapse
Affiliation(s)
- Iain Dickinson
- Department of Applied Sciences, Faculty of Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - William Goodall-Copestake
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Thomas Schlitt
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | | | - David A Pearce
- Department of Applied Sciences, Faculty of Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
- The University Centre in Svalbard (UNIS), P.O. Box 156, Svalbard, Longyearbyen N-9171, Norway.
| |
Collapse
|
12
|
Veillette J, Lovejoy C, Potvin M, Harding T, Jungblut AD, Antoniades D, Chénard C, Suttle CA, Vincent WF. Milne Fiord epishelf lake: A coastal Arctic ecosystem vulnerable to climate change. ECOSCIENCE 2015. [DOI: 10.2980/18-3-3443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julie Veillette
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Connie Lovejoy
- Québec Océan, IBIS and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Marianne Potvin
- Québec Océan, IBIS and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Tommy Harding
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Anne D. Jungblut
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Dermot Antoniades
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Caroline Chénard
- Department of Earth and Ocean Sciences, Botany, and Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Curtis A. Suttle
- Department of Earth and Ocean Sciences, Botany, and Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Warwick F. Vincent
- Centre d'études nordiques and Département de biologie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
13
|
Comparative Genomic and Phylogenomic Analyses Reveal a Conserved Core Genome Shared by Estuarine and Oceanic Cyanopodoviruses. PLoS One 2015; 10:e0142962. [PMID: 26569403 PMCID: PMC4646655 DOI: 10.1371/journal.pone.0142962] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.
Collapse
|
14
|
Using signature genes as tools to assess environmental viral ecology and diversity. Appl Environ Microbiol 2015; 80:4470-80. [PMID: 24837394 DOI: 10.1128/aem.00878-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses (including bacteriophages) are the most abundant biological entities on the planet. As such, they are thought to have a major impact on all aspects of microbial community structure and function. Despite this critical role in ecosystem processes, the study of virus/phage diversity has lagged far behind parallel studies of the bacterial and eukaryotic kingdoms, largely due to the absence of any universal phylogenetic marker. Here we review the development and use of signature genes to investigate viral diversity, as a viable strategy for data sets of specific virus groups. Genes that have been used include those encoding structural proteins, such as portal protein, major capsid protein, and tail sheath protein, auxiliary metabolism genes, such as psbA, psbB,and phoH, and several polymerase genes. These marker genes have been used in combination with PCR-based fingerprinting and/or sequencing strategies to investigate spatial, temporal, and seasonal variations and diversity in a wide range of habitats.
Collapse
|
15
|
Fast detection of mycobacteriophages through conserved genes. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Butina TV, Potapov SA, Belykh OI, Belikov SI. Genetic diversity of cyanophages of the myoviridae family as a constituent of the associated community of the Baikal sponge Lubomirskia baicalensis. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415030011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Roux S, Enault F, Ravet V, Pereira O, Sullivan MB. Genomic characteristics and environmental distributions of the uncultivated Far-T4 phages. Front Microbiol 2015; 6:199. [PMID: 25852662 PMCID: PMC4360716 DOI: 10.3389/fmicb.2015.00199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Viral metagenomics (viromics) is a tremendous tool to reveal viral taxonomic and functional diversity across ecosystems ranging from the human gut to the world's oceans. As with microbes however, there appear vast swaths of “dark matter” yet to be documented for viruses, even among relatively well-studied viral types. Here, we use viromics to explore the “Far-T4 phages” sequence space, a neighbor clade from the well-studied T4-like phages that was first detected through PCR study in seawater and subsequently identified in freshwater lakes through 454-sequenced viromes. To advance the description of these viruses beyond this single marker gene, we explore Far-T4 genome fragments assembled from two deeply-sequenced freshwater viromes. Single gene phylogenetic trees confirm that the Far-T4 phages are divergent from the T4-like phages, genome fragments reveal largely collinear genome organizations, and both data led to the delineation of five Far-T4 clades. Three-dimensional models of major capsid proteins are consistent with a T4-like structure, and highlight a highly conserved core flanked by variable insertions. Finally, we contextualize these now better characterized Far-T4 phages by re-analyzing 196 previously published viromes. These suggest that Far-T4 are common in freshwater and seawater as only four of 82 aquatic viromes lacked Far-T4-like sequences. Variability in representation across the five newly identified clades suggests clade-specific niche differentiation may be occurring across the different biomes, though the underlying mechanism remains unidentified. While complete genome assembly from complex communities and the lack of host linkage information still bottleneck virus discovery through viromes, these findings exemplify the power of metagenomics approaches to assess the diversity, evolutionary history, and genomic characteristics of novel uncultivated phages.
Collapse
Affiliation(s)
- Simon Roux
- Ecology and Evolutionary Biology, University of Arizona Tucson, AZ, USA
| | - François Enault
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | - Viviane Ravet
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | - Olivier Pereira
- Laboratoire "Microorganismes: Génome et Environnement," Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Centre National de la Recherche Scientifique, UMR 6023, Laboratoire Microorganismes: Génome et Environnement Aubière, France
| | | |
Collapse
|
18
|
Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol 2015; 13:147-59. [PMID: 25639680 DOI: 10.1038/nrmicro3404] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine viruses have important roles in microbial mortality, gene transfer, metabolic reprogramming and biogeochemical cycling. In this Review, we discuss recent technological advances in marine virology including the use of near-quantitative, reproducible metagenomics for large-scale investigation of viral communities and the emergence of gene-based viral ecology. We also describe the reprogramming of microbially driven processes by viral metabolic genes, the identification of novel viruses using cultivation-dependent and cultivation-independent tools, and the potential for modelling studies to provide a framework for studying virus-host interactions. These transformative advances have set a rapid pace in exploring and predicting how marine viruses manipulate and respond to their environment.
Collapse
|
19
|
Abstract
Samples from three stations in Kranji Reservoir, Singapore (n = 21) were collected and analyzed for cyanomyovirus abundance and diversity. A total of 73 different g20 (viral capsid assembly protein genes) amino acid sequences were obtained from this study. A phylogenetic analysis revealed that the 73 segments were distributed in six major clusters (α to ζ), with four unique subclusters, which were identified as KRM-I, KRM-II, KRM-III, and KRM-IV. The cyanophage community in Kranji Reservoir exhibited a large degree of diversity; the clones obtained in this study showed similarities to those from many different environments, including oceans, lakes, bays, and paddy floodwater, as well as clones from paddy field soils. However, the sequences in this study were generally found to be more closely related to the g20 sequences of freshwaters and brackish waters than those from marine environments. The rarefaction curves and Chao 1 indices from this study showed that the diversity of the cyanomyovirus community was greater during the Inter-monsoon periods than the Southwest and Northeast Monsoons. A few seasonal changes in the taxa were observed: (i) Cluster ζ was absent during the Southwest Monsoon, and (ii) most of the samples fell into Group 3 in the PCA score plot during the Northeast Monsoon, and the fraction of Cluster ɛ increased significantly.
Collapse
Affiliation(s)
- Bee Hui Yeo
- School of Civil and Environmental Engineering, Nanyang Technological University
| | | |
Collapse
|
20
|
Butina TV, Potapov SA, Belykh OI, Mukhanov VS, Rylkova OA, Damdinsuren N, Chojdash B. Molecular genetic diversity of the Myoviridae family cyanophages in Lake Khövsgöl (Mongolia). Mol Biol 2014. [DOI: 10.1134/s0026893314060041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:583-594. [PMID: 25756111 DOI: 10.1111/1758-2229.12160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyanophages are abundant in the oceanic environment and directly impact cyanobacterial distributions, physiological processes and evolution. Two samples collected from coastal Maine in July and September 2009 were enriched for Synechococcus cells using flow cytometry and examined through metagenomic sequencing. Homology-based sequence prediction indicated cyanophages, largely myoviruses, accounted for almost half the reads and provided insights into environmental infection events. T4-phage core-gene phylogenetic reconstruction revealed unique diversity among uncultured cyanophages and reference isolates resulting in identification of a new phylogenetic cluster. Genomic comparison of reference cyanophage strains S-SM2 and Syn1 with putative homologous contigs recovered from metagenomes provided evidence that gene insertion, deletion and recombination have occurred among, and are likely important for diversification of, natural populations. Identification of putative genetic exchange between cyanophage and non-cyanophage viruses, i.e. Micromonas virus and Pelagibacter phage, supports hypotheses related to a significant role for viruses in mediating transfer of genetic material between taxonomically diverse organisms with overlapping ecological niches.
Collapse
|
22
|
Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol 2014; 81:441-52. [PMID: 25362060 DOI: 10.1128/aem.02483-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoviruses and podoviruses that infect cyanobacteria are the two major groups of marine cyanophages, but little is known of how their phylogenetic lineages are distributed in different habitats. In this study, we analyzed the phylogenetic relationships of cyanopodoviruses and cyanomyoviruses based on the existing genomes. The 28 cyanomyoviruses were classified into four clusters (I to IV), and 19 of the 20 cyanopodoviruses were classified into two clusters, MPP-A and MPP-B, with four subclusters within cluster MPP-B. These genomes were used to recruit cyanophage-like fragments from microbial and viral metagenomes to estimate the relative abundances of these cyanophage lineages. Our results showed that cyanopodoviruses and cyanomyoviruses are both abundant in various marine environments and that clusters MPP-B, II and III appear to be the most dominant lineages. Cyanopodoviruses and cluster I and IV cyanomyoviruses exhibited habitat-related variability in their relative levels of abundance, while cluster II and III cyanomyoviruses appeared to be consistently dominant in various habitats. Multivariate analyses showed that reads that mapped to Synechococcus phages and Prochlorococcus phages had distinct distribution patterns that were significantly correlated to those of Synechococcus and Prochlorococcus, respectively. The Mantel test also revealed a strong correlation between the community compositions of cyanophages and picocyanobacteria. Given that cyanomyoviruses tend to have a broad host range and some can cross-infect Synechococcus and Prochlorococcus, while cyanopodoviruses are commonly host specific, the observation that their community compositions both correlated significantly with that of picocyanobacteria was unexpected. Although cyanomyoviruses and cyanopodoviruses differ in host specificity, their biogeographic distributions are likely both constrained by the picocyanobacterial community.
Collapse
|
23
|
Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. BACTERIOPHAGE 2014; 1:31-45. [PMID: 21687533 DOI: 10.4161/bact.1.1.14942] [Citation(s) in RCA: 709] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 12/28/2022]
Abstract
Bacteriophages or phages are the most abundant organisms in the biosphere and they are a ubiquitous feature of prokaryotic existence. A bacteriophage is a virus which infects a bacterium. Archaea are also infected by viruses, whether these should be referred to as 'phages' is debatable, but they are included as such in the scope this article. Phages have been of interest to scientists as tools to understand fundamental molecular biology, as vectors of horizontal gene transfer and drivers of bacterial evolution, as sources of diagnostic and genetic tools and as novel therapeutic agents. Unraveling the biology of phages and their relationship with their hosts is key to understanding microbial systems and their exploitation. In this article we describe the roles of phages in different host systems and show how modeling, microscopy, isolation, genomic and metagenomic based approaches have come together to provide unparalleled insights into these small but vital constituents of the microbial world.
Collapse
Affiliation(s)
- Martha Rj Clokie
- Department of Infection, Immunity and Inflammation; Medical Sciences Building; University of Leicester; Leicester, UK
| | | | | | | |
Collapse
|
24
|
Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 2014; 513:242-5. [PMID: 25043051 DOI: 10.1038/nature13459] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/07/2014] [Indexed: 11/09/2022]
Abstract
Microbes and their viruses drive myriad processes across ecosystems ranging from oceans and soils to bioreactors and humans. Despite this importance, microbial diversity is only now being mapped at scales relevant to nature, while the viral diversity associated with any particular host remains little researched. Here we quantify host-associated viral diversity using viral-tagged metagenomics, which links viruses to specific host cells for high-throughput screening and sequencing. In a single experiment, we screened 10(7) Pacific Ocean viruses against a single strain of Synechococcus and found that naturally occurring cyanophage genome sequence space is statistically clustered into discrete populations. These population-based, host-linked viral ecological data suggest that, for this single host and seawater sample alone, there are at least 26 double-stranded DNA viral populations with estimated relative abundances ranging from 0.06 to 18.2%. These populations include previously cultivated cyanophage and new viral types missed by decades of isolate-based studies. Nucleotide identities of homologous genes mostly varied by less than 1% within populations, even in hypervariable genome regions, and by 42-71% between populations, which provides benchmarks for viral metagenomics and genome-based viral species definitions. Together these findings showcase a new approach to viral ecology that quantitatively links objectively defined environmental viral populations, and their genomes, to their hosts.
Collapse
Affiliation(s)
- Li Deng
- 1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA [2] Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Groundwater Ecology, Neuherberg 85764, Germany. [3]
| | - J Cesar Ignacio-Espinoza
- 1] Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719, USA [2]
| | - Ann C Gregory
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA
| | - Bonnie T Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA
| | - Joshua S Weitz
- 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA [2] School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences &Institute for Molecular Bioscience, The University of Queensland, St Lucia QLB 4072, Australia
| | - Matthew B Sullivan
- 1] Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA [2] Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85719, USA
| |
Collapse
|
25
|
Jing R, Liu J, Yu Z, Liu X, Wang G. Phylogenetic distribution of the capsid assembly protein gene (g20) of cyanophages in paddy floodwaters in Northeast China. PLoS One 2014; 9:e88634. [PMID: 24533125 PMCID: PMC3922986 DOI: 10.1371/journal.pone.0088634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/13/2014] [Indexed: 12/03/2022] Open
Abstract
Numerous studies have revealed the high diversity of cyanophages in marine and freshwater environments, but little is currently known about the diversity of cyanophages in paddy fields, particularly in Northeast (NE) China. To elucidate the genetic diversity of cyanophages in paddy floodwaters in NE China, viral capsid assembly protein gene (g20) sequences from five floodwater samples were amplified with the primers CPS1 and CPS8. Denaturing gradient gel electrophoresis (DGGE) was applied to distinguish different g20 clones. In total, 54 clones differing in g20 nucleotide sequences were obtained in this study. Phylogenetic analysis showed that the distribution of g20 sequences in this study was different from that in Japanese paddy fields, and all the sequences were grouped into Clusters α, β, γ and ε. Within Clusters α and β, three new small clusters (PFW-VII∼-IX) were identified. UniFrac analysis of g20 clone assemblages demonstrated that the community compositions of cyanophage varied among marine, lake and paddy field environments. In paddy floodwater, community compositions of cyanophage were also different between NE China and Japan.
Collapse
Affiliation(s)
- Ruiyong Jing
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin, China
- Graduate University of Chinese Academy of Science, Beijing, China
- Heilongjiang BaYi Agricultural University, College of Life and Sci-technology, Daqing, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Harbin, China
- * E-mail:
| |
Collapse
|
26
|
Watkins SC, Smith JR, Hayes PK, Watts JEM. Characterisation of host growth after infection with a broad-range freshwater cyanopodophage. PLoS One 2014; 9:e87339. [PMID: 24489900 PMCID: PMC3906167 DOI: 10.1371/journal.pone.0087339] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022] Open
Abstract
Freshwater cyanophages are poorly characterised in comparison to their marine counterparts, however, the level of genetic diversity that exists in freshwater cyanophage communities is likely to exceed that found in marine environments, due to the habitat heterogeneity within freshwater systems. Many cyanophages are specialists, infecting a single host species or strain; however, some are less fastidious and infect a number of different host genotypes within the same species or even hosts from different genera. Few instances of host growth characterisation after infection by broad host-range phages have been described. Here we provide an initial characterisation of interactions between a cyanophage isolated from a freshwater fishing lake in the south of England and its hosts. Designated ΦMHI42, the phage is able to infect isolates from two genera of freshwater cyanobacteria, Planktothrix and Microcystis. Transmission Electron Microscopy and Atomic Force Microscopy indicate that ΦMHI42 is a member of the Podoviridae, albeit with a larger than expected capsid. The kinetics of host growth after infection with ΦMHI42 differed across host genera, species and strains in a way that was not related to the growth rate of the uninfected host. To our knowledge, this is the first characterisation of the growth of cyanobacteria in the presence of a broad host-range freshwater cyanophage.
Collapse
Affiliation(s)
- Siobhan C. Watkins
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - James R. Smith
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul K. Hayes
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Joy E. M. Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
27
|
Seasonal variations in PCR-DGGE fingerprinted viruses infecting phytoplankton in large and deep peri-alpine lakes. Ecol Res 2014. [DOI: 10.1007/s11284-013-1121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Brewer TE, Stroupe ME, Jones KM. The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 2013; 450-451:84-97. [PMID: 24503070 DOI: 10.1016/j.virol.2013.11.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 01/21/2023]
Abstract
Phage ΦM12 is an important transducing phage of the nitrogen-fixing rhizobial bacterium Sinorhizobium meliloti. Here we report the genome, phylogenetic analysis, and proteome of ΦM12, the first report of the genome and proteome of a rhizobium-infecting T4-superfamily phage. The structural genes of ΦM12 are most similar to T4-superfamily phages of cyanobacteria. ΦM12 is the first reported T4-superfamily phage to lack genes encoding class I ribonucleotide reductase (RNR) and exonuclease dexA, and to possess a class II coenzyme B12-dependent RNR. ΦM12's novel collection of genes establishes it as the founder of a new group of T4-superfamily phages, fusing features of cyanophages and phages of enteric bacteria.
Collapse
Affiliation(s)
- Tess E Brewer
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States
| | - M Elizabeth Stroupe
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States; Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way Tallahassee, FL 32306-4380 United States
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Biology Unit I, 230A, 89 Chieftain Way, Tallahassee, FL 32306-4370, United States.
| |
Collapse
|
29
|
Labonté JM, Suttle CA. Metagenomic and whole-genome analysis reveals new lineages of gokushoviruses and biogeographic separation in the sea. Front Microbiol 2013; 4:404. [PMID: 24399999 PMCID: PMC3871881 DOI: 10.3389/fmicb.2013.00404] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/06/2013] [Indexed: 01/20/2023] Open
Abstract
Much remains to be learned about single-stranded (ss) DNA viruses in natural systems, and the evolutionary relationships among them. One of the eight recognized families of ssDNA viruses is the Microviridae, a group of viruses infecting bacteria. In this study we used metagenomic analysis, genome assembly, and amplicon sequencing of purified ssDNA to show that bacteriophages belonging to the subfamily Gokushovirinae within the Microviridae are genetically diverse and widespread members of marine microbial communities. Metagenomic analysis of coastal samples from the Gulf of Mexico (GOM) and British Columbia, Canada, revealed numerous sequences belonging to gokushoviruses and allowed the assembly of five putative genomes with an organization similar to chlamydiamicroviruses. Fragment recruitment to these genomes from different metagenomic data sets is consistent with gokushovirus genotypes being restricted to specific oceanic regions. Conservation among the assembled genomes allowed the design of degenerate primers that target an 800 bp fragment from the gene encoding the major capsid protein. Sequences could be amplified from coastal temperate and subtropical waters, but not from samples collected from the Arctic Ocean, or freshwater lakes. Phylogenetic analysis revealed that most sequences were distantly related to those from cultured representatives. Moreover, the sequences fell into at least seven distinct evolutionary groups, most of which were represented by one of the assembled metagenomes. Our results greatly expand the known sequence space for gokushoviruses, and reveal biogeographic separation and new evolutionary lineages of gokushoviruses in the oceans.
Collapse
Affiliation(s)
- Jessica M Labonté
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Department of Botany, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
30
|
Prevalence of viral photosynthetic and capsid protein genes from cyanophages in two large and deep perialpine lakes. Appl Environ Microbiol 2013; 79:7169-78. [PMID: 24038692 DOI: 10.1128/aem.01914-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanophages are important components of aquatic ecosystems, but their genetic diversity has been little investigated in freshwaters. A yearlong survey was conducted in surface waters of the two largest natural perialpine lakes in France (Lake Annecy and Lake Bourget) to investigate part of this cyanophage diversity through the analysis of both structural (e.g., g20) and functional (e.g., psbA) genes. We found that these cyanophage signature genes were prevalent throughout the year but that the community compositions of g20 cyanomyoviruses were significantly different between the two lakes. In contrast, psbA-containing cyanophages seemed to be more similar between the two ecosystems. We also found that a large proportion of g20 sequences grouped with cyanomyophage isolates. psbA sequences, belonging to phages of Synechococcus spp., were characterized by distinct triplet motifs (with a novel viral triplet motif, EFE). Thus, our results show that cyanophages (i) are a diverse viral community in alpine lakes and (ii) are clearly distinct from some other freshwater and marine environments, suggesting the influence of unique biogeographic factors.
Collapse
|
31
|
Abstract
We present the genome of a cyanosiphovirus (KBS2A) that infects a marine Synechococcus sp. (strain WH7803). Unique to this genome, relative to other sequenced cyanosiphoviruses, is the absence of elements associated with integration into the host chromosome, suggesting this virus may not be able to establish a lysogenic relationship.
Collapse
|
32
|
Zhong X, Berdjeb L, Jacquet S. Temporal dynamics and structure of picocyanobacteria and cyanomyoviruses in two large and deep peri-alpine lakes. FEMS Microbiol Ecol 2013; 86:312-26. [PMID: 23772675 DOI: 10.1111/1574-6941.12166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022] Open
Abstract
We conducted a 1-year survey of the surface waters of two deep peri-alpine lakes, and investigated the abundances and community structure of picocyanobacteria and co-occurring cyanomyophages. Picocyanobacterial abundances ranged between 4.5 × 10(4) and 1.6 × 10(5) cells mL(-1) in Lake Annecy vs. 2.2 × 10(3) and 1.6 × 10(5) cells mL(-1) in Lake Bourget. Cyanomyoviruses ranged between 2.8 × 10(3) and 3.7 × 10(5) copies of g 20 mL(-1) in Lake Annecy vs. between 9.4 × 10(3) and 9.4 × 10(5) copies of g 20 mL(-1) in Lake Bourget. The structures of picocyanobacteria and cyanomyoviruses differed in the two lakes, and a more pronounced dynamic pattern with greater seasonality was observed in Lake Bourget. At the annual scale, there was no relationship between cyanomyovirus and picocyanobacterial abundances or structures, but we could observe that abundances of the two communities covaried in spring in Lake Bourget. We showed that (i) the changes of picocyanobacteria and cyanomyoviruses were caused by the combined effect of several environmental and biological factors the importance of which differed over time and between the lakes, and (ii) the viral control of the picocyanobacterial community was probably relatively weak at the scale of the investigation.
Collapse
Affiliation(s)
- Xu Zhong
- INRA, UMR CARRTEL, Thonon-les-Bains cx, France
| | | | | |
Collapse
|
33
|
Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME JOURNAL 2013; 7:1738-51. [PMID: 23635867 DOI: 10.1038/ismej.2013.67] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 11/08/2022]
Abstract
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.
Collapse
|
34
|
Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, Lindell D. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol 2013; 15:1476-91. [PMID: 23461565 DOI: 10.1111/1462-2920.12103] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/01/2022]
Abstract
Phages are extremely abundant in the oceans, influencing the population dynamics, diversity and evolution of their hosts. Here we assessed the diversity and phylogenetic relationships among T7-like cyanophages using DNA polymerase (replication), major capsid (structural) and photosynthesis psbA (host-derived) genes from isolated phages. DNA polymerase and major capsid phylogeny divided them into two discrete clades with no evidence for gene exchange between clades. Clade A phages primarily infect Synechococcus while clade B phages infect either Synechococcus or Prochlorococcus. The major capsid gene of one of the phages from clade B carries a putative intron. Nearly all clade B phages encode psbA whereas clade A phages do not. This suggests an ancient separation between cyanophages from these two clades, with the acquisition or loss of psbA occurring around the time of their divergence. A mix and match of clustering patterns was found for the replication and structural genes within each major clade, even among phages infecting different host genera. This is suggestive of numerous gene exchanges within each major clade and indicates that core phage functions have not coevolved with specific hosts. In contrast, clustering of phage psbA broadly tracks that of the host genus. These findings suggest that T7-like cyanophages evolve through clade-limited gene exchanges and that different genes are subjected to vastly different selection pressures.
Collapse
Affiliation(s)
- Naama P Dekel-Bird
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Matteson AR, Rowe JM, Ponsero AJ, Pimentel TM, Boyd PW, Wilhelm SW. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. FEMS Microbiol Ecol 2013; 84:223-34. [PMID: 23240688 DOI: 10.1111/1574-6941.12060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 12/03/2012] [Indexed: 12/01/2022] Open
Abstract
The distribution of cyanomyoviruses was estimated using a quantitative PCR (qPCR) approach that targeted the g20 gene as a proxy for phage. Samples were collected spatially during a > 3000 km transect through the Sargasso Sea and temporally during a gyre-constrained phytoplankton bloom within the southern Pacific Ocean. Cyanomyovirus abundances were lower in the Sargasso Sea than in the southern Pacific Ocean, ranging from 2.75 × 10(3) to 5.15 × 10(4) mL(-1) and correlating with the abundance of their potential hosts (Prochlorococcus and Synechococcus). Cyanomyovirus abundance in the southern Pacific Ocean (east of New Zealand) followed Synechococcus host populations in the system: this included a decrease in g20 gene copies (from 4.3 × 10(5) to 9.6 × 10(3) mL(-1) ) following the demise of a Synechococcus bloom. When compared with direct counts of viruses, observations suggest that the cyanomyoviruses comprised 0.5 to >25% of the total virus community. We estimated daily lysis rates of 0.2-46% of the standing stock of Synechococcus in the Pacific Ocean compared with c. < 1.0% in the Sargasso Sea. In total, our observations confirm this family of viruses is abundant in marine systems and that they are an important source of cyanobacterial mortality.
Collapse
Affiliation(s)
- Audrey R Matteson
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996-0845, USA
| | | | | | | | | | | |
Collapse
|
36
|
Marston MF, Taylor S, Sme N, Parsons RJ, Noyes TJE, Martiny JBH. Marine cyanophages exhibit local and regional biogeography. Environ Microbiol 2012; 15:1452-63. [PMID: 23279166 DOI: 10.1111/1462-2920.12062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Biogeographic patterns have been demonstrated for a wide range of microorganisms. Nevertheless, the biogeography of marine viruses has been slower to emerge. Here we investigate biogeographic patterns of marine cyanophages that infect Synechococcus sp. WH7803 across multiple spatial and temporal scales. We compared cyanophage myoviral communities from nine coastal sites in Southern New England (SNE), USA, one site in Long Island NY, and four sites from Bermuda's inshore waters by assaying cyanophage isolates using the myoviral g43 DNA polymerase gene. Cyanophage community composition varied temporally at each of the sites. Further, 6 years of sampling at one Narragansett Bay site revealed annual seasonal variations in community composition, driven by the seasonal reoccurrence of specific viral taxa. Although the four Bermuda communities were similar to one another, they were significantly different than the North American coastal communities, with almost no overlap of taxa between the two regions. Among the SNE sites, cyanophage community composition also varied significantly and was correlated with the body of water sampled (e.g. Narragansett Bay, Cape Cod Bay, Vineyard Sound), although here, the same viral taxa were found at multiple sites. This study demonstrates that marine cyanophages display striking seasonal and spatial biogeographic patterns.
Collapse
Affiliation(s)
- Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI 02809, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Pearce DA, Newsham KK, Thorne MAS, Calvo-Bado L, Krsek M, Laskaris P, Hodson A, Wellington EM. Metagenomic analysis of a southern maritime antarctic soil. Front Microbiol 2012; 3:403. [PMID: 23227023 PMCID: PMC3514609 DOI: 10.3389/fmicb.2012.00403] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of Antarctic soils is derived from direct culture on selective media, biodiversity studies based on clone library construction and analysis, quantitative PCR amplification of specific gene sequences and the application of generic microarrays for microbial community analysis. Here, we investigated the biodiversity and functional potential of a soil community at Mars Oasis on Alexander Island in the southern Maritime Antarctic, by applying 454 pyrosequencing technology to a metagenomic library constructed from soil genomic DNA. The results suggest that the commonly cited range of phylotypes used in clone library construction and analysis of 78–730 OTUs (de-replicated to 30–140) provides low coverage of the major groups present (∼5%). The vast majority of functional genes (>77%) were for structure, carbohydrate metabolism, and DNA/RNA processing and modification. This study suggests that prokaryotic diversity in Antarctic terrestrial environments appears to be limited at the generic level, with Proteobacteria, Actinobacteria being common. Cyanobacteria were surprisingly under-represented at 3.4% of sequences, although ∼1% of the genes identified were involved in CO2 fixation. At the sequence level there appeared to be much greater heterogeneity, and this might be due to high divergence within the relatively restricted lineages which have successfully colonized Antarctic terrestrial environments.
Collapse
Affiliation(s)
- David A Pearce
- Ecosystems Programme, Natural Environment Research Council, British Antarctic Survey Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 2012; 434:181-6. [PMID: 23084423 DOI: 10.1016/j.virol.2012.09.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/21/2022]
Abstract
As new environments are studied, viruses consistently emerge as important and prominent players in natural and man-made ecosystems. However, much of what we know is built both upon the foundation of the culturable minority and using methods that are often insufficiently ground-truthed. Here, we review the modern culture-independent viral metagenomic sample-to-sequence pipeline and how next-generation sequencing techniques are drastically altering our ability to systematically and rigorously evaluate them. Together, a series of studies quantitatively evaluate existing and new methods that allow-even for ultra-low DNA samples-the generation of replicable, near-quantitative datasets that maximize inter-comparability and biological inference.
Collapse
|
39
|
Prophage carriage and diversity within clinically relevant strains of Clostridium difficile. Appl Environ Microbiol 2012; 78:6027-34. [PMID: 22706062 DOI: 10.1128/aem.01311-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prophages are encoded in most genomes of sequenced Clostridium difficile strains. They are key components of the mobile genetic elements and, as such, are likely to influence the biology of their host strains. The majority of these phages are not amenable to propagation, and therefore the development of a molecular marker is a useful tool with which to establish the extent and diversity of C. difficile prophage carriage within clinical strains. To design markers, several candidate genes were analyzed including structural and holin genes. The holin gene is the only gene present in all sequenced phage genomes, conserved at both terminals, with a variable mid-section. This allowed us to design two sets of degenerate PCR primers specific to C. difficile myoviruses and siphoviruses. Subsequent PCR analysis of 16 clinical C. difficile ribotypes showed that 15 of them are myovirus positive, and 2 of them are also siphovirus positive. Antibiotic induction and transmission electron microscope analysis confirmed the molecular prediction of myoviruses and/or siphovirus presence. Phylogenetic analysis of the holin sequences identified three groups of C. difficile phages, two within the myoviruses and a divergent siphovirus group. The marker also produced tight groups within temperate phages that infect other taxa, including Clostridium perfringens, Clostridium botulinum, and Bacillus spp., which suggests the potential application of the holin gene to study prophage carriage in other bacteria. This study reveals the high incidence of prophage carriage in clinically relevant strains of C. difficile and correlates the molecular data to the morphological observation.
Collapse
|
40
|
Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the 'core' and origins of host genes. Environ Microbiol 2012; 14:2113-26. [PMID: 22348436 DOI: 10.1111/j.1462-2920.2012.02704.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The last two decades have revealed that phages (viruses that infect bacteria) are abundant and play fundamental roles in the Earth System, with the T4-like myoviruses (herein T4-like phages) emerging as a dominant 'signal' in wild populations. Here we examine 27 T4-like phage genomes, with a focus on 17 that infect ocean picocyanobacteria (cyanophages), to evaluate lateral gene transfer (LGT) in this group. First, we establish a reference tree by evaluating concatenated core gene supertrees and whole genome gene content trees. Next, we evaluate what fraction of these 'core genes' shared by all 17 cyanophages appear prone to LGT. Most (47 out of 57 core genes) were vertically transferred as inferred from tree tests and genomic synteny. Of those 10 core genes that failed the tree tests, the bulk (8 of 10) remain syntenic in the genomes with only a few (3 of the 10) having identifiable signatures of mobile elements. Notably, only one of these 10 is shared not only by the 17 cyanophages, but also by all 27 T4-like phages (thymidylate synthase); its evolutionary history suggests cyanophages may be the origin of these genes to Prochlorococcus. Next, we examined intragenic recombination among the core genes and found that it did occur, even among these core genes, but that the rate was significantly higher between closely related phages, perhaps reducing any detectable LGT signal and leading to taxon cohesion. Finally, among 18 auxiliary metabolic genes (AMGs, a.k.a. 'host' genes), we found that half originated from their immediate hosts, in some cases multiple times (e.g. psbA, psbD, pstS), while the remaining have less clear evolutionary origins ranging from cyanobacteria (4 genes) or microbes (5 genes), with particular diversity among viral TalC and Hsp20 sequences. Together, these findings highlight the patterns and limits of vertical evolution, as well as the ecological and evolutionary roles of LGT in shaping T4-like phage genomes.
Collapse
|
41
|
Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol 2011; 14:540-58. [DOI: 10.1111/j.1462-2920.2011.02667.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Riemann L, Middelboe M. Viral lysis of marine bacterioplankton: Implications for organic matter cycling and bacterial clonal composition. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/00785236.2002.10409490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Jameson E, Mann NH, Joint I, Sambles C, Mühling M. The diversity of cyanomyovirus populations along a North-South Atlantic Ocean transect. THE ISME JOURNAL 2011; 5:1713-21. [PMID: 21633395 PMCID: PMC3197166 DOI: 10.1038/ismej.2011.54] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/24/2011] [Accepted: 03/26/2011] [Indexed: 11/08/2022]
Abstract
Viruses that infect the marine cyanobacterium Prochlorococcus have the potential to impact the growth, productivity, diversity and abundance of their hosts. In this study, changes in the microdiversity of cyanomyoviruses were investigated in 10 environmental samples taken along a North-South Atlantic Ocean transect using a myoviral-specific PCR-sequencing approach. Phylogenetic analyses of 630 viral g20 clones from this study, with 786 published g20 sequences, revealed that myoviral populations in the Atlantic Ocean had higher diversity than previously reported, with several novel putative g20 clades. Some of these clades were detected throughout the Atlantic Ocean. Multivariate statistical analyses did not reveal any significant correlations between myoviral diversity and environmental parameters, although myoviral diversity appeared to be lowest in samples collected from the north and south of the transect where Prochlorococcus diversity was also lowest. The results were correlated to the abundance and diversity of the co-occurring Prochlorococcus and Synechococcus populations, but revealed no significant correlations to either of the two potential host genera. This study provides evidence that cyanophages have extremely high and variable diversity and are distributed over large areas of the Atlantic Ocean.
Collapse
Affiliation(s)
- Eleanor Jameson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, UK.
| | | | | | | | | |
Collapse
|
44
|
Molecular enumeration of an ecologically important cyanophage in a Laurentian Great Lake. Appl Environ Microbiol 2011; 77:6772-9. [PMID: 21841023 DOI: 10.1128/aem.05879-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Considerable research has shown that cyanobacteria and the viruses that infect them (cyanophage) are pervasive and diverse in global lake populations. Few studies have seasonally analyzed freshwater systems, and little is known about the bacterial and viral communities that coexist during the harsh winters of the Laurentian Great Lakes. Here, we employed quantitative PCR to estimate the abundance of cyanomyoviruses in this system, using the portal vertex g20 gene as a proxy for cyanophage abundance and to determine the potential ecological relevance of these viruses. Cyanomyoviruses were abundant in both the summer and the winter observations, with up to 3.1 × 10(6) copies of g20 genes ml(-1) found at several stations and depths in both seasons, representing up to 4.6% of the total virus community. Lake Erie was productive during both our observations, with high chlorophyll a concentrations in the summer (up to 10.3 μg liter(-1)) and winter (up to 5.2 μg liter(-1)). Both bacterial and viral abundances were significantly higher during the summer than during the winter (P < 0.05). Summer bacterial abundances ranged from 3.3 × 10(6) to 1.6 × 10(7) ml(-1) while winter abundances ranged between ∼3.4 × 10(5) and 1.2 × 10(6) ml(-1). Total virus abundances were high during both months, with summer abundances significantly higher at most stations, ranging from 6.5 × 10(7) to 8.8 × 10(7) ml(-1), and with winter abundances ranging from 3.4 × 10(7) to 6.6 × 10(7) ml(-1). This work confirms that putative cyanomyoviruses are ubiquitous in both summer and winter months in this large freshwater lake system and that they are an abundant component of the virioplankton group.
Collapse
|
45
|
Wang G, Asakawa S, Kimura M. Spatial and temporal changes of cyanophage communities in paddy field soils as revealed by the capsid assembly protein gene g20. FEMS Microbiol Ecol 2011; 76:352-9. [PMID: 21255050 DOI: 10.1111/j.1574-6941.2011.01052.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteriophages are ubiquitous in various environments. Our previous study revealed the diversity of the cyanophage community in paddy floodwater. In this study, the phylogeny and genetic diversity of cyanophage communities in paddy field soils were reported. The viral capsid assembly protein gene (g20) of cyanophage was amplified with the primers CPS1 and CPS8 from soil DNA extracted during two different sampling times at three sampling sites in Japan. The sequencing results indicated that about 93% of the clones were g20 genes. In total, 70 clones of g20 genes were obtained in this study, of which 69 clones were of cyanophage origin. As evaluated by g20 sequence assemblages in paddy field soils, the unifrac analyses results indicated that cyanophage communities changed among the sampling sites and times and differed from those communities detected in paddy floodwater. The phylogenetic analysis showed that the g20 sequences in paddy field soils were very diverse and distributed into Clusters α, β and ɛ, as well as four newly formed clusters. Within Clusters β and ɛ, four unique subclusters were formed from the g20 clones that were only observed in this study. These findings suggested that the cyanophage communities in paddy field soils are different from those found in freshwater, marine water and paddy floodwater.
Collapse
Affiliation(s)
- Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China.
| | | | | |
Collapse
|
46
|
Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J 2010; 7:291. [PMID: 21029435 PMCID: PMC2984593 DOI: 10.1186/1743-422x-7-291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022] Open
Abstract
From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.
Collapse
Affiliation(s)
- Martha R J Clokie
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
47
|
Jia Y, Shan J, Millard A, Clokie MRJ, Mann NH. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol Lett 2010; 310:120-6. [PMID: 20704597 DOI: 10.1111/j.1574-6968.2010.02054.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cyanophages infecting marine Synechococcus strains are abundant in the world's oceans and are of considerable ecological significance by virtue of their hosts' role as prominent primary producers in the marine environment. In nature, cyanobacteria experience diel light-dark (LD) cycles, which may exert significant effects on the phage life cycle. An investigation into the role of light revealed that cyanophage S-PM2 adsorption to Synechococcus sp. WH7803 was a light-dependent process. Phage adsorption assays were carried out under illumination at different wavelengths and also in the presence of photosynthesis inhibitors. Furthermore, phage adsorption was also assayed to LD-entrained cells at different points in the circadian cycle. Cyanophage S-PM2 exhibited a considerably decreased adsorption rate under red light as compared with blue, green, yellow light or daylight. However, photosynthesis per se was not required for adsorption as inhibitors such as dichlorophenyldimethyl urea did not affect the process. Neither was S-PM2 adsorption influenced by the circadian rhythm of the host cells. The presence or absence of the photosynthetic reaction centre gene psbA in cyanophage genomes was not correlated with the light-dependent phage adsorption.
Collapse
Affiliation(s)
- Ying Jia
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | | | |
Collapse
|
48
|
Huang S, Wilhelm SW, Jiao N, Chen F. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME JOURNAL 2010; 4:1243-51. [PMID: 20463765 DOI: 10.1038/ismej.2010.56] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a major cyanophage group, cyanobacterial podoviruses are important in regulating the biomass and population structure of picocyanobacteria in the ocean. However, little is known about their biogeography in the open ocean. This study represents the first survey of the biodiversity of cyanopodoviruses in the global oceans based on the viral encoded DNA polymerase (pol) gene. A total of 303 DNA pol sequences were amplified by PCR from 10 virus communities collected in the Atlantic and Pacific oceans and the South China Sea. At least five subclusters of cyanopodoviruses were identified in these samples, and one subcluster (subcluster VIII) was found in all sampling sites and comprised approximately 50% of total sequences. The diversity index based on the DNA pol gene sequences recovered through PCR suggests that cyanopodoviruses are less diverse in these oceanic samples than in a previously studied estuarine environment. Although diverse podoviruses were present in the global ocean, each sample was dominated by one major group of cyanopodoviruses. No clear biogeographic patterns were observed using statistical analysis. A metagenomic analysis based on the Global Ocean Sampling database indicates that other types of cyanopodovirus-like DNA pol sequences were present in the global ocean. Together, our study results suggest that cyanopodoviruses are widely distributed in the ocean but their community composition varies with local environments.
Collapse
Affiliation(s)
- Sijun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | | | | |
Collapse
|
49
|
Comeau AM, Arbiol C, Krisch HM. Gene network visualization and quantitative synteny analysis of more than 300 marine T4-like phage scaffolds from the GOS metagenome. Mol Biol Evol 2010; 27:1935-44. [PMID: 20231334 PMCID: PMC2908710 DOI: 10.1093/molbev/msq076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities in the biosphere and are the dominant "organisms" in marine environments, exerting an enormous influence on marine microbial populations. Metagenomic projects, such as the Global Ocean Sampling expedition (GOS), have demonstrated the predominance of tailed phages (Caudovirales), particularly T4 superfamily cyanophages (Cyano-T4s), in the marine milieu. Whereas previous metagenomic analyses were limited to gene content information, here we present a comparative analysis of over 300 phage scaffolds assembled from the viral fraction of the GOS data. This assembly permits the examination of synteny (organization) of the genes on the scaffolds and their comparison with the genome sequences from cultured Cyano-T4s. We employ comparative genomics and a novel usage of network visualization software to show that the scaffold phylogenies are similar to those of the traditional marker genes they contain. Importantly, these uncultured metagenomic scaffolds quite closely match the organization of the "core genome" of the known Cyano-T4s. This indicates that the current view of genome architecture in the Cyano-T4s is not seriously biased by being based on a small number of cultured phages, and we can be confident that they accurately reflect the diverse population of such viruses in marine surface waters.
Collapse
Affiliation(s)
- André M Comeau
- Centre National de la Recherche Scientifique, UMR5100, Toulouse, France
| | | | | |
Collapse
|
50
|
Weinbauer M, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, Peduzzi P, Mari X. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. AQUATIC MICROBIAL ECOLOGY : INTERNATIONAL JOURNAL 2009; 57:321-341. [PMID: 27478304 PMCID: PMC4962909 DOI: 10.3354/ame01363] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus-host interactions on particles and how particles influence these interactions. Here we review virus-prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml-1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus-particle interactions and on providing avenues for further research, particularly those linked to global change.
Collapse
Affiliation(s)
- M.G. Weinbauer
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
- Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer, France
| | - Y. Bettarel
- Institut de Recherche pour le Développement, UMR 5119 ECOLAG, Université Montpellier II, 34095 Montpellier Cedex 5, France
| | - R. Cattaneo
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - B. Luef
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C. Maier
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - C. Motegi
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - P. Peduzzi
- Departement of Freshwater Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - X. Mari
- IRD, UMR 5119 ECOLAG, Noumea Center, BP A5, NC-98848 Noumea, New Caledonia
| |
Collapse
|