1
|
Honda Malca S, Duss N, Meierhofer J, Patsch D, Niklaus M, Reiter S, Hanlon SP, Wetzl D, Kuhn B, Iding H, Buller R. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor. Commun Chem 2024; 7:46. [PMID: 38418529 PMCID: PMC10902378 DOI: 10.1038/s42004-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting from advances in molecular biology and bioinformatics, semi-rational approaches can effectively accelerate enzyme engineering campaigns. Here, we present the optimization of a ketoreductase from Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size. The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥ 98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L-1 ketone after 30 h. Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on reduction activity towards the target ketone.
Collapse
Affiliation(s)
- Sumire Honda Malca
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Nadine Duss
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Jasmin Meierhofer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Analytical Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - David Patsch
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Michael Niklaus
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Stefanie Reiter
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Manufacturing Science and Technology, Fisher Clinical Services GmbH, Biotech Innovation Park, 2543 Lengnau, Switzerland
| | - Steven Paul Hanlon
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dennis Wetzl
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Nonclinical Drug Development, Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Bernd Kuhn
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hans Iding
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rebecca Buller
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
2
|
Akbary Z, Yu H, Lorenzo I, Paez K, Lee ND, DeBeVoise K, Moses J, Sanders N, Connors N, Cassano A. Electron withdrawing group-dependent substrate inhibition of an α-ketoamide reductase from Saccharomyces cerevisiae. Biochem Biophys Res Commun 2023; 676:97-102. [PMID: 37499370 DOI: 10.1016/j.bbrc.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Aldo-keto reductases remain enzymes of interest in biocatalysis due to their ability to reduce carbonyls to alcohols stereospecifically. Based on genomic sequence, we identified aldo-keto reductases of a S. cerevisiae strain extracted from an ancient amber sample. One of the putative enzymes, AKR 163, displays 99% identity with α-amide ketoreductases from the S288C and YJM248 S. cerevisiae strains, which have been investigated for biocatalytic applications. To further investigate AKR 163, we successfully cloned, expressed in E.coli as a glutathione-S-transferase fusion protein, and affinity purified AKR 163. Kinetic studies revealed that AKR 163 experiences strong substrate inhibition by substrates containing halogen atoms or other electron withdrawing groups adjacent to the reactive carbonyl, with Ki values ranging from 0.29 to 0.6 mM and KM values ranging from 0.38 to 0.9 mM at pH 8.0. Substrates without electron withdrawing groups do not display substrate inhibition kinetics and possess much larger KM values between 83 and 260 mM under the same conditions. The kcat values ranged from 0.5 to 2.5s-1 for substrates exhibiting substrate inhibition and 0.22 to 0.52s-1 for substrates that do not engage in substrate inhibition. Overall, the results are consistent with rate-limiting dissociation of the NADP+ cofactor after hydride transfer when electron withdrawing groups are present and activating the reduction step. This process leads to a buildup of enzyme-NADP+ complex that is susceptible to binding and inhibition by a second substrate molecule.
Collapse
Affiliation(s)
- Zarina Akbary
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Honglin Yu
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Ivelisse Lorenzo
- Department of Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Karyme Paez
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Narisa Diana Lee
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Kayla DeBeVoise
- Department of Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Joel Moses
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Nathaniel Sanders
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Neal Connors
- Research Institute for Scientists Emeriti, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States
| | - Adam Cassano
- Program in Biochemistry and Molecular Biology, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States; Department of Chemistry, Drew University, 36 Madison Ave, Madison, NJ, 07940, United States.
| |
Collapse
|
3
|
Zhou J, Xu G, Ni Y. Stereochemistry in Asymmetric Reduction of Bulky–Bulky Ketones by Alcohol Dehydrogenases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02646] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| |
Collapse
|
4
|
Li J, Feng J, Chen X, Gong J, Cui Y, Zhang H, Bu D, Wu Q, Zhu D. Structure-Guided Directed Evolution of a Carbonyl Reductase Enables the Stereoselective Synthesis of (2S,3S)-2,2-Disubstituted-3-hydroxycyclopentanones via Desymmetric Reduction. Org Lett 2020; 22:3444-3448. [PMID: 32319785 DOI: 10.1021/acs.orglett.0c00892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan Li
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Jingyao Gong
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- Department of Medicinal Chemistry, School of Pharmacy Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Hongliu Zhang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dandan Bu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic
Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
5
|
Efficient reductive desymmetrization of bulky 1,3-cyclodiketones enabled by structure-guided directed evolution of a carbonyl reductase. Nat Catal 2019. [DOI: 10.1038/s41929-019-0347-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Robey MT, Ye R, Bok JW, Clevenger KD, Islam MN, Chen C, Gupta R, Swyers M, Wu E, Gao P, Thomas PM, Wu CC, Keller NP, Kelleher NL. Identification of the First Diketomorpholine Biosynthetic Pathway Using FAC-MS Technology. ACS Chem Biol 2018; 13:1142-1147. [PMID: 29631395 DOI: 10.1021/acschembio.8b00024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are prolific producers of secondary metabolites with drug-like properties, and their genome sequences have revealed an untapped wealth of potential therapeutic leads. To better access these secondary metabolites and characterize their biosynthetic gene clusters, we applied a new platform for screening and heterologous expression of intact gene clusters that uses fungal artificial chromosomes and metabolomic scoring (FAC-MS). We leverage FAC-MS technology to identify the biosynthetic machinery responsible for production of acu-dioxomorpholine, a metabolite produced by the fungus, Aspergilllus aculeatus. The acu-dioxomorpholine nonribosomal peptide synthetase features a new type of condensation domain (designated CR) proposed to use a noncanonical arginine active site for ester bond formation. Using stable isotope labeling and MS, we determine that a phenyllactate monomer deriving from phenylalanine is incorporated into the diketomorpholine scaffold. Acu-dioxomorpholine is highly related to orphan inhibitors of P-glycoprotein targets in multidrug-resistant cancers, and identification of the biosynthetic pathway for this compound class enables genome mining for additional derivatives.
Collapse
Affiliation(s)
- Matthew T. Robey
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Rosa Ye
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kenneth D. Clevenger
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Md Nurul Islam
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Cynthia Chen
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Raveena Gupta
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael Swyers
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Edward Wu
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Peng Gao
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Paul M. Thomas
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Chengcang C. Wu
- Intact
Genomics,
Inc., St Louis, Missouri 63132, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology and Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Tavanti M, Parmeggiani F, Castellanos JRG, Mattevi A, Turner NJ. One-Pot Biocatalytic Double Oxidation of α-Isophorone for the Synthesis of Ketoisophorone. ChemCatChem 2017. [DOI: 10.1002/cctc.201700620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Michele Tavanti
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - Fabio Parmeggiani
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”; University of Pavia; Via Ferrata 9 27100 Pavia Italy
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB); School of Chemistry; The University of Manchester; 131 Princess Street M1 7DN Manchester United Kingdom
| |
Collapse
|
8
|
Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20. Appl Microbiol Biotechnol 2015; 100:3567-75. [DOI: 10.1007/s00253-015-7200-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022]
|
9
|
Urano N, Fujii M, Kaino H, Matsubara M, Kataoka M. Fermentative production of 1-propanol from sugars using wild-type and recombinant Shimwellia blattae. Appl Microbiol Biotechnol 2014; 99:2001-8. [PMID: 25547843 DOI: 10.1007/s00253-014-6330-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/10/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
Shimwellia blattae is an enteric bacterium and produces endogenous enzymes that convert 1,2-propanediol (1,2-PD) to 1-propanol, which is expected to be used as a fuel substitute and a precursor of polypropylene. Therefore, if S. blattae could be induced to generate its own 1,2-PD from sugars, it might be possible to produce 1-propanol from sugars with this microorganism. Here, two 1,2-PD production pathways were constructed in S. blattae, resulting in two methods for 1-propanol production with the bacterium. One method employed the L-rhamnose utilization pathway, in which L-rhamnose is split into dihydroxyacetone phosphate and 1,2-PD. When wild-type S. blattae was cultured with L-rhamnose, an accumulation of 1,2-PD was observed. The other method for producing 1,2-PD was to introduce an engineered 1,2-PD production pathway from glucose into S. blattae. In both cases, the produced 1,2-PD was then converted to 1-propanol by 1,2-PD converting enzymes, whose production was induced by the addition of glycerol.
Collapse
Affiliation(s)
- Nobuyuki Urano
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | | | | | | | | |
Collapse
|
10
|
Chen R, Liu X, Wang J, Lin J, Wei D. Cloning, expression, and characterization of an anti-Prelog stereospecific carbonyl reductase from Gluconobacter oxydans DSM2343. Enzyme Microb Technol 2014; 70:18-27. [PMID: 25659628 DOI: 10.1016/j.enzmictec.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
A new anti-Prelog stereospecific carbonyl reductase (GoKR) from Gluconobacter oxydans DSM2343 was cloned and identified in Escherichia coli. This GoKR formed a homo-tetramer with a subunit size of approximately 27.0kDa. GoKR exhibited full activity with NADPH but not with NADH as a cofactor. The optimal pH and temperature were 9.0 and 30°C, respectively. GoKR reduced various ketones, including aliphatic and aromatic ketones, α- and β-keto esters. Aromatic ketones were reduced to (R)-enantiomers, whereas keto esters were reduced to (S)-hydroxy esters with different enantioselectivities. The data indicate that GoKR does not obey Prelog's rule and exhibits anti-Prelog enantiopreference. Enzyme-substrate-cofactor docking analysis showed that hydride transfer occurred at the si faces of carbonyl group for ethyl 4-chloro-3-oxobutanoate (COBE), which was then selectively reduced to the chiral (S)-alcohol. Excellent enantioselectivities were obtained for reducing COBE and ethyl 2-oxo-4-phenylbutyrate into the corresponding (S)-type products. These products are important for synthesizing HMG-CoA reductase (statins) and angiotensin-converting enzyme inhibitors, respectively.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China; Center for Biomedicine and Health, Division of Basical Medicine, Hangzhou Normal University, Hangzhou 310012, China
| | - Xu Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jiale Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Use of the anti-Prelog stereospecific alcohol dehydrogenase from Leifsonia and Pseudomonas for producing chiral alcohols. Appl Microbiol Biotechnol 2014; 98:3889-904. [DOI: 10.1007/s00253-014-5619-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
12
|
Johnson EA. Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 2013; 97:7563-77. [DOI: 10.1007/s00253-013-5046-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 12/24/2022]
|
13
|
Zhu D, Hua L. How carbonyl reductases control stereoselectivity: Approaching the goal of rational design. PURE APPL CHEM 2010. [DOI: 10.1351/pac-con-09-01-03] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although "Prelog’s rule" and "two hydrophobic binding pockets" model have been used to predict and explain the stereoselectivity of enzymatic ketone reduction, the molecular basis of stereorecognition by carbonyl reductases has not been well understood. The stereoselectivity is not only determined by the structures of enzymes and substrates, but also affected by the reaction conditions such as temperature and reaction medium. Structural analysis coupled with site-directed mutagenesis of stereocomplementary carbonyl reductases readily reveals the key elements of controlling stereoselectivity in these enzymes. In our studies, enzyme-substrate docking and molecular modeling have been engaged to understand the enantioselectivity diversity of the carbonyl reductase from Sporobolomyces salmonicolor (SSCR), and to guide site-saturation mutagenesis for altering the enantioselectivity of this enzyme. These studies provide valuable information for our understanding of how the residues involved in substrate binding affect the orientation of bound substrate, and thus control the reaction stereoselectivity. The in silico docking-guided semi-rational approach should be a useful methodology for discovery of new carbonyl reductases.
Collapse
Affiliation(s)
- Dunming Zhu
- 1State Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ling Hua
- 2China Research Center, Genencor International, A Danisco Division, Shanghai 200335, China
| |
Collapse
|
14
|
Liu ZL, Moon J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 2009; 446:1-10. [PMID: 19577617 DOI: 10.1016/j.gene.2009.06.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/16/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
Aldehyde inhibitors such as furfural, 5-hydroxymethylfurfural, anisaldehyde, benzaldehyde, cinnamaldehyde, and phenylaldehyde are commonly generated during lignocellulosic biomass conversion process for low-cost cellulosic ethanol production that interferes with subsequent microbial growth and fermentation. In situ detoxification of the aldehyde inhibitors is possible by the tolerant ethanologenic yeast that involves multiple genes including numerous functional reductases. In this study, we report a novel aldehyde reductase gene clone Y63 from ethanologenic yeast Saccharomyces cerevisiae NRRL Y12632, representing the uncharacterized ORF YGL157W, which demonstrated NADPH-dependent reduction activities toward at least 14 aldehyde substrates. The identity of gene clone Y63 is the same with YGL157W of SGD since a variation of only 35 nucleotides in genomic sequence and three amino acid residues were observed between the two that share the same length of 347 residues in size. As one among the highly induced genes, YGL157W of Y-12632 showed significantly high levels of transcript abundance in response to furfural and HMF challenges. Based on the deduced amino acid sequence and the most conserved functional motif analyses including closely related reductases from five other yeast species to this date, YGL157W was identified as a member of the subclass 'intermediate' of the SDR (short-chain dehydrogenase/reductase) superfamily with the following typical characteristics: the most conserved catalytic site to lie at Tyr(169)-X-X-X-Lys(173); an indispensable reduction catalytic triad at Ser(131), Tyr(169), and Lys(173), and an approved cofactor-binding motif at Gly(11)-X-X-Gly(14)-X-X-Ala(17) near the N-terminus. YGL039W, YDR541C, and YOL151W (GRE2) appeared to be the similar type of enzymes falling into the same category of the intermediate subfamily.
Collapse
Affiliation(s)
- Z Lewis Liu
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N University St., Peoria, IL 61604, USA.
| | | |
Collapse
|
15
|
Matsuda T, Yamanaka R, Nakamura K. Recent progress in biocatalysis for asymmetric oxidation and reduction. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2008.12.035] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Hoffmann F, Maser E. Carbonyl Reductases and Pluripotent Hydroxysteroid Dehydrogenases of the Short-chain Dehydrogenase/reductase Superfamily. Drug Metab Rev 2008; 39:87-144. [PMID: 17364882 DOI: 10.1080/03602530600969440] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carbonyl reduction of aldehydes, ketones, and quinones to their corresponding hydroxy derivatives plays an important role in the phase I metabolism of many endogenous (biogenic aldehydes, steroids, prostaglandins, reactive lipid peroxidation products) and xenobiotic (pharmacologic drugs, carcinogens, toxicants) compounds. Carbonyl-reducing enzymes are grouped into two large protein superfamilies: the aldo-keto reductases (AKR) and the short-chain dehydrogenases/reductases (SDR). Whereas aldehyde reductase and aldose reductase are AKRs, several forms of carbonyl reductase belong to the SDRs. In addition, there exist a variety of pluripotent hydroxysteroid dehydrogenases (HSDs) of both superfamilies that specifically catalyze the oxidoreduction at different positions of the steroid nucleus and also catalyze, rather nonspecifically, the reductive metabolism of a great number of nonsteroidal carbonyl compounds. The present review summarizes recent findings on carbonyl reductases and pluripotent HSDs of the SDR protein superfamily.
Collapse
Affiliation(s)
- Frank Hoffmann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse, Kiel, 10, 24105, Germany
| | | |
Collapse
|
17
|
Wang J, Rochon FD, Yang Y, Hua L, Kayser MM. Synthesis of oxazolidines using DMSO/P4O10 as a formaldehyde equivalent. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cundari TR, Dinescu A, Zhu D, Hua L. A molecular modeling study on the enantioselectivity of aryl alkyl ketone reductions by a NADPH-dependent carbonyl reductase. J Mol Model 2007; 13:685-90. [PMID: 17279371 DOI: 10.1007/s00894-007-0168-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 12/08/2006] [Indexed: 11/25/2022]
Abstract
Automated structural analysis of Sporobolomyces salmonicolor carbonyl reductase (SSCR) indicates that the two largest potential receptor sites are in the vicinity of the nicotinamide reductant. The largest receptor site is a scalene triangle with sides of approximately 8 A by 9 A by 13 A, which is narrow in width; one corner is surrounded by hydrophilic residues that can favorably bond with the ketone oxygen. Docking aryl alkyl ketones shows a distinct preference for binding to the largest receptor site, and for conformations that place the carbonyl oxygen of the substrate in the hydrophilic corner of the largest receptor site. Favorable docking conformations for aryl alkyl ketones fall into two low-energy ensembles. These conformational ensembles are distinguished by the positions of the substituents, presenting either the Si- or Re-face of the ketone to the nicotinamide reductant. For the ketones investigated here, there is a correspondence between the major enantiomer of the alcohol obtained from the reduction of the ketone and the conformer found to have the most stable interaction energy with the receptor site in all cases. The receptor site modeling, docking simulations, molecular dynamics, and enzyme-substrate geometry optimizations lead to a model for understanding the enantioselectivity of this NADPH-dependent carbonyl reductase.
Collapse
Affiliation(s)
- Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling, University of North Texas, Box 305070, Denton, TX 76203-5070, USA
| | | | | | | |
Collapse
|
19
|
Zhu D, Hua L. Enantioselective Enzymatic Reductions of Sterically Bulky Aryl Alkyl Ketones Catalyzed by a NADPH-Dependent Carbonyl Reductase. J Org Chem 2006; 71:9484-6. [PMID: 17137377 DOI: 10.1021/jo061571y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective reductions of aryl alkyl ketones, ArC(O)R, with a diverse number of alkyl groups have been achieved with an isolated carbonyl reductase from Sporobolomyces salmonicolor. Of special interest is the observation that ketones with sterically bulky alkyl groups could be reduced to the corresponding alcohols in excellent optical purity. An unusual alkyl chain-induced enantiopreference reversal was observed but was shown to be consistent with the enzyme-substrate docking calculations.
Collapse
Affiliation(s)
- Dunming Zhu
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, USA
| | | |
Collapse
|
20
|
Zhu D, Yang Y, Buynak JD, Hua L. Stereoselective ketone reduction by a carbonyl reductase from Sporobolomyces salmonicolor. Substrate specificity, enantioselectivity and enzyme-substrate docking studies. Org Biomol Chem 2006; 4:2690-5. [PMID: 16826293 DOI: 10.1039/b606001c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our effort to search for effective carbonyl reductases, the activity and enantioselectivity of a carbonyl reductase from Sporobolomyces salmonicolor have been evaluated toward the reduction of a variety of ketones. This carbonyl reductase (SSCR) reduces a broad spectrum of ketones including aliphatic and aromatic ketones, as well as alpha- and beta-ketoesters. Among these substrates, SSCR shows highest activity for the reduction of alpha-ketoesters. Aromatic alpha-ketoesters are reduced to (S)-alpha-hydroxy esters, while (R)-enantiomers are obtained from the reduction of aliphatic counterparts. This interesting observation is consistent with enzyme-substrate docking studies, which show that hydride transfer occurs at the different faces of carbonyl group for aromatic and aliphatic alpha-ketoesters. It is worthy to note that sterically bulky ketone substrates, such as 2'-methoxyacetophenone, 1-adamantyl methyl ketone, ethyl 4,4-dimethyl-3-oxopentanoate and ethyl 3,3-dimethyl-2-oxobutanoate, are reduced to the corresponding alcohols with excellent optical purity. Thus, SSCR possesses an unusually broad substrate specificity and is especially useful for the reduction of ketones with sterically bulky substituents.
Collapse
Affiliation(s)
- Dunming Zhu
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, USA
| | | | | | | |
Collapse
|
21
|
Gene cloning of an NADPH-dependent menadione reductase from Candida macedoniensis, and its application to chiral alcohol production. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Kita K, Kataoka M, Shimizu S. Diversity of 4-chloroacetoacetate ethyl ester-reducing enzymes in yeasts and their application to chiral alcohol synthesis. J Biosci Bioeng 2005; 88:591-8. [PMID: 16232669 DOI: 10.1016/s1389-1723(00)87085-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1999] [Accepted: 10/06/1999] [Indexed: 10/18/2022]
Abstract
Enzymes which reduce 4-chloroacetoacetate ethyl ester (CAAE) to (R)- or (S)-4-chloro-3-hydroxybutanoate ethyl ester (CHBE) were investigated. Several microorganisms which can reduce CAAE with high yields were discovered. An NADPH-dependent aldehyde reductase, ARI, and an NADPH-dependent carbonyl reductase, S1, were isolated from Sporobolomyces salmonicolor and Candida magnoliae, respectively, and enzymatic synthesis of chiral CHBE was performed through the reduction of CAAE. When ARI-overproducing Escherichia coli transformant cells or C. magnoliae cells were incubated in an organic solvent-water diphasic system. CAAE was stoichiometrically converted to (R)- or (S)-CHBE (> 92% enantiomeric excess), respectively. Multiple CAAE-reducing enzymes were present in S. salmonicolor, C. magnoliae and bakers' yeast. Comparison of the primary structures of these CAAE-reducing enzymes with other protein sequences showed that CAAE-reducing enzymes are widely distributed in various protein families, and various physiological roles of these enzymes in the cell were speculated.
Collapse
Affiliation(s)
- K Kita
- Department of Biotechnology, Tottori University, 4-101 Koyama, Tottori 680-8552, Japan
| | | | | |
Collapse
|
23
|
Kamitori S, Iguchi A, Ohtaki A, Yamada M, Kita K. X-ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reductions of carbonyl compounds. J Mol Biol 2005; 352:551-8. [PMID: 16095619 DOI: 10.1016/j.jmb.2005.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/28/2005] [Accepted: 07/05/2005] [Indexed: 11/16/2022]
Abstract
The X-ray structures of red yeast Sporobolomyces salmonicolor carbonyl reductase (SSCR) and its complex with a coenzyme, NADPH, have been determined at a resolution of 1.8A and 1.6A, respectively. SSCR was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=54.86 A, b=83.49 A, and c=148.72 A. On its cocrystallization with NADPH, isomorphous crystals of the SSCR/NADPH complex were obtained. The structure of SSCR was solved by a single wavelength anomalous diffraction measurement using a selenomethionine-substituted enzyme, and that of the SSCR/NADPH complex was solved by a molecular replacement method using the solved structure of SSCR. The structures of SSCR and the SSCR/NADPH complex were refined to an R-factor of 0.193 (R(free)=0.233) and 0.211 (R(free)=0.238), respectively. SSCR has two domains, an NADPH-binding domain and a substrate-binding domain, and belongs to the short-chain dehydrogenases/reductases family. The structure of the NADPH-binding domain and the interaction between the enzyme and NADPH are very similar to those found in other structure-solved enzymes belonging to the short-chain dehydrogenases/reductases family, while the structure of the substrate-binding domain is unique. SSCR has stereoselectivity in its catalytic reaction, giving rise to excessive production of (S)-alcohols from ethyl 4-chloro-3-oxobutanoate. The X-ray structure of the SSCR/NADPH complex and preliminary modeling show that the formation of the hydrophobic channel induced by the binding of NADPH is closely related to the stereoselective reduction by SSCR.
Collapse
Affiliation(s)
- Shigehiro Kamitori
- Molecular Structure Research Group, Information Technology Center, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 791-0793, Japan.
| | | | | | | | | |
Collapse
|
24
|
Johanson T, Katz M, Gorwa-Grauslund MF. Strain engineering for stereoselective bioreduction of dicarbonyl compounds by yeast reductases. FEMS Yeast Res 2005; 5:513-25. [PMID: 15780652 DOI: 10.1016/j.femsyr.2004.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/06/2004] [Accepted: 12/07/2004] [Indexed: 11/19/2022] Open
Abstract
Pure chiral molecules are needed in the pharmaceutical and chemical industry as intermediates for the production of drugs or fine chemicals. Microorganisms represent an attractive alternative to chemical synthesis since they have the potential to generate single stereoisomers in high enantiomeric excess (ee). The baker's yeast Saccharomyces cerevisiae can notably reduce dicarbonyl compounds (in particular alpha- and beta-diketones and keto esters) to chiral alcohols with high ee. However, products are formed at a low rate. Moreover, large amounts of co-substrate are required for the regeneration of NADPH that is the preferred co-factor in almost all the known dicarbonyl reductions. Traditionally, better ee, reduction rate and product titre have been achieved via process engineering. The advent of recombinant DNA technology provides an alternative strategy to improve productivity and yield by strain engineering. This review discusses two aspects of strain engineering: (i) the generation of strains with higher reductase activity towards dicarbonyl compounds and (ii) the optimisation of co-substrate utilisation for NADPH cofactor regeneration.
Collapse
Affiliation(s)
- Ted Johanson
- Department of Applied Microbiology, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | | | | |
Collapse
|
25
|
Katz M, Johanson T, Gorwa-Grauslund MF. Mild detergent treatment ofCandida tropicalis reveals a NADPH-dependent reductase in the crude membrane fraction, which enables the production of pure bicyclic exo-alcohol. Yeast 2004; 21:1253-67. [PMID: 15543528 DOI: 10.1002/yea.1176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study demonstrated the occurrence of a NADPH-dependent exo-alcohol reductase in the crude membrane fraction of Candida tropicalis. Cytosolic endo-alcohol reductase activity could be separated from the membrane-bound exo-alcohol activity by means of detergent treatment, enabling the preparation of pure exo-alcohol via the enzymatic conversion of the bicyclic diketone, bicyclo[2.2.2]octane-2,6-dione. The exo-alcohol reductase is, to our knowledge, the first membrane-bound NADPH-dependent reductase accepting a xenobiotic carbonyl substrate that was not a steroid. When C. tropicalis was grown on D-sorbitol, a two-fold increase in the exo-reductase activity was observed as compared to when grown on glucose. An in silico comparison at the protein level between putative xenobiotic carbonyl reductases in Candida albicans, C. tropicalis and Saccharomyces cerevisiae was performed to explain why Candida species are often encountered when screening yeasts for novel stereoselective reduction properties. C. albicans contained more reductases with the potential to reduce xenobiotic carbonyl compounds than did S. cerevisiae. C. tropicalis had many membrane-bound reductases (predicted with the bioinformatics program, TMHMM), some of which had no counterpart in the two other organisms. The exo-reductase is suspected to be either a beta-hydroxysteroid dehydrogenase or a polyol dehydrogenase from either the short chain dehydrogenase family or the dihydroflavonol reductase family.
Collapse
Affiliation(s)
- Michael Katz
- Department of Applied Microbiology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | | |
Collapse
|
26
|
Nakamura K, Yamanaka R, Matsuda T, Harada T. Recent developments in asymmetric reduction of ketones with biocatalysts. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00526-3] [Citation(s) in RCA: 446] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
Improved stereoselectivity in dehydrogenase-mediated reductions has been achieved by rationally designed gene overexpression and knockouts in Saccharomyces cerevisiae cells and by isolating and characterizing novel dehydrogenases from other organisms. Transaminases have been used to prepare unnatural amines and amino acids in good yields, particularly when the equilibria are shifted by selective product removal.
Collapse
Affiliation(s)
- J D Stewart
- Department of Chemistry, University of Florida, Gainesville 32611, USA.
| |
Collapse
|
28
|
Abstract
Asymmetric ketone reductions remain the most popular application of baker's yeast (Saccharomyces cerevisiae) in organic synthesis and data from the genome sequencing project is beginning to have an impact on improving the stereoselectivities of these reactions, augmenting traditional approaches based on selective inhibition. In addition, the catalytic repertoire of yeast has been expanded to include chiral ketone oxidations by overexpression of a bacterial Baeyer-Villiger monooxygenase.
Collapse
Affiliation(s)
- J D Stewart
- Department of Chemistry, University of Florida, Gainesville 32611, USA.
| |
Collapse
|