1
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
2
|
Yi Z, Yan J, Ding Z, Xie J. Purification and characterizations of a novel extracellular protease from Shewanella putrefaciens isolated from bigeye tuna. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Zhuang S, Liu Y, Gao S, Tan Y, Hong H, Luo Y. Mechanisms of fish protein degradation caused by grass carp spoilage bacteria: A bottom-up exploration from the molecular level, muscle microstructure level, to related quality changes. Food Chem 2023; 403:134309. [DOI: 10.1016/j.foodchem.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
|
4
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
5
|
Peng Y, He W, Li Y, Liu L, Deng B, Yan G, Yang J, Wang F, Ma L, Wu G, Zhai C. Degradation of CP4-EPSPS with a Psychrophilic Bacterium Stenotrophomonas maltophilia 780. Biomolecules 2022; 12:318. [PMID: 35204818 PMCID: PMC8869762 DOI: 10.3390/biom12020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
CP4-EPSPS (Agrobacterium sp. strain CP4 5-enolpyruvylshikimate-3-phosphate synthase) protein showed remarkable thermostability and was highly resistant to proteases, such as trypsin. In order to eliminate the pollution of CP4-EPSPS from the accumulated straws to the surrounding environment during the winter, the present study investigated the extracellular proteases of 21 psychrophilic strains isolated from the south polar region. The results indicated that Stenotrophomonas maltophilia 780 was able to degrade CP4-EPSPS at 18 °C efficiently. Further study indicated that it was able to grow in the extract of Roundup Ready soybean at 18 °C, with CP4-EPSPS degraded to an undetectable level within 72 h. The extracellular proteases of Stenotrophomonas maltophilia 780 are thermo-sensitive, with an optimal temperature of 65 °C. The genomic sequencing result indicated that this strain had more than a hundred putative protease and peptidase coding genes, which may explain its high capability in decomposing CP4-EPSPS.
Collapse
Affiliation(s)
- Yanhong Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Wencong He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Yunjing Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Lu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Binyang Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Guangbo Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| | - Gang Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (Y.P.); (W.H.); (L.L.); (B.D.); (G.Y.); (J.Y.); (F.W.); (L.M.)
| |
Collapse
|
6
|
Luo G, Fujii S, Koda T, Tajima T, Sambongi Y, Hida A, Kato J. Unexpectedly high thermostability of an NADP-dependent malic enzyme from a psychrophilic bacterium, Shewanella livingstonensis Ac10. J Biosci Bioeng 2021; 132:445-450. [PMID: 34380602 DOI: 10.1016/j.jbiosc.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/10/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Psychrophilic enzymes are generally active at low temperatures, and their functions have attracted much interest in food processing, biochemical research, and chemical industry. However, their activities are usually lost above their growth temperature because of their flexible and unstable structure. Here, we unexpectedly found that a homodimeric NADP-dependent malic enzyme from a psychrophilic bacterium, Shewanella livingstonensis Ac10 (SL-ME) showed sufficient activity with 60°C treatment, similar to its counterpart from mesophilic Escherichia coli (MaeB). Consistently, SL-ME and MaeB irreversibly denatured at 71.9°C and 64.5°C, respectively. Therefore, SL-ME shows robust catalytic activity, which appears to be advantageous for its application in the bioconversion of NADP to NADPH, an essential ingredient for membrane phospholipid synthesis.
Collapse
Affiliation(s)
- Gonglinfeng Luo
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Sotaro Fujii
- Unit of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takumi Koda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takahisa Tajima
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| | - Yoshihiro Sambongi
- Unit of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Akiko Hida
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Junichi Kato
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
7
|
Lou X, Zhai D, Yang H. Changes of metabolite profiles of fish models inoculated with Shewanella baltica during spoilage. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107697] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Furhan J, Nissar J. Cold-Adapted Serine Metalloprotease from Serratia DLCP2: Purification, Characterization and Industrial Potential. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar Drugs 2019; 17:md17100544. [PMID: 31547548 PMCID: PMC6835263 DOI: 10.3390/md17100544] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.
Collapse
|
11
|
Singh D, Thakur S, Thayil SM, Kesavan AK. Characterization of a cold-active, detergent-stable metallopeptidase purified from Bacillus sp. S1DI 10 using Response Surface Methodology. PLoS One 2019; 14:e0216990. [PMID: 31120932 PMCID: PMC6532869 DOI: 10.1371/journal.pone.0216990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/02/2019] [Indexed: 01/23/2023] Open
Abstract
The colder regions of Earth are inhabited by cold-adapted microorganisms designated as psychrophiles that are known to produce cold-active enzymes, such as peptidases, chaperones, lipases, cellulases, and phosphatases. These types of enzymes are a major part of the market of industrial enzymes. Bacteria isolated from water samples collected from the Chamba region in the Himalayas were screened for peptidase production using skim milk agar plates. Among the peptidase-producing bacteria isolated, 20% of the isolates exhibited fast growth and maximum zones of clearance, and thus, were used for further studies. The 16S rDNA sequence analysis of isolate S1DI 10 identified it as a Bacillus sp. The peptidase was cloned in pET28a vector and expressed in Escherichia coli BL21(DE3) and the His-tagged recombinant protein was purified using Ni-NTA column. The purified peptidase of SIDI 10 was found to be an alkaline, cold-active peptidase with optimal enzyme activity at 10°C and pH 8. An approach of one variable at a time was used to further study the effect of various metal ions, organic solvents and detergents on the peptidase enzyme. The peptidase activity was enhanced in the presence of Fe2+ and Mn2+ (metal ions), hexane (organic solvent), SDS- sodium dodecyl sulfate (anionic detergent) and Tween 80 (nonionic detergent). Response surface methodology (RSM) was used to determine the cumulative effect of these five variables. A 25 full factorial central composite design was applied for the five independent variables to determine the optimal combinations of these constituents at the maximum peptidase activity.
Collapse
Affiliation(s)
- Drishtant Singh
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharad Thakur
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Seema Madhumal Thayil
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
- * E-mail:
| |
Collapse
|
12
|
Stability of cytochromes c′ from psychrophilic and piezophilic Shewanella species: implications for complex multiple adaptation to low temperature and high hydrostatic pressure. Extremophiles 2019; 23:239-248. [DOI: 10.1007/s00792-019-01077-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
|
13
|
Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme. PLoS One 2018; 13:e0191740. [PMID: 29466378 PMCID: PMC5821440 DOI: 10.1371/journal.pone.0191740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/10/2018] [Indexed: 02/04/2023] Open
Abstract
Enzymes isolated from organisms found in cold habitats generally exhibit higher catalytic activity at low temperatures than their mesophilic homologs and are therefore known as cold-active enzymes. Cold-active proteases are very useful in a variety of biotechnological applications, particularly as active ingredients in laundry and dishwashing detergents, where they provide strong protein-degrading activity in cold water. We identified a cold-active protease (Pro21717) from a psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, and determined the crystal structure of its catalytic domain (CD) at a resolution of 1.4 Å. The Pro21717-CD structure shows a conserved subtilisin-like fold with a typical catalytic triad (Asp185, His244, and Ser425) and contains four calcium ions and three disulfide bonds. Interestingly, we observed an unexpected electron density at the substrate-binding site from a co-purified peptide. Although the sequence of this peptide is unknown, analysis of the peptide-complexed structure nonetheless provides some indication of the substrate recognition and binding mode of Pro21717. Moreover, various parameters, including a wide substrate pocket size, an abundant active-site loop content, and a flexible structure provide potential explanations for the cold-adapted properties of Pro21717. In conclusion, this is first structural characterization of a cold-adapted subtilisin-like protease, and these findings provide a structural and functional basis for industrial applications of Pro21717 as a cold-active laundry or dishwashing detergent enzyme.
Collapse
|
14
|
Salwan R, Sharma V, Pal M, Kasana RC, Yadav SK, Gulati A. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12). Int J Biol Macromol 2017; 107:567-574. [PMID: 28916383 DOI: 10.1016/j.ijbiomac.2017.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg-1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry.
Collapse
Affiliation(s)
- Richa Salwan
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Vivek Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohinder Pal
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | | | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Arvind Gulati
- Academy of Scientific and Innovative Research, New Delhi, India; CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
| |
Collapse
|
15
|
Characterization of extracellular membrane vesicles of an Antarctic bacterium, Shewanella livingstonensis Ac10, and their enhanced production by alteration of phospholipid composition. Extremophiles 2017; 21:723-731. [PMID: 28434130 DOI: 10.1007/s00792-017-0937-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
A cold-adapted bacterium, Shewanella livingstonensis Ac10, which produces eicosapentaenoic acid (EPA) as a component of its membrane phospholipids, is useful as a model to study the function of EPA and as a host for heterologous production of thermolabile proteins at low temperatures. In this study, we characterized extracellular membrane vesicles (EMVs) of this bacterium to examine the involvement of EPA in the biogenesis of EMVs and for the future application of EMVs to extracellular protein production. We found that this strain produced EMVs from the cell surface. Cryo-electron microscopic observation showed that the majority of the EMVs had a single-bilayer structure with an average diameter of 110 nm, though EMVs with double-bilayer membranes and other diverse structures were also observed. Quantitative analysis demonstrated that the EMV production was significantly increased (3-5 fold) by the depletion of EPA-containing phospholipids. The lack of EPA also altered the protein composition of EMVs. In particular, incorporation of one of the cold-inducible outer membrane proteins, OmpC176, was significantly increased in EMVs after the depletion of EPA. These results provide a basis for the construction of an EMV-based, low-temperature protein production system and show the involvement of EPA in the regulation of EMV biogenesis.
Collapse
|
16
|
Li HJ, Tang BL, Shao X, Liu BX, Zheng XY, Han XX, Li PY, Zhang XY, Song XY, Chen XL. Characterization of a New S8 serine Protease from Marine Sedimentary Photobacterium sp. A5-7 and the Function of Its Protease-Associated Domain. Front Microbiol 2016; 7:2016. [PMID: 28066343 PMCID: PMC5177683 DOI: 10.3389/fmicb.2016.02016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial extracellular proteases are important for bacterial nutrition and marine sedimentary organic nitrogen degradation. However, only a few proteases from marine sedimentary bacteria have been characterized. Some subtilases have a protease-associated (PA) domain inserted in the catalytic domain. Although structural analysis and deletion mutation suggests that the PA domain in subtilases is involved in substrate binding, direct evidence to support this function is still absent. Here, a protease, P57, secreted by Photobacterium sp. A5-7 isolated from marine sediment was characterized. P57 could hydrolyze casein, gelatin and collagen. It showed the highest activity at 40°C and pH 8.0. P57 is a new subtilase, with 63% sequence identity to the closest characterized protease. Mature P57 contains a catalytic domain and an inserted PA domain. The recombinant PA domain from P57 was shown to have collagen-binding ability, and Phe349 and Tyr432 were revealed to be key residues for collagen binding in the PA domain. This study first shows direct evidence that the PA domain of a subtilase can bind substrate, which provides a better understanding of the function of the PA domain of subtilases and bacterial extracellular proteases from marine sediment.
Collapse
Affiliation(s)
- Hui-Juan Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
- College of Chemical and Environmental Engineering, Shandong University of Science and TechnologyQingdao, China
| | - Bai-Lu Tang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xuan Shao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Bai-Xue Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Yu Zheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Xu Han
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Institute of Marine Science and Technology, Shandong UniversityJinan, China
| |
Collapse
|
17
|
Mageswari A, Subramanian P, Chandrasekaran S, Karthikeyan S, Gothandam KM. Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chem 2016; 217:18-27. [PMID: 27664603 DOI: 10.1016/j.foodchem.2016.08.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022]
Abstract
Psychrotolerant bacteria isolated from natural and artificially cold environments were screened for synthesis of cold-active protease. The strain IMDY showing the highest protease production at 5°C was selected and phylogenetic analysis revealed that IMDY as novel bacterium with Chryseobacterium soli(T) as its nearest neighbor. Classical optimization enhanced the protease production from 18U/mg to 26U/mg and the enzyme was found to be active at low temperature, activity enhanced by CaCl2, inhibited by PMSF, stable against NaCl, and its activity retained in the presence of surfactants, organic solvents and detergents. On testing, the meat tenderization, myofibril fragmentation, pH, and TBA values were favorable in IMDY-protease treated meat compared to control. SDS profiling and SEM analysis also showed tenderization in meat samples. Hence, this study proposes to consider the cold-active protease from Chryseobacterium sp. IMDY as a pertinent candidate to develop potential applications in food processing industry.
Collapse
Affiliation(s)
- Anbazhagan Mageswari
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Parthiban Subramanian
- Department of Agricultural Biotechnology (Metabolic Engineering Division), National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Ito T, Gong C, Kawamoto J, Kurihara T. Development of a versatile method for targeted gene deletion and insertion by using the pyrF gene in the psychrotrophic bacterium, Shewanella livingstonensis Ac10. J Biosci Bioeng 2016; 122:645-651. [PMID: 27401770 DOI: 10.1016/j.jbiosc.2016.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/22/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Shewanella livingstonensis Ac10, a psychrotrophic bacterium isolated from Antarctic seawater, grows well at low temperatures close to 0°C. The bacterium is useful as a host in a low-temperature protein expression system. It is also useful as a model microorganism to investigate the mechanisms of microbial cold-adaptation. Versatile genetic manipulation techniques would be useful to investigate the biology of this bacterium and to develop its applications. In this study, we developed a method for targeted gene deletion and insertion by using the gene coding for orotidine-5'-phosphate decarboxylase (pyrF), which is involved in pyrimidine synthesis. We found that S. livingstonensis Ac10 is sensitive to 5-fluoroorotic acid (5-FOA), which is converted to a highly toxic compound by the product of pyrF. A uracil-auxotrophic strain resistant to 5-FOA was constructed by deleting pyrF, thus allowing the use of a plasmid-borne copy of pyrF for selection of recombinants. We constructed the pyrF complementation suicide plasmid pKKP, which contains pyrF, the R6K replication origin, the mob site of RP4, an antibiotic marker gene, and a multiple cloning site. To demonstrate pyrF-based gene replacement, we deleted the internal region of orf5, the gene coding for an eicosapentaenoic acid (EPA) synthesis enzyme. We also successfully inserted a His6-tag-coding sequence into orf8, the gene coding for another EPA synthesis enzyme. This system allows the markerless deletion and insertion of desired sequences at specific sites in the genome, which remarkably facilitates genetic manipulation of this bacterium.
Collapse
Affiliation(s)
- Tomokazu Ito
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chunjie Gong
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
19
|
Lylloff JE, Hansen LBS, Jepsen M, Sanggaard KW, Vester JK, Enghild JJ, Sørensen SJ, Stougaard P, Glaring MA. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases. Microb Biotechnol 2016; 9:245-56. [PMID: 26834075 PMCID: PMC4767292 DOI: 10.1111/1751-7915.12343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography–tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin‐like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20°C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity.
Collapse
Affiliation(s)
- Jeanette E Lylloff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea B S Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Jepsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Kristian W Sanggaard
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan K Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Jan J Enghild
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Stougaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Mikkel A Glaring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| |
Collapse
|
20
|
Characterization of a new, recombinant thermo-active subtilisin-like serine protease derived from Shewanella arctica. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
22
|
Structural changes in halophilic and non-halophilic proteases in response to chaotropic reagents. Protein J 2015; 33:394-402. [PMID: 25008068 DOI: 10.1007/s10930-014-9571-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Halophilic enzymes have been established for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation at high temperature, pH, organic solvents, and chaotropic agents. However, this stability is modulated by salt. The present study targets an important aspect in understanding protein-urea/GdmCl interactions using proteases from halophilic Bacillus sp. EMB9 and non-halophilic subtilisin (Carlsberg) from Bacillus licheniformis as model systems. While, halophilic protease containing 1 % (w/v) NaCl (0.17 M) retained full activity towards urea (8 M), non-halophilic protease lost about 90 % activity under similar conditions. The secondary and tertiary structure were lost in non-halophilic but preserved for halophilic protein. This effect could be due to the possible charge screening and shielding of the protein surface by Ca(2+) and Na(+) ions rendering it stable against denaturation. The dialyzed halophilic protease almost behaved like the non-halophilic counterpart. Incorporation of NaCl (up to 5 %, w/v or 0.85 M) in dialyzed EMB9 protease containing urea/GdmCl, not only helped regain of proteolytic activity but also evaded denaturing action. Deciphering the basis of this salt modulated stability amidst a denaturing milieu will provide guidelines and templates for engineering stable proteins/enzymes for biotechnological applications.
Collapse
|
23
|
Masanari M, Wakai S, Ishida M, Kato C, Sambongi Y. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5. Extremophiles 2014; 18:617-27. [DOI: 10.1007/s00792-014-0644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
|
24
|
Sinha R, Khare SK. Differential interactions of halophilic and non-halophilic proteases with nanoparticles. ACTA ACUST UNITED AC 2014. [DOI: 10.1186/2043-7129-2-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Cloning, over expression and functional attributes of serine proteases from Oceanobacillus iheyensis O.M.A18 and Haloalkaliphilic bacterium O.M.E12. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sanatan PT, Lomate PR, Giri AP, Hivrale VK. Characterization of a chemostable serine alkaline protease from Periplaneta americana. BMC BIOCHEMISTRY 2013; 14:32. [PMID: 24229392 PMCID: PMC3831873 DOI: 10.1186/1471-2091-14-32] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/04/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Proteases are important enzymes involved in numerous essential physiological processes and hold a strong potential for industrial applications. The proteolytic activity of insects' gut is endowed by many isoforms with diverse properties and specificities. Thus, insect proteases can act as a tool in industrial processes. RESULTS In the present study, purification and properties of a serine alkaline protease from Periplaneta americana and its potential application as an additive in various bio-formulations are reported. The enzyme was purified near to homogeneity by using acetone precipitation and Sephadex G-100 gel filtration chromatography. Enzyme activity was increased up to 4.2 fold after gel filtration chromatography. The purified enzyme appeared as single protein-band with a molecular mass of ~ 27.8 kDa in SDS-PAGE. The optimum pH and temperature for the proteolytic activity for purified protein were found around pH 8.0 and 60°C respectively. Complete inhibition of the purified enzyme by phenylmethylsulfonyl fluoride confirmed that the protease was of serine-type. The purified enzyme revealed high stability and compatibility towards detergents, oxidizing, reducing, and bleaching agents. In addition, enzyme also showed stability towards organic solvents and commercial detergents. CONCLUSION Several important properties of a serine protease from P. Americana were revealed. Moreover, insects can serve as excellent and alternative source of industrially important proteases with unique properties, which can be utilized as additives in detergents, stain removers and other bio-formulations. Properties of the P. americana protease accounted in the present investigation can be exploited further in various industrial processes. As an industrial prospective, identification of enzymes with varying essential properties from different insect species might be good approach and bioresource.
Collapse
Affiliation(s)
- Prashant T Sanatan
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| | - Purushottam R Lomate
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India
| | - Vandana K Hivrale
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, MS, India
| |
Collapse
|
27
|
Ran LY, Su HN, Zhao GY, Gao X, Zhou MY, Wang P, Zhao HL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhang YZ. Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family. Mol Microbiol 2013; 90:997-1010. [DOI: 10.1111/mmi.12412] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Li-Yuan Ran
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Guo-Yan Zhao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Ming-Yang Zhou
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Peng Wang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Hui-Lin Zhao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
- Marine Biotechnology Research Center; Shandong University; Jinan 250100 China
| |
Collapse
|
28
|
Yang J, Li J, Mai Z, Tian X, Zhang S. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. J Biosci Bioeng 2013; 115:628-32. [DOI: 10.1016/j.jbiosc.2012.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
29
|
Joshi S, Satyanarayana T. Biotechnology of cold-active proteases. BIOLOGY 2013; 2:755-83. [PMID: 24832807 PMCID: PMC3960895 DOI: 10.3390/biology2020755] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/24/2013] [Indexed: 11/17/2022]
Abstract
The bulk of Earth's biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth's surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
30
|
Joshi S, Satyanarayana T. Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. BIORESOURCE TECHNOLOGY 2013; 131:76-85. [PMID: 23340105 DOI: 10.1016/j.biortech.2012.12.124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 05/25/2023]
Abstract
A highly alkaline protease (BLAP) from a novel psychrotolerant and alkaliphilic bacterium, Bacillus lehensis was cloned and expressed in Escherichia coli. BLAP belongs to subtilase S8 family of proteases, comprising 27 aa secretion signal, 83 aa prosequence and 269 aa mature BLAP. The amino acids Asp 141, His 171 and Ser 324 form catalytic triad, while Ile 214, Leu 233 and Asn 267 are other active site moieties. Recombinant alkaline protease (rBLAP) is a monomeric protein of 39.0±1.0kDa, and it is active over broad pH (8-12) and temperature (30-60°C) ranges, with optima at pH 12.8 and 50°C. rBLAP is stimulated by SDS, Co(2+), Ca(2+), β-ME, and inhibited by Hg(2+) and PMSF. The rBLAP is compatible with commercial detergents, useful in silk degumming and silver recovery from the used photographic films and a potent biocontrol agent for arresting the development of eggs of the nematode Meloidogyne incognita.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
31
|
Kuddus M, Ramteke PW. Recent developments in production and biotechnological applications of cold-active microbial proteases. Crit Rev Microbiol 2012; 38:330-8. [DOI: 10.3109/1040841x.2012.678477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 2012; 168:327-38. [PMID: 22870801 DOI: 10.1007/s12010-012-9776-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/10/2012] [Indexed: 10/28/2022]
Abstract
A psychrotrophic Pseudomonas sp. TK-3 was isolated from dirty and cool stream water in Toyama, Japan from which we cloned and characterized the bacterial lipase LipTK-3. The sequenced DNA fragment contains an open reading frame of 1,428 bp that encoded a protein of 476 amino acids with an estimated molecular mass of 50,132 Da. The lipase showed high sequence similarity to those of subfamily Ι.3 lipase and had a conserved GXSXG motif around the catalytic Ser residue. Its optimal temperature was 20-25 °C, lower than in most other subfamily Ι.3 lipases. The lipase exhibited about 30 % of maximal activity at 5 °C. The optimal pH value was 8.0. The activity was strongly inhibited by EDTA and was highly dependent on Ca(2+). Tricaprylin and p-nitrophenyl caprylate were the most favorable substrates among the triglycerides and p-nitrophenyl esters, respectively. LipTK-3 also showed high activity towards natural substrates including edible vegetable oils and animal fats. Furthermore, LipTK-3 was very active and stable in the presence of several detergents, metal ions, and organic solvents. This cold-adapted lipase may prove useful for future applications.
Collapse
Affiliation(s)
- Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
33
|
Identification of cold-inducible inner membrane proteins of the psychrotrophic bacterium, Shewanella livingstonensis Ac10, by proteomic analysis. Extremophiles 2012; 16:227-36. [DOI: 10.1007/s00792-011-0422-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022]
|
34
|
Thermal stability of cytochrome c₅ of pressure-sensitive Shewanella livingstonensis. Biosci Biotechnol Biochem 2011; 75:1859-61. [PMID: 21897014 DOI: 10.1271/bbb.110370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome c₅ of pressure-sensitive Shewanella livingstonensis (SL cytc₅) exhibits lower thermal stability than a highly homologous counterpart of pressure-tolerant Shewanella violacea. This stability difference is due to an enthalpic effect that can be attributed to the amino acid residue at position 50 (Leu or Lys). These cytc₅ proteins are appropriate materials for understanding the protein stability mechanism.
Collapse
|
35
|
Budiman C, Koga Y, Takano K, Kanaya S. FK506-Binding protein 22 from a psychrophilic bacterium, a cold shock-inducible peptidyl prolyl isomerase with the ability to assist in protein folding. Int J Mol Sci 2011; 12:5261-84. [PMID: 21954357 PMCID: PMC3179164 DOI: 10.3390/ijms12085261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
Adaptation of microorganisms to low temperatures remains to be fully elucidated. It has been previously reported that peptidyl prolyl cis-trans isomerases (PPIases) are involved in cold adaptation of various microorganisms whether they are hyperthermophiles, mesophiles or phsycrophiles. The rate of cis-trans isomerization at low temperatures is much slower than that at higher temperatures and may cause problems in protein folding. However, the mechanisms by which PPIases are involved in cold adaptation remain unclear. Here we used FK506-binding protein 22, a cold shock protein from the psychrophilic bacterium Shewanella sp. SIB1 (SIB1 FKBP22) as a model protein to decipher the involvement of PPIases in cold adaptation. SIB1 FKBP22 is homodimer that assumes a V-shaped structure based on a tertiary model. Each monomer consists of an N-domain responsible for dimerization and a C-catalytic domain. SIB1 FKBP22 is a typical cold-adapted enzyme as indicated by the increase of catalytic efficiency at low temperatures, the downward shift in optimal temperature of activity and the reduction in the conformational stability. SIB1 FKBP22 is considered as foldase and chaperone based on its ability to catalyze refolding of a cis-proline containing protein and bind to a folding intermediate protein, respectively. The foldase and chaperone activites of SIB1 FKBP22 are thought to be important for cold adaptation of Shewanella sp. SIB1. These activities are also employed by other PPIases for being involved in cold adaptation of various microorganisms. Despite other biological roles of PPIases, we proposed that foldase and chaperone activities of PPIases are the main requirement for overcoming the cold-stress problem in microorganisms due to folding of proteins.
Collapse
Affiliation(s)
- Cahyo Budiman
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mails: (C.B.); (Y.K.); (S.K.)
| | - Yuichi Koga
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mails: (C.B.); (Y.K.); (S.K.)
| | - Kazufumi Takano
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mails: (C.B.); (Y.K.); (S.K.)
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-Cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mails: (C.B.); (Y.K.); (S.K.)
| |
Collapse
|
36
|
Deng A, Wu J, Zhang G, Wen T. Molecular and structural characterization of a surfactant-stable high-alkaline protease AprB with a novel structural feature unique to subtilisin family. Biochimie 2011; 93:783-91. [DOI: 10.1016/j.biochi.2011.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
37
|
Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 2011; 1:3. [PMID: 21906326 PMCID: PMC3159910 DOI: 10.1186/2191-0855-1-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/28/2011] [Indexed: 11/18/2022] Open
Abstract
Metagenomic DNA isolated from goat skin surface was used to construct plasmid DNA library in Escherichia coli DH10B. Recombinant clones were screened for functional protease activity on skim milk agar plates. Upon screening 70,000 clones, a clone carrying recombinant plasmid pSP1 exhibited protease activity. In vitro transposon mutagenesis and sequencing of the insert DNA in this clone revealed an ORF of 1890 bp encoding a protein with 630 amino acids which showed significant sequence homology to the peptidase S8 and S53 subtilisin kexin sedolisin of Shewanella sp. This ORF was cloned in pET30b and expressed in E. coli BL21 (DE3). Although the cloned Alkaline Serine protease (AS-protease) was overexpressed, it was inactive as a result of forming inclusion bodies. After solubilisation, the protease was purified using Ni-NTA chromatography and then refolded properly to retain protease activity. The purified AS-protease with a molecular mass of ~63 kDa required a divalent cation (Co2+ or Mn2+) for its improved activity. The pH and temperature optima for this protease were 10.5 and 42°C respectively.
Collapse
|
38
|
Abstract
Proteases are hydrolytic enzymes which catalyze the total hydrolysis of proteins in to amino acids. Although proteolytic enzymes can be obtained from animals and plants but microorganisms are the preferred source for industrial applications in view of scientific and economical advantage. Among various groups of microbes, psychrotrophs are ideal candidates for enzymes production keeping in mind that enzymes active at low temperature and stable under alkaline condition, in presence of oxidants and detergents are in large demand as laundry additive. The proteases from psychrotrophs also find application in environmental bioremediation, food and molecular biology. During the previous two decades, proteases from psychrotrophs have received increased attention because of their wide range of applications, but the full potential of psychrotrophic proteases has not been exploited. This review focuses attention on the present status of knowledge on the production, optimization, molecular characteristics, applications, substrate specificity, and crystal structure of psychrotrophic proteases. The review will help in making strategies for exploitation of psychrotrophic protease resources and improvement of enzymes to obtain more robust proteases of industrial and biotechnological significance.
Collapse
Affiliation(s)
- Ramesh Chand Kasana
- Institute of Himalayan Bioresource Technology (CSIR), Palampur (HP)-176061, India.
| |
Collapse
|
39
|
Collagenolytic subtilisin-like protease from the deep-sea bacterium Alkalimonas collagenimarina AC40T. Appl Microbiol Biotechnol 2009; 86:589-98. [DOI: 10.1007/s00253-009-2324-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/18/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
40
|
Kuddus M, Ramteke PW. A cold-active extracellular metalloprotease from Curtobacterium luteum (MTCC 7529): enzyme production and characterization. J GEN APPL MICROBIOL 2009; 54:385-92. [PMID: 19164881 DOI: 10.2323/jgam.54.385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A novel psychro-tolerant bacterium, Curtobacterium luteum, secreting an extracellular protease was isolated from the soil of Gangotri glacier, Western Himalaya. Maximum enzyme production was achieved when the strain was grown in a pH-neutral medium containing skim milk at 15 degrees C over 120 h. The metal ions such as Zn(2+) and Cr(2+) enhanced enzyme production. The specific activity of purified enzyme was 8,090 units/mg after 34.1-fold purification. The 115 kDa enzyme was a metalloprotease (activity inhibited by EDTA and EGTA) and showed maximum activity at 20 degrees C and pH 7. The enzyme was active over a broad pH range and retained 84% of its original activity between pH 6 and 8. There was no loss in enzyme activity when exposed for 3 h at 4-20 degrees C. However, the enzyme lost 65% of activity at 30 degrees C, and was almost inactivated at 50 degrees C, but was resistant to repeated freezing and thawing. The enzyme activity was stimulated by manganese ions; however, it was inactivated by copper ions.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biotechnology, Integral University, Lucknow, India.
| | | |
Collapse
|
41
|
Foose LL, Blanch HW, Radke CJ. Kinetics of adsorption and proteolytic cleavage of a multilayer ovalbumin film by subtilisin Carlsberg. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7388-7393. [PMID: 18564867 DOI: 10.1021/la8007014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Adsorption and proteolytic activity of the enzyme subtilisin Carlsberg have been studied on an immobilized, multilayer ovalbumin film. The cross-linked multilayer substrate permits protease adsorption to be examined unencumbered by the surface inhomogeneity typically observed in monolayer studies of protease surface kinetics. Decline of the protein film was measured over time using ellipsometry. Resulting kinetic data as a function of aqueous enzyme concentration and temperature were well fit by a Langmuir-Michaelis-Menten model for surface proteolysis. We observed that both the protein degradation kinetics and the in situ adsorption data were well described by the proposed model. The temperature dependence of the kinetic rate parameter yielded an activation energy of 12 kcal/mol. Further, the apparent Langmuir adsorption equilibrium constant of the enzyme at the protein/aqueous interface was 0.11 L/mg at 22 degrees C, 0.034 L/mg at 36 degrees C, and 0.011 L/mg at 50 degrees C. Although enzyme adsorption at a given aqueous enzyme concentration decreased at higher temperature, the enzyme cleaved the substrate more rapidly, leading to a net increase in the ovalbumin film degradation rate. We observed that the maximum enzyme coverage on the immobilized protein surface was approximately 40% of a close-packed monolayer at ambient temperature (22 degrees C).
Collapse
Affiliation(s)
- Ladan L Foose
- Department of Chemical Engineering, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
42
|
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008; 6:592-603. [PMID: 18604222 DOI: 10.1038/nrmicro1947] [Citation(s) in RCA: 639] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.
Collapse
Affiliation(s)
- James K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA. ;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Shanmughapriya S, Krishnaveni J, Selvin J, Gandhimathi R, Arunkumar M, Thangavelu T, Kiran GS, Natarajaseenivasan K. Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp. (MMD040). Bioprocess Biosyst Eng 2007; 31:427-33. [PMID: 18071758 DOI: 10.1007/s00449-007-0179-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/23/2007] [Indexed: 11/25/2022]
Abstract
Marine endosymbiontic Roseobacter sp. (MMD040), which produced high yields of protease, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in Luria-Bertani broth. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 37 degrees C and 7.0, respectively. The enzyme exhibited maximum activity in pH range of 6-9 with an optimum pH of 8.0 and retained nearly 92.5% activity at pH 9.0. The enzyme was stable at 40 degrees C and showed 89% activity at 50 degrees C. Based on the present findings, the enzyme was characterized as thermotolerant alkaline protease, which can be developed for industrial applications.
Collapse
Affiliation(s)
- S Shanmughapriya
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, India
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen XL, Xie BB, Lu JT, He HL, Zhang Y. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: catalytic and structural properties of deseasin MCP-01. MICROBIOLOGY-SGM 2007; 153:2116-2125. [PMID: 17600056 DOI: 10.1099/mic.0.2007/006056-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
MCP-01, the main protease secreted by the deep-sea cold-adapted bacterium Pseudoalteromonas sp. SM9913, is a cold-adapted serine protease. Gene mcp01 encoding MCP-01 contains an ORF of 2508 bp encoding a protein of 835 amino acid residues with an M(r) of 87 773 Da, which is a multidomain subtilase precursor. Mature MCP-01 purified from the culture of strain SM9913 with an M(r) of 65.84 kDa is a multidomain protein composed of a catalytic domain, a linker, a P_proprotein domain and a polycystic kidney disease (PKD) domain. To the best of the authors' knowledge, no mature subtilase has been reported to date with this domain architecture. Phylogenetic analyses of subtilases showed that MCP-01 and 12 hypothetical proteins retrieved from public databases form a strongly supported group within the subtilase subfamily. These 13 proteins are predicted to share a similar domain architecture and represent a structurally novel group within the S8A subfamily. The substrate specificities of MCP-01 towards synthetic peptides differed from that of a typical S8A protease, subtilisin Carlsberg. Since most of this new subgroup of subtilases, including MCP-01 and the 12 MCP-01-like subtilases, are from deep-sea bacteria, they are termed deseasins. MCP-01 is the type example of a deseasin, since it is the only one that has been purified and characterized. In addition, the structural characteristics and catalytic properties of deseasin MCP-01 show that structurally and kinetically it is adapted to low temperatures.
Collapse
Affiliation(s)
- Xiu-Lan Chen
- The State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- The State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Jing-Tao Lu
- The State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Hai-Lun He
- The State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| | - Yuzhong Zhang
- The State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
45
|
Saeki K, Ozaki K, Kobayashi T, Ito S. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 2007; 103:501-8. [PMID: 17630120 DOI: 10.1263/jbb.103.501] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/20/2007] [Indexed: 11/17/2022]
Abstract
Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.
Collapse
Affiliation(s)
- Katsuhisa Saeki
- Tochigi Research Laboratories of Kao Corporation, 2606 Akabane, Ichikai, Haga 321-3497, Japan.
| | | | | | | |
Collapse
|
46
|
Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N. Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophiles 2007; 11:819-26. [PMID: 17618403 DOI: 10.1007/s00792-007-0098-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/07/2007] [Indexed: 11/28/2022]
Abstract
Proteomic analysis of a cold-adapted bacterium, Shewanella livingstonensis Ac10, isolated from Antarctic seawater was carried out to elucidate its cold-adaptation mechanism. The cells were grown at 4 degrees C and 18 degrees C, and soluble and membrane proteins were analyzed by two-dimensional gel electrophoresis. At 4 degrees C, the relative abundance of 47 soluble proteins and five membrane proteins increased more than twofold, and these proteins were analyzed by peptide mass fingerprinting. Twenty-six soluble proteins and two membrane proteins were identified. These included proteins involved in RNA synthesis and folding (RpoA, GreA, and CspA), protein synthesis and folding (TufB, Efp, LysU, and Tig), membrane transport (OmpA and OmpC), and motility (FlgE and FlgL). Cold-inducible RpoA, GreA, and CspA may be required for efficient and accurate transcription and proper folding of RNA at low temperatures, where base pairing of nucleic acids is stable and undesired secondary structures of RNA tend to form. Tig is supposed to have peptidyl-prolyl cis-trans isomerase activity and facilitate proper folding of proteins at low temperatures. The cold induction of OmpA and OmpC is likely to counteract the low diffusion rate of solutes at low temperatures and enables the efficient uptake of nutrients. These results provided many clues to understand microbial cold-adaptation mechanisms.
Collapse
Affiliation(s)
- Jun Kawamoto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | | | |
Collapse
|
47
|
Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, Esaki N. Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 2007; 73:4849-56. [PMID: 17526788 PMCID: PMC1951021 DOI: 10.1128/aem.00824-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recombinant protein expression system working at low temperatures is expected to be useful for the production of thermolabile proteins. We constructed a low-temperature expression system using an Antarctic cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. We evaluated the promoters for proteins abundantly produced at 4 degrees C in this bacterium to express foreign proteins. We used 27 promoters and a broad-host-range vector, pJRD215, to produce beta-lactamase in Shewanella sp. strain Ac10. The maximum yield was obtained when the promoter for putative alkyl hydroperoxide reductase (AhpC) was used and the recombinant cells were grown to late stationary phase. The yield was 91 mg/liter of culture at 4 degrees C and 139 mg/liter of culture at 18 degrees C. We used this system to produce putative peptidases, PepF, LAP, and PepQ, and a putative glucosidase, BglA, from a psychrophilic bacterium, Desulfotalea psychrophila DSM12343. We obtained 48, 7.1, 28, and 5.4 mg/liter of culture of these proteins, respectively, in a soluble fraction. The amounts of PepF and PepQ produced by this system were greater than those produced by the Escherichia coli T7 promoter system.
Collapse
Affiliation(s)
- Ryoma Miyake
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Olivera NL, Sequeiros C, Nievas ML. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles 2007; 11:517-26. [PMID: 17487446 DOI: 10.1007/s00792-007-0064-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 01/09/2007] [Indexed: 11/24/2022]
Abstract
Protease-producing bacteria isolated from sub-Antarctic marine sediments of Isla de Los Estados (Argentina) were characterized, and the thermal inactivation kinetics of their extracellular proteases compared. Isolates were affiliated with the genera Pseudoalteromonas, Shewanella, Colwellia, Planococcus, and a strain to the family Flavobacteriaceae. Colwellia strains were moderate psychrophiles (optimal growth at about 15 degrees C, maximum growth temperature at around 25 degrees C). 16S rRNA phylogenetic analysis revealed that these strains and Colwellia aestuarii form a distinct lineage within the genus. The remaining isolates were psychrotolerant and grew optimally between 20 and 25 degrees C; two of them represent potentially novel species or genus (16S rRNA < 97% sequence similarity). The thermostability of the extracellular proteases produced by the isolates was analysed, and the inactivation rate constant (k (in)), the activation energy (Ea(in)) and the activation Gibbs free energy of thermal inactivation (Delta G( * ) (in)) determined. Delta G( * ) (in), calculated at 30 degrees C, varied between 97 and 124 kJ/mol. Colwellia enzyme extracts presented the highest thermosensitivity, while the most thermostable protease activity was shown by Shewanella spp. These results demonstrated that the stability to temperature of these enzymes varies considerably among the isolates, suggesting important variations in the thermal properties of the proteases that can coexist in this environment.
Collapse
Affiliation(s)
- Nelda L Olivera
- Centro Nacional Patagónico (CENPAT, CONICET), Blvd. Brown s/n, Puerto Madryn, U9120ACF, Chubut, Argentina.
| | | | | |
Collapse
|
49
|
Kasana RC, Yadav SK. Isolation of a Psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and Characterization of Its Alkaline Protease. Curr Microbiol 2007; 54:224-9. [PMID: 17294327 DOI: 10.1007/s00284-006-0402-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/04/2006] [Indexed: 10/23/2022]
Abstract
Out of nine psychrotrophic bacterial strains isolated from cold environments of the Western Himalayas, SKPB5 was selected for protease purification and characterization because it had the largest zone of clearance on plate assay. On the basis of the phenotypic and biochemical characterization and 16S rRNA gene-sequencing studies, isolate was identified as Exiguobacterium sp. SKPB5. The protease was purified near to homogeneity with a purification fold of 7.1, and its molecular weight was determined to be 36 kDa. The enzyme exhibited maximum stability at 50 degrees C and an optimal pH of 8.0. Metal ions Mg2+, Ca2+, Zn2+, and Mn2+ enhanced the enzyme activity, whereas Cu2+ had no effect. Phenylmethanesulfonyl fluoride and ethylenediaminetetraacetic acid did not show any effect on the activity of the enzyme, whereas a 20% increase in activity was observed when it was incubated in presence of reducing agents such as beta-mercaptoethanol and dithiothreitol. This suggests that the protease isolated from psychrotrophic Exiguobacterium sp. SKPB5 belongs to the cysteine family. The results highlight the relevance of unexplored microbes from cold environments of Western Himalayas for the isolation of protease enzymes active at wide range of temperature and pH.
Collapse
MESH Headings
- Bacillaceae/enzymology
- Bacillaceae/isolation & purification
- Bacillaceae/physiology
- Bacterial Proteins/chemistry
- Bacterial Proteins/isolation & purification
- Bacterial Proteins/metabolism
- Bacterial Typing Techniques
- Cold Temperature
- Cysteine Endopeptidases/chemistry
- Cysteine Endopeptidases/isolation & purification
- Cysteine Endopeptidases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dithiothreitol/pharmacology
- Endopeptidases/chemistry
- Endopeptidases/isolation & purification
- Endopeptidases/metabolism
- Environmental Microbiology
- Enzyme Activators/pharmacology
- Enzyme Stability
- Genes, rRNA
- Hydrogen-Ion Concentration
- India
- Mercaptoethanol/pharmacology
- Metals/pharmacology
- Molecular Sequence Data
- Molecular Weight
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Temperature
Collapse
Affiliation(s)
- Ramesh C Kasana
- Hill Area Tea Science Division, Institute of Himalayan Bioresource technology (CSIR), Palampur 176061, India
| | | |
Collapse
|
50
|
Meng K, Li J, Cao Y, Shi P, Wu B, Han X, Bai Y, Wu N, Yao B. Gene cloning and heterologous expression of a serine protease fromStreptomyces fradiaevar.k11. Can J Microbiol 2007; 53:186-95. [PMID: 17496966 DOI: 10.1139/w06-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene sfp1, which encodes a predicted serine proteinase designated SFP1, was isolated by the screening of a gene library of the feather-degrading strain Streptomyces fradiae var.k11. The open reading frame of sfp1 encodes a protein of 454 amino acids with a calculated molecular mass of 46.19 kDa. Sequence analysis reveals that SFP1 possesses a typical pre-pro-mature organization that consists of a signal sequence, an N-terminal propeptide region, and a mature proteinase domain. The pre-enzyme of SFP1 was expressed in Escherichia coli and consequently purified. The 25.6 kDa fraction with protease activity separated by gel filtration chromatography indicated that the mature enzyme of SFP1 was formed by autolysis of the propeptide after its expression. The purified SFP1 is active under a broad range of pH and temperature. SFP1 has pH and temperature optima of pH 8.5 and 65 °C for its caseinolytic activity and pH 9 and 62 °C for its keratinolytic activity. SFP1 was sharply inhibited by the serine proteinase inhibitor phenylmethyl sulfonyl fluoride and exhibited a good stability to solvents, detergents, and salts. Comparison of the protease activity of SFP1 with other commercial proteases indicates that SFP1 has a considerable caseinolytic and keratinolytic activity as does proteinase K.
Collapse
Affiliation(s)
- Kun Meng
- Microbiological Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancunnandajie Road, Beijing 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|