1
|
Hausinger RP. Five decades of metalloenzymology. Enzymes 2023; 54:71-105. [PMID: 37945178 DOI: 10.1016/bs.enz.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
Collapse
Affiliation(s)
- Robert P Hausinger
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
2
|
Hao X, Zhu YG, Nybroe O, Nicolaisen MH. The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Front Microbiol 2020; 10:2951. [PMID: 31969866 PMCID: PMC6960115 DOI: 10.3389/fmicb.2019.02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Intimate fungal-bacterial interactions are widespread in nature. However the main drivers for the selection of hyphae-associated bacterial communities and their functional traits in soil systems remain elusive. In the present study, baiting microcosms were used to recover hyphae-associated bacteria from two Penicillium species with different phosphorus-solubilizing capacities in five types of soils. Based on amplicon sequencing of 16S rRNA genes, the composition of bacterial communities associated with Penicillium hyphae differed significantly from the soil communities, showing a lower diversity and less variation in taxonomic structure. Furthermore, soil origin had a significant effect on hyphae-associated community composition, whereas the two fungal species used in this study had no significant overall impact on bacterial community structure, despite their different capacities to solubilize phosphorus. However, discriminative taxa and specific OTUs were enriched in hyphae-associated communities of individual Penicillium species indicating that each hyphosphere represented a unique niche for bacterial colonization. Additionally, an increased potential of phosphorus cycling was found in hyphae-associated communities, especially for the gene phnK involved in phosphonate degradation. Altogether, it was established that the two Penicillium hyphae represent unique niches in which microbiome assemblage and phosphorus cycling potential are mainly driven by soil origin, with less impact made by fungal identity with a divergent capacity to utilize phosphorus.
Collapse
Affiliation(s)
- Xiuli Hao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Cameron A, Gaynor EC. Hygromycin B and apramycin antibiotic resistance cassettes for use in Campylobacter jejuni. PLoS One 2014; 9:e95084. [PMID: 24751825 PMCID: PMC3994027 DOI: 10.1371/journal.pone.0095084] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
Campylobacter jejuni genetic manipulation is restricted by the limited number of antibiotic resistance cassettes available for use in this diarrheal pathogen. In this study, two antibiotic resistance cassettes were developed, encoding for hygromycin B and apramycin resistance, for use in mutagenesis or for selection of gene expression and complementation constructs in C. jejuni. First, the marker genes were successfully modified to allow for insertional mutagenesis or deletion of a gene-of-interest, and were bracketed with restriction sites for the facilitation of site-specific cloning. These hygromycin B and apramycin markers are encoded by plasmids pAC1H and pAC1A, respectively. We also modified an insertional gene-delivery vector to create pRRH and pRRA, containing the hygromycin B and apramycin resistance genes, and 3 unique restriction sites for the directional introduction of genes into the conserved multi-copy rRNA gene clusters of the C. jejuni chromosome. We determined the effective antibiotic concentrations required for selection, and established that no harmful effects or fitness costs were associated with carrying hygromycin B or apramycin resistance under standard C. jejuni laboratory conditions. Using these markers, the arylsulfatase reporter gene astA was deleted, and the ability to genetically complement the astA deletion using pRRH and pRRA for astA gene insertion was demonstrated. Furthermore, the relative levels of expression from the endogenous astA promoter were compared to that of polycistronic mRNA expression from the constitutive promoter upstream of the resistance gene. The development of additional antibiotic resistance cassettes for use in Campylobacter will enable multiple gene deletion and expression combinations as well as more in-depth study of multi-gene systems important for the survival and pathogenesis of this important bacterium.
Collapse
Affiliation(s)
- Andrew Cameron
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
McSorley FR, Wyatt PB, Martinez A, DeLong EF, Hove-Jensen B, Zechel DL. PhnY and PhnZ Comprise a New Oxidative Pathway for Enzymatic Cleavage of a Carbon–Phosphorus Bond. J Am Chem Soc 2012; 134:8364-7. [DOI: 10.1021/ja302072f] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fern R. McSorley
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| | - Peter B. Wyatt
- School
of Biological and Chemical
Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Asuncion Martinez
- Division of Biological Engineering,
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, United States
| | - Edward F. DeLong
- Division of Biological Engineering,
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge,
Massachusetts 02139, United States
| | - Bjarne Hove-Jensen
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| | - David L. Zechel
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston,
Ontario, Canada K7L 3N6
| |
Collapse
|
5
|
DeSieno MA, van der Donk WA, Zhao H. Characterization and application of the Fe(II) and α-ketoglutarate dependent hydroxylase FrbJ. Chem Commun (Camb) 2011; 47:10025-7. [PMID: 21829824 DOI: 10.1039/c1cc13597j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Fe(II) and α-ketoglutarate-dependent hydroxylase FrbJ was previously demonstrated to utilize FR-900098 synthesizing a second phosphonate FR-33289. Here we assessed its ability to hydroxylate other possible substrates, generating a library of potential antimalarial compounds. Through a series of bioassays and in vitro experiments, we identified two new antimalarials.
Collapse
Affiliation(s)
- Matthew A DeSieno
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
6
|
Hollenhorst MA, Bumpus SB, Matthews ML, Bollinger JM, Kelleher NL, Walsh CT. The nonribosomal peptide synthetase enzyme DdaD tethers N(β)-fumaramoyl-l-2,3-diaminopropionate for Fe(II)/α-ketoglutarate-dependent epoxidation by DdaC during dapdiamide antibiotic biosynthesis. J Am Chem Soc 2011; 132:15773-81. [PMID: 20945916 DOI: 10.1021/ja1072367] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene cluster from Pantoea agglomerans responsible for biosynthesis of the dapdiamide antibiotics encodes an adenylation-thiolation didomain protein, DdaD, and an Fe(II)/α-ketoglutarate-dependent dioxygenase homologue, DdaC. Here we show that DdaD, a nonribosomal peptide synthetase module, activates and sequesters N(β)-fumaramoyl-l-2,3-diaminopropionate as a covalently tethered thioester for subsequent oxidative modification of the fumaramoyl group. DdaC catalyzes Fe(II)- and α-ketoglutarate-dependent epoxidation of the covalently bound N(β)-fumaramoyl-l-2,3-diaminopropionyl-S-DdaD species to generate N(β)-epoxysuccinamoyl-DAP (DAP = 2,3-diaminopropionate) in thioester linkage to DdaD. After hydrolytic release, N(β)-epoxysuccinamoyl-DAP can be ligated to l-valine by the ATP-dependent ligase DdaF to form the natural antibiotic N(β)-epoxysuccinamoyl-DAP-Val.
Collapse
Affiliation(s)
- Marie A Hollenhorst
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
7
|
Xie F, Chao Y, Xue Z, Yang X, Zhang G, Shi J, Qian S. Stereoselective epoxidation of cis-propenylphosphonic acid to fosfomycin by a newly isolated bacterium Bacillus simplex strain S101. J Ind Microbiol Biotechnol 2009; 36:739-46. [DOI: 10.1007/s10295-009-0546-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/06/2009] [Indexed: 10/21/2022]
|
8
|
Faulkner JR, Hussaini SR, Blankenship JD, Pal S, Branan BM, Grossman RB, Schardl CL. On the sequence of bond formation in loline alkaloid biosynthesis. Chembiochem 2006; 7:1078-88. [PMID: 16755627 DOI: 10.1002/cbic.200600066] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Loline alkaloids are saturated pyrrolizidines with an oxygen bridge between carbon atoms C-2 and C-7 and an amino group on C-1. They are bioprotective alkaloids produced by Epichloë and Neotyphodium species, mutualistic fungal endophytes that are symbiotic with cool-season grasses. The sequence of bond formation in loline alkaloid biosynthesis was determined by synthesizing deuterated forms of potential intermediates and feeding them to cultures of the endophyte Neotyphodium uncinatum. These cultures incorporated deuterium from labeled N-(3-amino-3-carboxypropyl)proline and exo-1-aminopyrrolizidine into N-formylloline. The first result suggests that N-(3-amino-3-carboxypropyl)proline is the first committed intermediate in loline biosynthesis, and the second result demonstrates that the pyrrolizidine rings form before the ether bridge. The incorporation of these two compounds into lolines and the lack of incorporation of several related compounds clarify the order of bond formation in loline alkaloid biosynthesis.
Collapse
Affiliation(s)
- Jerome R Faulkner
- Department of Plant Pathology, University of Kentucky, Lexington, 40546-0312, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Ding Y, Bojja RS, Du L. Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol 2004; 70:1931-4. [PMID: 15066782 PMCID: PMC383085 DOI: 10.1128/aem.70.4.1931-1934.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fumonisins are polyketide-derived mycotoxins produced by several agriculturally important Fusarium species. The B series fumonisins, FB(1), FB(2), FB(3), and FB(4), are fumonisins produced by wild-type Fusarium verticillioides strains, differing in the number and location of hydroxyl groups attached to the carbon backbone. We characterized the protein encoded by FUM3, a gene in the fumonisin biosynthetic gene cluster. The 33-kDa FUM3 protein (Fum3p) was heterologously expressed and purified from Saccharomyces cerevisiae. Yeast cells expressing the Fum3p converted FB(3) to FB(1), indicating that Fum3p catalyzes the C-5 hydroxylation of fumonisins. This result was verified by assaying the activity of Fum3p purified from yeast cells. The C-5 hydroxylase activity of purified Fum3p required 2-ketoglutarate, Fe(2+), ascorbic acid, and catalase, all of which are required for 2-ketoglutarate-dependent dioxygenases. The protein also contains two His motifs that are highly conserved in this family of dioxygenases. Thus, Fum3p is a 2-ketoglutarate-dependent dioxygenase required for the addition of the C-5 hydroxyl group of fumonisins.
Collapse
Affiliation(s)
- Yousong Ding
- Chemistry Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, USA
| | | | | |
Collapse
|
10
|
Yanai K, Sumida N, Okakura K, Moriya T, Watanabe M, Murakami T. Para-position derivatives of fungal anthelmintic cyclodepsipeptides engineered with Streptomyces venezuelae antibiotic biosynthetic genes. Nat Biotechnol 2004; 22:848-55. [PMID: 15184904 DOI: 10.1038/nbt978] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 04/08/2004] [Indexed: 11/09/2022]
Abstract
PF1022A, a cyclooctadepsipeptide possessing strong anthelmintic properties and produced by the filamentous fungus Rosellinia sp. PF1022, consists of four alternating residues of N-methyl-L-leucine and four residues of D-lactate or D-phenyllactate. PF1022A derivatives obtained through modification of their benzene ring at the para-position with nitro or amino groups act as valuable starting materials for the synthesis of compounds with improved anthelmintic activities. Here we describe the production of such derivatives by fermentation through metabolic engineering of the PF1022A biosynthetic pathway in Rosellinia sp. PF1022. Three genes cloned from Streptomyces venezuelae, and required for the biosynthesis of p-aminophenylpyruvate from chorismate in the chloramphenicol biosynthetic pathway, were expressed in a chorismate mutase-deficient strain derived from Rosellinia sp. PF1022. Liquid chromatography-mass spectrometry and NMR analyses confirmed that this approach facilitated the production of PF1022A derivatives specifically modified at the para-position. This fermentation method is environmentally safe and can be used for the industrial scale production of PF1022A derivatives.
Collapse
Affiliation(s)
- Koji Yanai
- Microbiological Resources and Technology Laboratories, Meiji Seika Kaisha, Ltd., 788 Kayama, Odawara-shi, Kanagawa 250-0852, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Müllner S. The impact of proteomics on products and processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 83:1-25. [PMID: 12934924 DOI: 10.1007/3-540-36459-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Not much more than 15 years ago a handful of visionary scientists around the world suggested to sequence and analyze not only the human genome but also as many genomes as possible in order to compare DNA as well as to deduce protein sequences. By that means they expected to get an idea about the organization of life. However, after now having now sequenced the human genome and at least identified around 40,000 genes as coding regions, we are still left with the fundamental questions of how genes are regulated, and what is the rationale of genetic regulatory networks. The basic knowledge and methodologies to elucidate functional regulatory networks of cells and organisms on the protein level had been around for much longer than DNA-based discovery tools. This was mainly due to the fact that proteins have to fulfill universal functions in nature and, unlike DNA polynucleotides, proteins differ not only in their amino acid sequences; they come in nearly all shapes and sizes and have all kinds of physical as well as chemical properties. They can be highly water soluble, e.g., serum and milk proteins, or nearly insoluble in any solvent, e.g., keratin and some other structural proteins. In addition, structure, function, as well as the respective stability of proteins inside and outside of a biological system, are individual features of any given polypeptide. On one hand, the individuality of proteins allows adaptation of any life form to the environment, and on the other it is still a real challenge for biotech R&D and production. The present review is actually the first approach to evaluate and judge the achievements made by Applied Proteome Analysis and Proteomics over the last 27 years.
Collapse
Affiliation(s)
- Stefan Müllner
- Fundamenta Capital AG, Bergische Landstrasse 67, 51375 Leverkusen, Germany.
| |
Collapse
|
12
|
|