1
|
Cochran JP, Zhang L, Parrott BB, Seaman JC. Plasmid size determines adsorption to clay and breakthrough in a saturated sand column. Heliyon 2024; 10:e29679. [PMID: 38707295 PMCID: PMC11066139 DOI: 10.1016/j.heliyon.2024.e29679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Horizontal gene transfer (HGT) is a major factor in the spread of antibiotic resistant genes (ARG). Transformation, one mode of HGT, involves the acquisition and expression of extracellular DNA (eDNA). eDNA in soils is degraded rapidly by extracellular nucleases. However, if bound to a clay particle, eDNA can persist for long periods of time without losing its transformation ability. To better understand the mechanism of eDNA persistence in soil, this experiment assessed the effects of 1) clay mineralogy, 2) mixed salt solution, 3) plasmid size on DNA adsorption to clay and 4) breakthrough behavior of three differently sized plasmids in an environmentally relevant solution. Batch test methods were used to determine adsorption trends of three differently sized DNA plasmids, pUC19, pBR322, and pTYB21, to several pure clay minerals, goethite (α-FeOOH), illite, and kaolinite, and one environmental soil sample. Results show not all sorbents have equal adsorption capacity based on surface area with adsorption capacities decreasing from goethite > illite = kaolinite > bulk soil, and low ionic strength solutions will likely not significantly alter sorption trends. Additionally, plasmid DNA size (i.e., length) was shown to be a significant predictor of adsorption efficiency and that size affects DNA breakthrough, with breakthroughs occurring later with larger plasmids. Given that DNA persistence is linked to its adsorption to soil constituents and breakthrough, eDNA size is likely an important contributor to the spread of ARG within natural microbial communities.
Collapse
Affiliation(s)
- Jarad P. Cochran
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Liyun Zhang
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - John C. Seaman
- Savannah River Ecology Laboratory, Aiken, SC, United States
- Crops and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Ye M, Zhang Z, Sun M, Shi Y. Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. IMETA 2022; 1:e34. [PMID: 38868707 PMCID: PMC10989830 DOI: 10.1002/imt2.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Extracellular DNA (eDNA) and intracellular DNA (iDNA) extensively exist in both terrestrial and aquatic environment systems and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, eDNA is able to present stability in the environment from the ribosome enzyme lysis, therein acting as the historical genetic information archive of the microbiome. As a consequence, both eDNA and iDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, eDNA is a ubiquitous composition of the cell membrane, which exerts a great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, pesticides, and so on. This study focuses on the environmental dynamics and the ecological functions of the eDNA and iDNA from the perspectives of environmental behavior, genetic information transmission, resistance to the environmental contaminants, and so on. By reviewing the status quo and the future vista of the e/iDNAs research, this article sheds light on exploring the ecological functioning of the e/iDNAs in the environmental microbiome.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
3
|
Alok D, Annapragada H, Singh S, Murugesan S, Singh NP. Symbiotic nitrogen fixation and endophytic bacterial community structure in Bt-transgenic chickpea (Cicer arietinum L). Sci Rep 2020; 10:5453. [PMID: 32214159 PMCID: PMC7096491 DOI: 10.1038/s41598-020-62199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 01/11/2023] Open
Abstract
Symbiotic nitrogen fixation (SNF) of transgenic grain legumes might be influenced either by the site of transgene integration into the host genome or due to constitutive expression of transgenes and antibiotic-resistant marker genes. The present investigation confirmed proper nodulation of five tested Bt-chickpea events (IPCa2, IPCa4, IPCT3, IPCT10, and IPCT13) by native Mesorhizobium under field environment. Quantitative variations for nodulation traits among Bt-chickpea were determined and IPCT3 was found superior for nodule number and nodule biomass. Diversity, as well as richness indices, confirmed the changes in bacterial community structure of root and root-nodules from Bt-chickpea events IPCa2 and IPCT10. Especially, Gram-positive bacteria belonging to Firmicutes and Actinobacteria were selectively eliminated from root colonization of IPCa2. Richness indices (CHAO1 and ACE) of the root-associated bacterial community of IPCa2 was 13-14 times lesser than that of parent cv DCP92-3. Root nodule associated bacterial community of IPCT10 was unique with high diversity and richness, similar to the roots of non-Bt and Bt-chickpea. It indicated that the root nodules of IPCT10 might have lost their peculiar characteristics and recorded poor colonization of Mesorhizobium with a low relative abundance of 0.27. The impact of Bt-transgene on bacterial community structure and nodulation traits should be analyzed across the years and locations to understand and stabilize symbiotic efficiency for ecosystem sustainability.
Collapse
Affiliation(s)
- Das Alok
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Harika Annapragada
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Shilpa Singh
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Senthilkumar Murugesan
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India.
| | - Narendra Pratap Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| |
Collapse
|
4
|
Delaney B, Goodman RE, Ladics GS. Food and Feed Safety of Genetically Engineered Food Crops. Toxicol Sci 2017; 162:361-371. [DOI: 10.1093/toxsci/kfx249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Bryan Delaney
- DuPont Pioneer, International, Inc, 8325 N 62nd Avenue, Johnston, IA 50131, USA
| | - Richard E Goodman
- Food Science & Technology, University of Nebraska, 1901 North 21St Street, Lincoln Nebraska, Lincoln, NE 68588, USA
| | - Gregory S Ladics
- DuPont Haskell Laboratory, 1090 Elkton Road, Newark, DE, 19711, USA
| |
Collapse
|
5
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Turrini A, Sbrana C, Giovannetti M. Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 2015; 166:121-31. [DOI: 10.1016/j.resmic.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
7
|
Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol 2014; 4:415. [PMID: 24432015 PMCID: PMC3882822 DOI: 10.3389/fmicb.2013.00415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Thomas Bøhn
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA
| |
Collapse
|
8
|
Rizzi A, Raddadi N, Sorlini C, Nordgrd L, Nielsen KM, Daffonchio D. The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs. Crit Rev Food Sci Nutr 2012; 52:142-61. [DOI: 10.1080/10408398.2010.499480] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Demanèche S, Monier JM, Dugat-Bony E, Simonet P. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria. FEMS Microbiol Ecol 2011; 78:129-36. [PMID: 21564143 DOI: 10.1111/j.1574-6941.2011.01126.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.
Collapse
Affiliation(s)
- Sandrine Demanèche
- Environmental Microbial Genomics Group, Laboratoire AMPERE, UMR CNRS 5005, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
| | | | | | | |
Collapse
|
10
|
Burris K, Mentewab A, Ripp S, Stewart CN. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli. Microb Biotechnol 2011; 1:191-5. [PMID: 21261836 PMCID: PMC3864452 DOI: 10.1111/j.1751-7915.2007.00010.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin‐sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin‐sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no‐plasmid control at low concentrations. Atwbc19 was not significantly different from the no‐plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria.
Collapse
Affiliation(s)
- Kellie Burris
- Department of Plant Sciences, The University of Tennessee, Knoxville, 252 Ellington Plant Sciences, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | | | | | | |
Collapse
|
11
|
Zhu B, Ma BL, Blackshaw RE. Development of real time PCR assays for detection and quantification of transgene DNA of a Bacillus thuringiensis (Bt) corn hybrid in soil samples. Transgenic Res 2010; 19:765-74. [PMID: 20044792 DOI: 10.1007/s11248-009-9353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Real time PCR assays were developed to detect and quantify the transgene DNA of a commercially released Bacillus thuringiensis (Bt) corn (Zea mays L.) hybrid (DKC42-23), which was derived from the event MON863 and also carried a neomycin phosphotransferase gene (the nptII gene). We applied the real time PCR assays to investigate the persistence of the transgene DNA in a field trial grown with DKC42-23 over 3 years, in combination with bacterial natural transformation. The results showed that under continuous cultivation of DKC42-23, its transgene DNA was detectable in the field plots all year around. Meanwhile, when soil DNA extracts from DKC42-23 plots were used as donor in bacterial natural transformation, successful recovery of kanamycin resistant (Km(R)) transformants indicated that the nptII gene carried by DKC42-23 could be taken up and integrated into naturally competent Pseudomonas stutzeri pMR7 cells, leading to the restoration of the antibiotic resistance of P. stutzeri pMR7. However, after the cultivation of a soybean line in the same plots for the subsequent growing season, the presence of transgene DNA of DKC42-23 was reduced to undetectable levels at the end of that growing season. Therefore, existing corn-soybean crop rotation practices reduce the availability of transgene DNA in soil and thus minimize the risks that might be attributable to horizontal gene transfer. The real time PCR assays are useful for investigating the persistence of transgene DNA derived from the MON863 event in soil environments.
Collapse
Affiliation(s)
- Bin Zhu
- Environment Canada, 11 Innovation Boulevard, Saskatoon, SK, S7N 3H5, Canada.
| | | | | |
Collapse
|
12
|
|
13
|
Guan J, Chan M, Spencer JL. The fate of recombinant plasmids during composting of organic wastes. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:279-284. [PMID: 20394128 DOI: 10.1080/03601231003704556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Composting was investigated as a means for safe disposal of organic waste containing bacteria that carry transgenes in recombinant plasmids. To generate model recombinant plasmids, a mobile IncQ plasmid, RSF1010, and a non-mobile plasmid, pGFP, were genetically modified to carry a DNA segment encoding both green fluorescent protein and kanamycin resistance and were designated as RSF1010-GFPK and pGFPK. Escherichia coli (E. coli) C600 harboring these plasmids were inoculated into chicken manure specimens that were placed in compost at 20 and 60 cm from the bottom of a 1.0-m high compost bin. Control specimens were held at ambient temperature. By day 10, compost temperatures at the lower and upper levels of the bin had reached 45.3 and 61.5 degrees C, respectively, and at both levels the target E. coli had been inactivated and the plasmids had lost their capacity to be transformed or mobilized. Furthermore, based on real time Polymerase chain reaction (PCR), the transgene fragments along with the host chromosomal DNA fragment from specimens at the upper level had been degraded beyond the detection limit. However, at the lower level where temperatures remained below 48 degrees C these fragment persisted to day 21. At ambient temperatures (0-8 degrees C), the E. coli, plasmids and the transgene fragments persisted in manure specimens throughout the 21 day test period. The study showed the potential for composting as a safe procedure for disposal of bacteria carrying transgenes in recombinant plasmids.
Collapse
Affiliation(s)
- Jiewen Guan
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Brigulla M, Wackernagel W. Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 2010; 86:1027-41. [DOI: 10.1007/s00253-010-2489-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/18/2009] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|
15
|
Icoz I, Andow D, Zwahlen C, Stotzky G. Is the Cry1Ab protein from Bacillus thuringiensis (Bt) taken up by plants from soils previously planted with Bt corn and by carrot from hydroponic culture? BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 83:48-58. [PMID: 19444360 DOI: 10.1007/s00128-009-9760-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
The uptake of the insecticidal Cry1Ab protein from Bacillus thuringiensis (Bt) by various crops from soils on which Bt corn had previously grown was determined. In 2005, the Cry1Ab protein was detected by Western blot in tissues (leaves plus stems) of basil, carrot, kale, lettuce, okra, parsnip, radish, snap bean, and soybean but not in tissues of beet and spinach and was estimated by enzyme-linked immunosorbent assay (ELISA) to be 0.05 +/- 0.003 ng g(-1) of fresh plant tissue in basil, 0.02 +/- 0.014 ng g(-1) in okra, and 0.34 +/- 0.176 ng g(-1) in snap bean. However, the protein was not detected by ELISA in carrot, kale, lettuce, parsnip, radish, and soybean or in the soils by Western blot. In 2006, the Cry1Ab protein was detected by Western blot in tissues of basil, carrot, kale, radish, snap bean, and soybean from soils on which Bt corn had been grown the previous year and was estimated by ELISA to be 0.02 +/- 0.014 ng g(-1) of fresh plant tissue in basil, 0.19 +/- 0.060 ng g(-1) in carrot, 0.05 +/- 0.018 ng g(-1) in kale, 0.04 +/- 0.022 ng g(-1) in radish, 0.53 +/- 0.170 ng g(-1) in snap bean, and 0.15 +/- 0.071 ng g(-1) in soybean. The Cry1Ab protein was also detected by Western blot in tissues of basil, carrot, kale, radish, and snap bean but not of soybean grown in soil on which Bt corn had not been grown since 2002; the concentration was estimated by ELISA to be 0.03 +/- 0.021 ng g(-1) in basil, 0.02 +/- 0.008 ng g(-1) in carrot, 0.04 +/- 0.017 ng g(-1) in kale, 0.02 +/- 0.012 ng g(-1) in radish, 0.05 +/- 0.004 ng g(-1) in snap bean, and 0.09 +/- 0.015 ng g(-1) in soybean. The protein was detected by Western blot in 2006 in most soils on which Bt corn had or had not been grown since 2002. The Cry1Ab protein was detected by Western blot in leaves plus stems and in roots of carrot after 56 days of growth in sterile hydroponic culture to which purified Cry1Ab protein had been added and was estimated by ELISA to be 0.08 +/- 0.021 and 0.60 +/- 0.148 ng g(-1) of fresh leaves plus stems and roots, respectively. No Cry1Ab protein was detected in the tissues of carrot grown in hydroponic culture to which no Cry1Ab protein had been added. Because of the different results obtained with different commercial Western blot (i.e., from Envirologix and Agdia) and ELISA kits (i.e., from Envirologix, Agdia, and Abraxis), it is not clear whether the presence of the Cry1Ab protein in the tissues of some plants under field condition and in carrot in sterile hydroponic culture was the result of the uptake of the protein by the plants or of the accuracy and sensitivity of the different commercial kits used. More detailed studies with additional techniques are obviously needed to confirm the uptake of Cry proteins from soil by plants subsequently planted after a Bt crop.
Collapse
Affiliation(s)
- I Icoz
- Laboratory of Microbial Ecology, Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
16
|
Sexual isolation in Acinetobacter baylyi is locus-specific and varies 10,000-fold over the genome. Genetics 2009; 182:1165-81. [PMID: 19474200 DOI: 10.1534/genetics.109.103127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Naturally transformable bacteria acquire chromosomal DNA from related species at lower frequencies than from cognate DNA sources. To determine how genome location affects heterogamic transformation in bacteria, we inserted an nptI marker into random chromosome locations in 19 different strains of the Acinetobacter genus (>24% divergent at the mutS/trpE loci). DNA from a total of 95 nptI-tagged isolates was used to transform the recipient Acinetobacter baylyi strain ADP1. A total of >1300 transformation assays revealed that at least one nptI-tagged isolate for each of the strains/species tested resulted in detectable integration of the nptI marker into the ADP1 genome. Transformation frequencies varied up to approximately 10,000-fold among independent nptI insertions within a strain. The location and local sequence divergence of the nptI flanking regions were determined in the transformants. Heterogamic transformation depended on RecA and was hampered by DNA mismatch repair. Our studies suggest that single-locus-based studies, and inference of transfer frequencies from general estimates of genomic sequence divergence, is insufficient to predict the recombination potential of chromosomal DNA fragments between more divergent genomes. Interspecies differences in overall gene content, and conflicts in local gene organization and synteny are likely important determinants of the genomewide variation in recombination rates between bacterial species.
Collapse
|
17
|
Impact of cry1AC-carrying Brassica rapa subsp. pekinensis on leaf bacterial community. J Microbiol 2009; 47:33-9. [DOI: 10.1007/s12275-008-0254-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/25/2008] [Indexed: 11/27/2022]
|
18
|
Lemaux PG. Genetically engineered plants and foods: a scientist's analysis of the issues (part II). ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:511-59. [PMID: 19400729 DOI: 10.1146/annurev.arplant.043008.092013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic engineering provides a means to introduce genes into plants via mechanisms that are different in some respects from classical breeding. A number of commercialized, genetically engineered (GE) varieties, most notably canola, cotton, maize and soybean, were created using this technology, and at present the traits introduced are herbicide and/or pest tolerance. In 2007 these GE crops were planted in developed and developing countries on more than 280 million acres (113 million hectares) worldwide, representing nearly 10% of rainfed cropland. Although the United States leads the world in acres planted with GE crops, the majority of this planting is on large acreage farms. In developing countries, adopters are mostly small and resource-poor farmers. For farmers and many consumers worldwide, planting and eating GE crops and products made from them are acceptable and even welcomed; for others GE crops raise food and environmental safety questions, as well as economic and social issues. In Part I of this review, some general and food issues related to GE crops and foods were discussed. In Part II, issues related to certain environmental and socioeconomic aspects of GE crops and foods are addressed, with responses linked to the scientific literature.
Collapse
Affiliation(s)
- Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
19
|
Lohtander K, Pasonen HL, Aalto MK, Palva T, Pappinen A, Rikkinen J. Phylogeny of chitinases and its implications for estimating horizontal gene transfer from chitinase-transgenic silver birch (Betula pendula). ACTA ACUST UNITED AC 2008; 7:227-39. [PMID: 19081010 DOI: 10.1051/ebr:2008019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chitinases are hydrolytic enzymes that have been employed in biotechnology in attempts to increase plants' resistance against fungal pathogens. Genetically modified plants have given rise to concerns of the spreading of transgenes into the environment through vertical or horizontal gene transfer (HGT). In this study, chitinase-like sequences from silver birch (Betula pendula) EST-libraries were identified and their phylogenetic relationships to other chitinases were studied. Phylogenetic analyses were used to estimate the frequency of historical gene transfer events of chitinase genes between plants and other organisms, and the usefulness of phylogenetic analyses as a source of information for the risk assessment of transgenic silver birch carrying a sugar beet chitinase IV gene was evaluated. Thirteen partial chitinase-like sequences, with an approximate length of 600 bp, were obtained from the EST-libraries. The sequences belonged to five chitinase classes. Some bacterial chitinases from Streptomyces and Burkholderia, as well as a chitinase from an oomycete, Phytophthora infestans, grouped together with the class IV chitinases of plants, supporting the hypothesis that some class IV chitinases in bacteria have evolved from eukaryotic chitinases via horizontal gene transfer. According to our analyses, HGT of a chitinase IV gene from eukaryotes to bacteria has presumably occurred only once. Based on this, the likelihood for the HGT of chitinase IV gene from transgenic birch to other organisms is extremely low. However, as risk is a function of both the likelihood and consequences of an event, the effects of rare HGT event(s) will finally determine the level of the risk.
Collapse
|
20
|
Shedova E, Albrecht C, Zverlov VV, Schwarz WH. Stimulation of bacterial DNA transformation by cattle saliva: implications for using genetically modified plants in animal feed. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9910-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Singh A, Billingsley K, Ward O. Composting: A Potentially Safe Process for Disposal of Genetically Modified Organisms. Crit Rev Biotechnol 2008; 26:1-16. [PMID: 16594522 DOI: 10.1080/07388550500508644] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The widespread use of genetically modified organisms (GMOs) may result in the release of GMOs into the environment. The potential risks regarding their use and implementation of disposal methods, especially the possibility of novel genes from GMOs being transferred to natural organisms, need to be evaluated and better understood. There is an increasingly accepted public view that GMO products introduced into the environment should be degradable and should disappear after a limited period of time. Due to the risk of possible horizontal gene transfer, disposal methods for GMOs need to address destruction of both the organism and the genetic material. During the last two decades, we have developed a greater understanding of the biochemical, microbiological and molecular concepts of the composting process, such that maximum decomposition may be achieved in the shortest time with minimal negative impacts to the environment. The conditions created in a properly managed composting process environment may help in destroying GMOs and their genes, thereby reducing the risk of the spread of genetic material. When considering composting as a potential method for the disposal of GMOs, the establishment of controlled conditions providing an essentially homogenous environment appears to be an important requirement. An evaluation of composting as a safe option for disposal of GMOs is provided in this review.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
22
|
Abstract
Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.
Collapse
Affiliation(s)
- Paul Keese
- Office of the Gene Technology Regulator, GPO Box 9848 Canberra, ACT 2601 [corrected] Australia.
| |
Collapse
|
23
|
Detection of feed-derived maize DNA in goat milk and evaluation of the potential of horizontal transfer to bacteria. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0896-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Velkov VV, Medvinsky AB, Sokolov MS, Marchenko AI. Will transgenic plants adversely affect the environment? J Biosci 2008; 30:515-48. [PMID: 16184014 DOI: 10.1007/bf02703726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transgenic insecticidal plants based on Bacillus thuringiensis (Bt) endotoxins, on proteinase inhibitors and on lectins, and transgenic herbicide tolerant plants are widely used in modern agriculture. The results of the studies on likelihood and non-likelihood of adverse effects of transgenic plants on the environment including: (i) effects on nontarget species; (ii) invasiveness; (iii) potential for transgenes to 'escape' into the environment by horizontal gene transfer; and (iv) adverse effects on soil biota are reviewed. In general, it seems that large-scale implementation of transgenic insecticidal and herbicide tolerant plants do not display considerable negative effects on the environments and, moreover, at least some transgenic plants can improve the corresponding environments and human health because their production considerably reduces the load of chemical insecticides and herbicides.
Collapse
Affiliation(s)
- Vassili V Velkov
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences,Pushchino, Moscow Region, 142290, Russian Federation.
| | | | | | | |
Collapse
|
25
|
Wagner T, Arango Isaza LM, Grundmann S, Dörfler U, Schroll R, Schloter M, Hartmann A, Sandermann H, Ernst D. The Probability of a Horizontal Gene Transfer from Roundup Ready® Soybean to Root Symbiotic Bacteria: A Risk Assessment Study on the GSF Lysimeter Station. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11267-007-9168-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
van Overbeek L, Ray J, van Elsas JD. Assessment of transformability of bacteria associated with tomato and potato plants. ENVIRONMENTAL BIOSAFETY RESEARCH 2007; 6:85-9. [PMID: 17961482 DOI: 10.1051/ebr:2007030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Transformation of plant-associated bacteria by plant DNA has never been demonstrated in agricultural fields. In total 552 bacterial isolates from stems of Ralstonia solanacearum-infected and healthy tomato plants and from stems and leaves of healthy potato plants were tested for natural genetic competence using plasmid pSKTG DNA and homologous DNA extracts. Control strain Acinetobacter baylyi ADP1 was transformable with both DNA extracts. No transformable isolates were observed after treatment with plasmid pSKTG DNA. Two isolates, P34, identified as Pseudomonas trivialis and A19, identified as Pseudomonas fragi, were selected on the basis of the consistently higher Rp-resistant CFU numbers after treatment with DNA from Rp-resistant cells than with that from wild-type cells. P34 showed 2.1-fold and A19 1.5-fold higher Rp-resistant CFU numbers after treatment with DNA from homologous Rp-resistant cells versus that from wild-type cells. It is concluded that bacteria capable of in vitro capture and integration of exogenous DNA into their genomes are relatively rare in culturable bacterial communities associated with tomato and potato plants, or that conditions conducive to transformation were not met in transformation assays.
Collapse
Affiliation(s)
- Leo van Overbeek
- Wageningen University and Research Centre, Plant Research International BV, Wageningen, Droevendaalsesteeg 1, The Netherlands.
| | | | | |
Collapse
|
27
|
Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier JM. Fate of transgenic plant DNA in the environment. ACTA ACUST UNITED AC 2007; 6:15-35. [DOI: 10.1051/ebr:2007037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Richter B, Smalla K. Screening of rhizosphere and soil bacteria for transformability. ACTA ACUST UNITED AC 2007; 6:91-9. [PMID: 17961483 DOI: 10.1051/ebr:2007035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Natural transformation is assumed to be the most likely mechanism by which DNA from transgenic plants could be horizontally transferred to bacteria. In order to determine the occurrence of naturally transformable bacteria amongst bulk and rhizosphere soil bacteria, different transformation strategies were employed using either plasmid DNA (IncQ plasmids pSM1890 and pSM1885, conferring GFP, Sm(r), Gm(r) and GFP, Sm(r), Tc(r), respectively) or genomic DNA from rhizosphere isolates, which were chromosomally tagged with mini-Tn5 (GFP, Tc(r)), as transforming DNA. Transformation assays were done in microtiter plates (262 isolates and pSM1890 or pSM1885), on filters (i) with rhizosphere bacterial community mixed with pSM1890 or pSM1885, (ii) with 24 rhizosphere or soil bacterial isolates mixed with genomic DNA of the corresponding mini-Tn5-tagged strains, and in the rhizosphere of tobacco plants inoculated with rifampicin-resistant bacterial isolates and genomic DNA of the corresponding mini-Tn5-tagged strains added. One transformant colony was obtained when Brevundimonas vesicularis was transformed with genomic DNA of the corresponding mini-Tn5-tagged strain. Attempts to reproduce this result were unsuccessful. With this single exception, transformants were neither detected in the collection of isolates nor in the rhizosphere bacterial community. Acinetobacter baylyi BD413 used as a positive control showed drastically reduced transformation frequencies with plasmid pSM1890 as transforming DNA when mixed with the rhizosphere pellet. All transformants were characterized by BOX-PCR fingerprints, and three different BOX patterns were revealed. Sequencing the 16S rRNA gene showed that all transformants could be assigned to Acinetobacter sp. Since transformants were only observed in the positive control, the introduced BD413 either underwent genomic rearrangements, or competence of the Acinetobacter population present in the rhizosphere was stimulated by the introduction of BD413. The various transformation assays performed indicate that the proportion of rhizosphere or bulk soil bacteria which are naturally transformable is negligibly low.
Collapse
Affiliation(s)
- Babette Richter
- Federal Biological Research Centre for Agriculture and Forestry, Institute for Plant Virology, Microbiology and Biosafety, Messeweg 11-12, 38104, Braunschweig, Germany
| | | |
Collapse
|
29
|
Ray JL, Andersen HK, Young S, Nielsen KM, O'Callaghan M. An assessment of the potential of herbivorous insect gut bacteria to develop competence for natural transformation. ACTA ACUST UNITED AC 2007; 6:135-47. [PMID: 17961487 DOI: 10.1051/ebr:2007032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whereas the capability of DNA uptake has been well established for numerous species and strains of bacteria grown in vitro, the broader distribution of natural transformability within bacterial communities remains largely unexplored. Here, we investigate the ability of bacterial isolates from the gut of grass grub larvae (Costelytra zealandica (White); Coleoptera: Scarabaeidae) to develop natural genetic competence in vitro. A total of 37 mostly species-divergent strains isolated from the gut of grass grub larvae were selected for spontaneous rifampicin-resistance. Genomic DNA was subsequently isolated from the resistant strains and exposed to sensitive strains grown individually using established filter transformation protocols. DNA isolated from wild-type strains was used as a control. None of the 37 isolates tested exhibited a frequency of conversion to rifampicin-resistance in the presence of DNA at rates that were significantly higher than the rate of spontaneous mutation to rifampicin-resistance in the presence of wild-type DNA (the limit of detection was approximately < 1 culturable transformant per 10(9) exposed bacteria). To further examine if conditions were conducive to bacterial DNA uptake in the grass grubs gut, we employed the competent bacterium Acinetobacter baylyi strain BD413 as a recipient species for in vivo studies. However, no transformants could be detected above the detection limit of 1 transformant per 10(3) cells, possibly due to low population density and limited growth of A. baylyi cells in grass grub guts. PCR analysis indicated that chromosomal Acinetobacter DNA remains detectable by PCR for up to 3 days after direct inoculation into the alimentary tract of grass grub larvae. Nevertheless, neither transforming activity of the DNA recovered from the alimentary tract of grass grubs larvae nor competence of bacterial cells recovered from inoculated larvae could be shown.
Collapse
Affiliation(s)
- Jessica L Ray
- Department of Pharmacy, University of Tromsø, 9037, Tromsø, Norway
| | | | | | | | | |
Collapse
|
30
|
Lo CC, Chen SC, Yang JZ. Use of real-time polymerase chain reaction (PCR) and transformation assay to monitor the persistence and bioavailability of transgenic genes released from genetically modified papaya expressing nptII and PRSV genes in the soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:7534-40. [PMID: 17683142 DOI: 10.1021/jf071574r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soil samples were collected from an isolated field from December 2003 to April 2004 where transgenic papaya were planted, and the persistences of transgenic genes of 796 bp (located between 35S promoter and coat protein, 35S-P/PRSV-CP), 398 bp (located between plasmid pBI121 and NOS terminator, pBI121/NOS-T), and 200 bp (located between NOS promoter and nptII gene, NOS-P/nptII) were studied. At the end of planting, the residues of 398 bp in the soil was 0.06 microg g(-1) of soil, whereas the residues of 769 and 200 bp were less than 30 pg g(-1) of soil (detection limit). Kinetics studies on the persistence of these three fragments in sterile distilled water and nonsterile soil microcosms showed that two mechanisms might be involved: an initial fast exponential degradation pattern in the first week and then followed by a slow-release pattern throughout the experiment. Persistence of transgenic DNA in sterile water was longer than in nonsterile soil microcosms, indicating that enzymatic degradation and soil adsorption played important roles on the persistence of DNA in the environment. The reason for the fragment of 398 bp persisted longer than fragments of 769 and 200 bp is not clear, but the guanine plus cytosin (G plus C) content in the DNA fragment might be involved in the stability of DNA in the environment. Biological availability of soil DNA to bacteria conducted by the transformation assay indicated that gene transformation from soil DNA extracts to two Acinetobacter spp. did not occur.
Collapse
Affiliation(s)
- Chi-Chu Lo
- Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, 11, Kuang Ming Road, Wu Fong, Taichung County, Taiwan, Republic of China.
| | | | | |
Collapse
|
31
|
Abstract
Extracellular nucleic acids are found in different biological fluids in the organism and in the environment: DNA is a ubiquitous component of the organic matter pool in the soil and in all marine and freshwater habitats. Data from recent studies strongly suggest that extracellular DNA and RNA play important biological roles in microbial communities and in higher organisms. DNA is an important component of bacterial biofilms and is involved in horizontal gene transfer. In recent years, the circulating extracellular nucleic acids were shown to be associated with some diseases. Attempts are being made to develop noninvasive methods of early tumor diagnostics based on analysis of circulating DNA and RNA. Recent observations demonstrated the possibility of nucleic acids exchange between eukaryotic cells and extracellular space suggesting their participation in so far unidentified biological processes.
Collapse
Affiliation(s)
- Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | | | | |
Collapse
|
32
|
Zhang C, Hampp R, Nehls U. Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas. ACTA ACUST UNITED AC 2006; 4:235-42. [PMID: 16827551 DOI: 10.1051/ebr:2006004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Fine roots of forest trees form together with certain soil fungi symbiotic structures (ectomycorrhizas), where fungal hyphae are in intimate contact with plant cells. Due to root cell degeneration, plant DNA is released and could be taken up by the fungus. The possibility that horizontal gene transfer might result in a risk for the environment should be evaluated before a massive release of genetically engineered trees into nature occurs, even though only a few convincing examples of horizontal gene transfer are known. Transgenic poplars containing a construct of the Streptomyces hygroscopicus bar gene under the control of the Cochliobolus heterostrophus GPD (glyceraldehyde-3-phosphate dehydrogenase) promoter were generated by Agrobacterium-mediated transformation. The functionality of this construct in the ectomycorrhizal model fungus Amanita muscaria was previously verified by protoplast-based fungal transformation. 35,000 ectomycorrhizas, formed between transgenic poplars and non-transgenic A. muscaria hyphae, were isolated and transferred to selective agar plates. Putative herbicide-resistant fungal colonies were obtained after the first round of selection. However, none of these colonies survived a transfer onto fresh selection medium, nor did they contain the bar gene, indicating that no horizontal gene transfer from poplar to A. muscaria occurred during symbiosis under axenic conditions. However, since ectomycorrhizas are associated under natural conditions with viruses, bacteria and other fungi, these additional associations should be evaluated in future.
Collapse
Affiliation(s)
- Chi Zhang
- Universität Tübingen, Botanisches Institut, Physiologische Okologie der Pflanzen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | |
Collapse
|
33
|
Pettersen AK, Bøhn T, Primicerio R, Shorten PR, Soboleva TK, Nielsen KM. Modeling suggests frequency estimates are not informative for predicting the long-term effect of horizontal gene transfer in bacteria. ACTA ACUST UNITED AC 2006; 4:223-33. [PMID: 16827550 DOI: 10.1051/ebr:2006008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Horizontal gene transfer (HGT) is an important mechanism by which bacteria recombine and acquire novel genes and functions. Risk scenarios where novel plant transgenes transfer horizontally into bacteria have been addressed in numerical theoretical assessments and experimental studies. A key outcome of these studies has been that the frequencies of such inter-domain transfer are very low, if occurring at all, suggesting that such transfers would not occur at a level that is biologically significant. The relationship between transfer frequencies and the subsequent selection or genetic drift of transgene carrying bacteria often remains unresolved in these studies and assessments. Here we present a stochastic model to better understand the initial establishment and population dynamics of rare bacterial transformants carrying horizontally acquired (trans)genes. The following key parameters are considered: initial transformant numbers, strength of selection, bacterial population size and bacterial generations (time). We find that the initial number of transformants is important for the subsequent persistence of transformants only in the range of 1 to approximately 50 independent HGT events. Our simulations show that transformant populations under a wide range of HGT rates and selection coefficients undergo stochastic developments where they persist at low frequencies for up to several years (at frequencies that are below detection using available field sampling methodology), after which they eventually may go to fixation. Stochastic variability may thus play a crucial but disregarded role in the design of field monitoring strategies e.g. in biosafety assessments. We also estimate the time required for transformants to reach 0.0002% prevalence in a bacterial population, a threshold that allows experimental detection of transgene carrying bacteria through sampling of the larger bacterial populations.
Collapse
|
34
|
Lutz B, Wiedemann S, Albrecht C. Degradation of transgenic Cry1Ab DNA and protein in Bt-176 maize during the ensiling process. J Anim Physiol Anim Nutr (Berl) 2006; 90:116-23. [PMID: 16519756 DOI: 10.1111/j.1439-0396.2005.00571.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Maize silage is commonly used as feed for farm animals. The aim of this study was to monitor the time-dependent degradation of non-recombinant chloroplast DNA (exemplified by the rubisco gene) in comparison with the recombinant cry1Ab gene in the course of the ensiling process. In parallel, the Cry1Ab protein content and fragment sizes were determined. Fragments of the rubisco (173, 896, 1197, 1753 and 2521 bp) and of the cry1Ab gene (211, 420, 727 and 1,423 bp) were selected to investigate the DNA degradation process. The detection of the Cry1Ab protein was performed using an enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Rubisco gene fragments of 173 bp were still detectable after 61 days, while fragments of 1,197 and 2,521 bp were detectable up to 30 days and on the first day only respectively. Polymerase chain reaction (PCR) analyses revealed that fragments of the cry1Ab gene with sizes of 211 and 420 bp were detectable up to 61 days, fragments with sizes of 727 and 1,423 bp, 30 and 6 days respectively. The ELISA showed a decrease of the Cry1Ab protein in maize silage during the ensiling process. No marked degradation was observed during the first 43 h. Thereafter, a sharp decrease was measured. After 61 days, 23.6 +/- 0.9% of the initial Cry1Ab protein was still detectable. Immunoblotting confirmed the results of the ELISA showing a positive signal of approximately 60 kDa size for 8 days of ensiling; no further immunoactive fragments were detectable by immunoblotting. In conclusion, the ensiling process markedly decreases the presence of long functional cry1Ab gene fragments and full size Cry1Ab protein.
Collapse
Affiliation(s)
- B Lutz
- Department of Physiology Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, Freising, Germany
| | | | | |
Collapse
|
35
|
Abstract
L’adoption à grande échelle des cultures transgéniques depuis dix ans a soulevé de nombreuses questions quant aux impacts possibles de ces nouvelles lignées végétales sur les écosystèmes agricoles et naturels. Des questions ont été soulevées, en particulier, sur le devenir des transgènes dans le milieu et sur une possible « pollution » du patrimoine génétique des organismes vivants à l’échelle des écosystèmes. Après une énumération des impacts environnementaux associés aux végétaux transgéniques, cet article de synthèse dresse un aperçu des connaissances actuelles sur le devenir – ou la migration – des transgènes dans le milieu. Les phénomènes d’hybridation et d’introgression génique en direction d’espèces ou de lignées apparentées sont d’abord abordés, après quoi sont considérés les phénomènes de transfert horizontal des transgènes en direction d’organismes non apparentés. Un article complémentaire publié dans ce même numéro traite de l’impact environnemental des protéines recombinantes encodées par les transgènes (Michaud 2005).
Collapse
|
36
|
Wei XD, Zou HL, Chu LM, Liao B, Ye CM, Lan CY. Field released transgenic papaya effect on soil microbial communities and enzyme activities. J Environ Sci (China) 2006. [PMID: 17078553 DOI: 10.1007/s11104-006-9020-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P<0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P<0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P<0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Kmr (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Kmr bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.
Collapse
Affiliation(s)
- Xiang-dong Wei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
37
|
Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 2005; 99:7-23. [PMID: 15960661 DOI: 10.1111/j.1365-2672.2005.02595.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Young DM, Parke D, Ornston LN. OPPORTUNITIES FOR GENETIC INVESTIGATION AFFORDED BYACINETOBACTER BAYLYI, A NUTRITIONALLY VERSATILE BACTERIAL SPECIES THAT IS HIGHLY COMPETENT FOR NATURAL TRANSFORMATION. Annu Rev Microbiol 2005; 59:519-51. [PMID: 16153178 DOI: 10.1146/annurev.micro.59.051905.105823] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic and physiological properties of Acinetobacter baylyi strain ADP1 make it an inviting subject for investigation of the properties underlying its nutritional versatility. The organism possesses a relatively small genome in which genes for most catabolic functions are clustered in several genetic islands that, unlike pathogenicity islands, give little evidence of horizontal transfer. Coupling mutagenic polymerase chain reaction to natural transformation provides insight into how structure influences function in transporters, transcriptional regulators, and enzymes. With appropriate selection, mutants in which such molecules have acquired novel function may be obtained. The extraordinary competence of A. baylyi for natural transformation and the ease with which it expresses heterologous genes make it a promising platform for construction of novel metabolic systems. Steps toward this goal should take into account the complexity of existing pathways in which transmembrane trafficking plays a significant role.
Collapse
Affiliation(s)
- David M Young
- 1Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
39
|
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711-21. [PMID: 16138099 DOI: 10.1038/nrmicro1234] [Citation(s) in RCA: 1226] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
40
|
Deni J, Message B, Chioccioli M, Tepfer D. Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm, Manduca sexta. Transgenic Res 2005; 14:207-15. [PMID: 16022391 DOI: 10.1007/s11248-004-6701-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA transfer from transgenic plants to native intestinal bacteria and introduced Acinetobacter BD413 was assessed in the gut of the tobacco horn worm (Manduca sexta). The marker was kanamycin resistance gene (nptll), and tobacco carrying the nptll gene in the chloroplasts served as the donor. We detected neither whole gene transfer to native bacteria, nor transfer of fragments of nptll to Acinetobacter, using a marker exchange assay. This negative result was attributed to a heat-labile activity that degraded DNA in the feces, probably DNAase. Nevertheless, a few intact leaf cells survived transit through the gut, and DNA extracted from feces did transform Acinetobacter, albeit at lower frequencies than DNA extracted from leaves.
Collapse
Affiliation(s)
- Jamal Deni
- Laboratoire de Biologie de la Rhizosphère, Institut National de la Recherche Agronomique, 78026 Versailles, France
| | | | | | | |
Collapse
|
41
|
Heinemann JA, Traavik T. Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat Biotechnol 2005; 22:1105-9. [PMID: 15340480 DOI: 10.1038/nbt1009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transgenic crops are approved for release in some countries, while many more countries are wrestling with the issue of how to conduct risk assessments. Controls on field trials often include monitoring of horizontal gene transfer (HGT) from crops to surrounding soil microorganisms. Our analysis of antibiotic-resistant bacteria and of the sensitivity of current techniques for monitoring HGT from transgenic plants to soil microorganisms has two major implications for field trial assessments of transgenic crops: first, HGT from transgenic plants to microbes could still have an environmental impact at a frequency approximately a trillion times lower than the current risk assessment literature estimates the frequency to be; and second, current methods of environmental sampling to capture genes or traits in a recombinant are too insensitive for monitoring evolution by HGT. A model for HGT involving iterative short-patch events explains how HGT can occur at high frequencies but be detected at extremely low frequencies.
Collapse
Affiliation(s)
- Jack A Heinemann
- New Zealand Institute of Gene Ecology, University of Canterbury, 8020, Private Bag 4800, Christchurch, New Zealand.
| | | |
Collapse
|
42
|
Abstract
Monitoring efforts have failed to identify horizontal gene transfer (HGT) events occurring from transgenic plants into bacterial communities in soil or intestinal environments. The lack of such observations is frequently cited in biosafety literature and by regulatory risk assessment. Our analysis of the sensitivity of current monitoring efforts shows that studies to date have examined potential HGT events occurring in less than 2 g of sample material, when combined. Moreover, a population genetic model predicts that rare bacterial transformants acquiring transgenes require years of growth to out-compete wild-type bacteria. Time of sampling is there-fore crucial to the useful implementation of monitoring. A population genetic approach is advocated for elucidating the necessary sample sizes and times of sampling for monitoring HGT into large bacterial populations. Major changes in current monitoring approaches are needed, including explicit consideration of the population size of exposed bacteria, the bacterial generation time, the strength of selection acting on the transgene-carrying bacteria, and the sample size necessary to verify or falsify the HGT hypotheses tested.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Medicine, University of Tromsø, N9037 Tromsø, Norway.
| | | |
Collapse
|
43
|
Abstract
Plant breeders have made and will continue to make important contributions toward meeting the need for more and better feed and food. The use of new techniques to modify the genetic makeup of plants to improve their properties has led to a new generation of crops, grains and their by-products for feed. The use of ingredients and products from genetically modified plants (GMP) in animal nutrition properly raises many questions and issues, such as the role of a nutritional assessment of the modified feed or feed additive as part of safety assessment, the possible influence of genetically modified (GM) products on animal health and product quality and the persistence of the recombinant DNA and of the 'novel' protein in the digestive tract and tissues of food-producing animals. During the last few years many studies have determined the nutrient value of GM feeds compared to their conventional counterparts and some have additionally followed the fate of DNA and novel protein. The results available to date are reassuring and reveal no significant differences in the safety and nutritional value of feedstuffs containing material derived from the so-called 1st generation of genetically modified plants (those with unchanged gross composition) in comparison with non-GM varieties. In addition, no residues of recombinant DNA or novel proteins have been found in any organ or tissue samples obtained from animals fed with GMP. These results indicate that for compositionally equivalent GMP routine-feeding studies with target species generally add little to nutritional and safety assessment. However, the strategies devised for the nutritional and safety assessment of the 1st generation products will be much more difficult to apply to 2nd generation GMP in which significant changes in constituents have been deliberately introduced (e.g., increased fatty acids or amino acids content or a reduced concentration of undesirable constituents). It is suggested that studies made with animals will play a much more important role in insuring the safety of these 2nd generation constructs.
Collapse
Affiliation(s)
- Gerhard Flachowsky
- Institute of Animal Nutrition, Federal Agricultural Research Centre (FAL), Braunschweig, Germany.
| | | | | |
Collapse
|
44
|
Pilson D, Prendeville HR. Ecological Effects of Transgenic Crops and the Escape of Transgenes into Wild Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2004. [DOI: 10.1146/annurev.ecolsys.34.011802.132406] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
▪ Abstract Ecological risks associated with the release of transgenic crops include nontarget effects of the crop and the escape of transgenes into wild populations. Nontarget effects can be of two sorts: (a) unintended negative effects on species that do not reduce yield and (b) greater persistence of the crop in feral populations. Conventional agricultural methods, such as herbicide and pesticide application, have large and well-documented nontarget effects. To the extent that transgenes have more specific target effects, transgenic crops may have fewer nontarget effects. The escape of transgenes into wild populations, via hybridization and introgression, could lead to increased weediness or to the invasion of new habitats by the wild population. In addition, native species with which the wild plant interacts (including herbivores, pathogens, and other plant species in the community) could be negatively affected by “transgenic-wild” plants. Conventional crop alleles have facilitated the evolution of increased weediness in several wild populations. Thus, some transgenes that allow plants to tolerate biotic and abiotic stress (e.g., insect resistance, drought tolerance) could have similar effects.
Collapse
Affiliation(s)
- Diana Pilson
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118;,
| | - Holly R. Prendeville
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588-0118;,
| |
Collapse
|
45
|
van den Eede G, Aarts H, Buhk HJ, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 2004; 42:1127-56. [PMID: 15123384 DOI: 10.1016/j.fct.2004.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2003] [Accepted: 02/04/2004] [Indexed: 12/31/2022]
Abstract
In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established. This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops are described. Next, HGT mechanisms and its possible evolutionary role are described. The use of marker genes is presented in detail as a special case for genes that may pose a risk. Furthermore, the exposure to GMOs and in particular to genetically modified (GM) deoxyribonucleic acid (DNA) is discussed as part of the total risk assessment. The review finishes off with a number of conclusions related to GM food and feed safety. The aim of this paper is to provide a comprehensive overview to assist risk assessors as well as regulators and the general public in understanding the safety issues related to these mechanisms.
Collapse
Affiliation(s)
- G van den Eede
- European Commission Directorate General Joint Research Centre, Institute for Health and Consumer Protection, Biotechnology and GMOs Unit, Via E. Fermi 1-T.P. 331, I-21020 Ispra (VA), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
For bacteria, the primary genetic barrier against the genetic exchange of DNA that is not self-transmissible is dissimilarity in the bacterial DNA sequences concerned. Genetic exchange by homologous recombination is frequent among close bacterial relatives and recent experiments have shown that it can enable the uptake of closely linked nonhomologous foreign DNA. Artificial vectors are mosaics of mobile DNA elements from free-living bacterial isolates and so bear a residual similarity to their ubiquitous natural progenitors. This homology is tightly linked to the multitude of different DNA sequences that are inserted into synthetic vectors. Can homology between vector and bacterial DNA enable the uptake of these foreign DNA inserts? In this review we investigate pUC18 as an example of an artificial vector and consider whether its homology to broad host-range antibiotic resistance transposons and plasmid origins of replication could enable the uptake of insert DNA in the light of studies of homology-facilitated foreign DNA uptake. We also discuss the disposal of recombinant DNA, its persistence in the environment and whether homologies to pUC18 may exist in naturally competent bacteria. Most DNA that is inserted into the cloning site of artificial vectors would be of little use to a bacterium, but perhaps not all.
Collapse
Affiliation(s)
- D Bensasson
- Evolutionary Genomics Department, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| | | | | |
Collapse
|
47
|
Opinion of the Scientific Panel on Genetically Modified Organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.48] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
48
|
Kharazmi M, Sczesny S, Blaut M, Hammes WP, Hertel C. Marker rescue studies of the transfer of recombinant DNA to Streptococcus gordonii in vitro, in foods and gnotobiotic rats. Appl Environ Microbiol 2004; 69:6121-7. [PMID: 14532070 PMCID: PMC201193 DOI: 10.1128/aem.69.10.6121-6127.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A plasmid marker rescue system based on restoration of the nptII gene was established in Streptococcus gordonii to study the transfer of bacterial and transgenic plant DNA by transformation. In vitro studies revealed that the marker rescue efficiency depends on the type of donor DNA. Plasmid and chromosomal DNA of bacteria as well as DNA of transgenic potatoes were transferred with efficiencies ranging from 8.1 x 10(-6) to 5.8 x 10(-7) transformants per nptII gene. Using a 792-bp amplification product of nptII the efficiency was strongly decreased (9.8 x 10(-9)). In blood sausage, marker rescue using plasmid DNA was detectable (7.9 x 10(-10)), whereas in milk heat-inactivated horse serum (HHS) had to be added to obtain an efficiency of 2.7 x 10(-11). No marker rescue was detected in extracts of transgenic potatoes despite addition of HHS. In vivo transformation of S. gordonii LTH 5597 was studied in monoassociated rats by using plasmid DNA. No marker rescue could be detected in vivo, although transformation was detected in the presence of saliva and fecal samples supplemented with HHS. It was also shown that plasmid DNA persists in rat saliva permitting transformation for up to 6 h of incubation. It is suggested that the lack of marker rescue is due to the absence of competence-stimulating factors such as serum proteins in rat saliva.
Collapse
Affiliation(s)
- Mitra Kharazmi
- Institute of Food Technology, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
49
|
Lilley AK, Bailey MJ, Barr M, Kilshaw K, Timms-Wilson TM, Day MJ, Norris SJ, Jones TH, Godfray HCJ. Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol Ecol 2004; 12:3097-107. [PMID: 14629389 DOI: 10.1046/j.1365-294x.2003.01960.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The horizontal transfer and effects on host fitness of a neutral gene cassette inserted into three different genomic loci of a plant-colonizing pseudomonad was assessed in a model ecosystem. The KX reporter cassette (kanamycin resistance, aph, and catechol 2, 3, dioxygenase, xylE) was introduced on the disarmed transposon mini-Tn5 into: (I) the chromosome of a spontaneous rifampicin resistant mutant Pseudomonas fluorescens SBW25R; (II) the chromosome of SBW25R in the presence of a naturally occurring lysogenic-phage (phage Phi101); and (III) a naturally occurring plasmid pQBR11 (330 kbp, tra+, Hgr) introduced into SBW25R. These bacteria were applied to Stellaria media (chickweed) plants as seed dressings [c. 5 x 104 colony-forming units (cfu)/seed] and the seedlings planted in 16 microcosm chambers containing model plant and animal communities. Gene transfer to pseudomonads in the phyllosphere and rhizosphere was found only in the plasmid treatment (III). Bacteria in the phage treatment (II) initially declined in density and free phage was detected, but populations partly recovered as the plants matured. Surprisingly, bacteria in the chromosome insertion treatment (I) consistently achieved higher population densities than the unmanipulated control and other treatments. Plasmids were acquired from indigenous bacterial populations in the control and chromosome insertion treatments. Plasmid acquisition, plasmid transfer from inocula and selection for plasmid carrying inocula coincided with plant maturation.
Collapse
Affiliation(s)
- A K Lilley
- Molecular Microbial Ecology Group, Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica MC. Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 2003; 12:425-37. [PMID: 12885164 DOI: 10.1023/a:1024387510243] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA transfer was demonstrated from six species of donor plants to the soil bacterium, Acinetobacter spp. BD413, using neomycin phosphotransferase (nptII) as a marker for homologous recombination. These laboratory results are compatible with, but do not prove, DNA transfer in nature. In tobacco carrying a plastid insertion of nptII, transfer was detected with 0.1 g of disrupted leaves and in oilseed rape carrying a nuclear insertion with a similar quantity of roots. Transfer from disrupted leaves occurred in sterile soil and water, without the addition of nutrients. It was detected using intact tobacco leaves and intact tobacco and Arabidopsis plants in vitro. Transfer was dose-dependent and sensitive to DNase, and mutations in the plant nptII were recovered in receptor bacteria. DNA transfer using intact roots and plants in vitro was easily demonstrated, but with greater variability. Transfer varied with plant genome size and the number of repeats of the marker DNA in the donor plant. Transfer was not detected in the absence of a homologous nptII in the receptor bacteria. We discuss these results with reference to non-coding DNA in plant genomes (e.g., introns, transposons and junk DNA) and the possibility that DNA transfer could occur in nature.
Collapse
Affiliation(s)
- David Tepfer
- Laboratoire de Biologie de la Rhizosphere, Institut National de la Recherche Agronomique, 78026 Versailles, France.
| | | | | | | | | | | | | |
Collapse
|