1
|
Nie H, Zhang Y, Li M, Wang W, Wang Z, Zheng J. Expression of microbial lipase in filamentous fungus Aspergillus niger: a review. 3 Biotech 2024; 14:172. [PMID: 38841267 PMCID: PMC11147998 DOI: 10.1007/s13205-024-03998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Lipase has high economic importance and is widely used in biodiesel, food, detergents, cosmetics, and pharmaceutical industries. The rapid development of synthetic biology and system biology has not only paved the way for comprehensively understanding the efficient operation mechanism of Aspergillus niger cell factories but also introduced a new technological system for creating and optimizing high-efficiency A. niger cell factories. In this review, all relevant data on microbial lipase enzyme sources and general properties are gathered and updated. The relationship between A. niger strain morphology and protein production is discussed. The safety of A. niger strain is investigated to ensure product safety. The biotechnologies and factors influencing lipase expression in A. niger are summarized. This review focuses on various strategies to improve lipase expression in A. niger. The summary of these methods and the application of the gene editing technology CRISPR/Cas9 system can further improve the efficiency of constructing the engineered lipase-producing A. niger.
Collapse
Affiliation(s)
- Hongmei Nie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengjiao Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Weili Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
2
|
Kurebayashi K, Nakazawa T, Shivani, Higashitarumizu Y, Kawauchi M, Sakamoto M, Honda Y. Visualizing organelles with recombinant fluorescent proteins in the white-rot fungus Pleurotus ostreatus. Fungal Biol 2023; 127:1336-1344. [PMID: 37993245 DOI: 10.1016/j.funbio.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 11/24/2023]
Abstract
White-rot fungi secrete numerous enzymes involved in lignocellulose degradation. However, the secretory mechanisms or pathways, including protein synthesis, folding, modification, and traffic, have not been well studied. In the first place, few experimental tools for molecular cell biological studies have been developed. As the first step toward investigating the mechanisms underlying protein secretion, this study visualized organelles and transport vesicles involved in secretory mechanisms with fluorescent proteins in living cells of the white-rot fungus Pleurotus ostreatus (agaricomycete). To this end, each plasmid containing the expression cassette for fluorescent protein [enhanced green fluorescent protein (EGFP) or mCherry] fused with each protein that may be localized in the endoplasmic reticulum (ER), Golgi, or secretory vesicles (SVs) was introduced into P. ostreatus strain PC9. Fluorescent microscopic analyses of the obtained hygromycin-resistant transformants suggested that Sec13-EGFP and Sec24-EGFP visualize the ER; Sec24-EGFP, mCherry-Sed5, and mCherry-Rer1 visualize the compartment likely corresponding to early Golgi and/or the ER-Golgi intermediate compartment; EGFP/mCherry-pleckstrin homology (PH) visualizes possible late Golgi; and EGFP-Seg1 and mCherry-Rab11 visualize SVs. This study successfully visualized mitochondria and nuclei, thus providing useful tools for future molecular cell biological studies on lignocellulose degradation by P. ostreatus. Furthermore, some differences in the Golgi compartment or apparatus and the ER-Golgi intermediate of P. ostreatus compared to other fungi were also suggested.
Collapse
Affiliation(s)
- Kazuhiro Kurebayashi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shivani
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuta Higashitarumizu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
3
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
4
|
Wang L, Xie Y, Chang J, Wang J, Liu H, Shi M, Zhong Y. A novel sucrose-inducible expression system and its application for production of biomass-degrading enzymes in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:23. [PMID: 36782304 PMCID: PMC9926565 DOI: 10.1186/s13068-023-02274-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Filamentous fungi are extensively exploited as important enzyme producers due to the superior secretory capability. However, the complexity of their secretomes greatly impairs the titer and purity of heterologous enzymes. Meanwhile, high-efficient evaluation and production of bulk enzymes, such as biomass-degrading enzymes, necessitate constructing powerful expression systems for bio-refinery applications. RESULTS A novel sucrose-inducible expression system based on the host strain Aspergillus niger ATCC 20611 and the β-fructofuranosidase promoter (PfopA) was constructed. A. niger ATCC 20611 preferentially utilized sucrose for rapid growth and β-fructofuranosidase production. Its secretory background was relatively clean because β-fructofuranosidase, the key enzyme responsible for sucrose utilization, was essentially not secreted into the medium and the extracellular protease activity was low. Furthermore, the PfopA promoter showed a sucrose concentration-dependent induction pattern and was not subject to glucose repression. Moreover, the strength of PfopA was 7.68-fold higher than that of the commonly used glyceraldehyde-3-phosphate dehydrogenase promoter (PgpdA) with enhanced green fluorescence protein (EGFP) as a reporter. Thus, A. niger ATCC 20611 coupled with the PfopA promoter was used as an expression system to express a β-glucosidase gene (bgla) from A. niger C112, allowing the production of β-glucosidase at a titer of 17.84 U/mL. The crude β-glucosidase preparation could remarkably improve glucose yield in the saccharification of pretreated corncob residues when added to the cellulase mixture of Trichoderma reesei QM9414. The efficacy of this expression system was further demonstrated by co-expressing the T. reesei-derived chitinase Chi46 and β-N-acetylglucosaminidase Nag1 to obtain an efficient chitin-degrading enzyme cocktail, which could achieve the production of N-acetyl-D-glucosamine from colloidal chitin with a conversion ratio of 91.83%. Besides, the purity of the above-secreted biomass-degrading enzymes in the crude culture supernatant was over 86%. CONCLUSIONS This PfopA-driven expression system expands the genetic toolbox of A. niger and broadens the application field of the traditional fructo-oligosaccharides-producing strain A. niger ATCC 20611, advancing it to become a high-performing enzyme-producing cell factory. In particular, the sucrose-inducible expression system possessed the capacity to produce biomass-degrading enzymes at a high level and evade endogenous protein interference, providing a potential purification-free enzyme production platform for bio-refinery applications.
Collapse
Affiliation(s)
- Lu Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yijia Xie
- Qingdao Academy, Qingdao, 266111 People’s Republic of China
| | - Jingjing Chang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Juan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
5
|
Bhandari Y, Sajwan H, Pandita P, Koteswara Rao V. Chloroperoxidase applications in chemical synthesis of industrial relevance. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yogesh Bhandari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Hemlata Sajwan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Parul Pandita
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vamkudoth Koteswara Rao
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Khedr M, Khalil KMA, Kabary HA, Hamed AA, Badawy MSEM, Abu-Elghait M. Molecular docking and nucleotide sequencing of successive expressed recombinant fungal peroxidase gene in E.coli. J Genet Eng Biotechnol 2022; 20:94. [PMID: 35776246 PMCID: PMC9249955 DOI: 10.1186/s43141-022-00377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Background Fungal peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze lignin biodegradation. Results PER-K (peroxidase synthesis codon gene) was transformed from Aspergillus niger strain AN512 deposited in the National Center for Biotechnology Information with the accession number OK323140 to Escherichia coli strain (BL21-T7 with YEp356R recombinant plasmid) via calcium chloride heat-shock method. The impact of four parameters (CaCl2 concentrations, centrifugation time, shaking speed, growth intensity) on the efficacy of the transformation process was evaluated. Furthermore, peroxidase production after optimization was assessed both qualitatively and quantitatively, as well as SDS-PAGE analysis. The optimum conditions for a successful transformation process were as follows: CaCl2 concentrations (50 mM), centrifugation time (20 min), shaking speed (200 rpm), and growth optical density (0.45). PCR and gel electrophoresis detect DNA bands with lengths 175, 179, and 211 bps corresponding to UA3, AmpR, and PER-K genes respectively besides partially sequencing the PER-K gene. Pyrogallol/hydrogen peroxide assay confirmed peroxidase production, and the activity of the enzyme was determined to be 3924 U/L. SDS-PAGE analysis also confirms peroxidase production illustrated by the appearance of a single peroxidase protein band after staining with Coomassie blue R-250. Conclusion A successful peroxidase-gene (PER-K) transformation from fungi to bacteria was performed correctly. The enzyme activity was screened, and partial sequencing of PER-K gene was analyzed successively. The protein 3D structure was generated via in silico homology modeling, and determination of binding sites and biological annotations of the constructed protein were carried out via COACH and COFACTOR based on the I-TASSER structure prediction. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00377-6.
Collapse
Affiliation(s)
- Mohamed Khedr
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Kamal M A Khalil
- Genetic Engineering and Biotechnology Division, Genetics and Cytology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Hoda A Kabary
- Agricultural Microbiology Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Ahmed A Hamed
- Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| |
Collapse
|
7
|
Khlystov NA, Yoshikuni Y, Deutsch S, Sattely ES. A plant host, Nicotiana benthamiana, enables the production and study of fungal lignin-degrading enzymes. Commun Biol 2021; 4:1027. [PMID: 34471192 PMCID: PMC8410833 DOI: 10.1038/s42003-021-02464-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/14/2021] [Indexed: 11/10/2022] Open
Abstract
Lignin has significant potential as an abundant and renewable source for commodity chemicals yet remains vastly underutilized. Efforts towards engineering a biochemical route to the valorization of lignin are currently limited by the lack of a suitable heterologous host for the production of lignin-degrading enzymes. Here, we show that expression of fungal genes in Nicotiana benthamiana enables production of members from seven major classes of enzymes associated with lignin degradation (23 of 35 tested) in soluble form for direct use in lignin activity assays. We combinatorially characterized a subset of these enzymes in the context of model lignin dimer oxidation, revealing that fine-tuned coupling of peroxide-generators to peroxidases results in more extensive C-C bond cleavage compared to direct addition of peroxide. Comparison of peroxidase isoform activity revealed that the extent of C-C bond cleavage depends on peroxidase identity, suggesting that peroxidases are individually specialized in the context of lignin oxidation. We anticipate the use of N. benthamiana as a platform to rapidly produce a diverse array of fungal lignin-degrading enzymes will facilitate a better understanding of their concerted role in nature and unlock their potential for lignin valorization, including within the plant host itself.
Collapse
Affiliation(s)
- Nikita A Khlystov
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yasuo Yoshikuni
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Samuel Deutsch
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Lignin peroxidase in focus for catalytic elimination of contaminants - A critical review on recent progress and perspectives. Int J Biol Macromol 2021; 177:58-82. [PMID: 33577817 DOI: 10.1016/j.ijbiomac.2021.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
Lignin peroxidase (LiP) seems to be a catalyst for cleaving high-redox potential non-phenolic compounds with an oxidative cleavage of CC and COC bonds. LiP has been picked to seek a practical and cost-effective alternative to the sustainable mitigation of diverse environmental contaminants. LiP has been an outstanding tool for catalytic cleaning and efficient mitigation of environmental pollutants, including lignin, lignin derivatives, dyes, endocrine-disrupting compounds (EDCs), and persistent organic pollutants (POPs) for the past couple of decades. The extended deployment of LiP has proved to be a promising method for catalyzing these environmentally related hazardous pollutants of supreme interest. The advantageous potential and capabilities to act at different pH and thermostability offer its working tendencies in extended environmental engineering applications. Such advantages led to the emerging demand for LiP and increasing requirements in industrial and biotechnological sectors. The multitude of the ability attributed to LiP is triggered by its stability in xenobiotic and non-phenolic compound degradation. However, over the decades, the catalytic activity of LiP has been continuing in focus enormously towards catalytic functionalities over the available physiochemical, conventional, catalyst mediated technology for catalyzing such molecules. To cover this literature gap, this became much more evident to consider the catalytic attributes of LiP. In this review, the existing capabilities of LiP and other competencies have been described with recent updates. Furthermore, numerous recently emerged applications, such as textile effluent treatment, dye decolorization, catalytic elimination of pharmaceutical and EDCs compounds, have been discussed with suitable examples.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 2020; 141:109669. [DOI: 10.1016/j.enzmictec.2020.109669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
10
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
|
12
|
Functional Expression and One-Step Protein Purification of Manganese Peroxidase 1 (rMnP1) from Phanerochaete chrysosporium Using the E. coli-Expression System. Int J Mol Sci 2020; 21:ijms21020416. [PMID: 31936493 PMCID: PMC7013543 DOI: 10.3390/ijms21020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Manganese peroxidases (MnP) from the white-rot fungi Phanerochaete chrysosporium catalyse the oxidation of Mn2+ to Mn3+, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi. Heterologous expression of MnP has been achieved in both eukaryotic and prokaryotic expression systems, although with limited production and many disadvantages in the process. Here we described a novel molecular approach for the expression and purification of manganese peroxidase isoform 1 (MnP1) from P. chrysosporium using an E. coli-expression system. The proposed strategy involved the codon optimization and chemical synthesis of the MnP1 gene for optimised expression in the E. coli T7 shuffle host. Recombinant MnP1 (rMnP1) was expressed as a fusion protein, which was recovered from solubilised inclusion bodies. rMnP1 was purified from the fusion protein using intein-based protein purification techniques and a one-step affinity chromatography. The designated strategy allowed production of an active enzyme able to oxidize guaiacol or Mn2+.
Collapse
|
13
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
14
|
Lin MI, Nagata T, Katahira M. High yield production of fungal manganese peroxidases by E. coli through soluble expression, and examination of the activities. Protein Expr Purif 2018; 145:45-52. [PMID: 29305178 DOI: 10.1016/j.pep.2017.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022]
Abstract
Oxidative enzymes of white-rot fungi play a key role in lignin biodegradation. Among those fungus, Ceriporiopsis subvermispora degrades lignin before cellulose in wood; C. subvermispora is the only fungus that secretes all known types of manganese peroxidases (CsMnPs). Utilization of lignin-degrading peroxidases has been limited so far due to the lack of efficient preparation methods and intensive characterization. In this study, we developed a highly efficient method to prepare active CsMnPs through soluble expression by E. coli, which had long been impossible. The genes of MnPs selected from each subfamily were codon-optimized and expressed under the control of a cold shock promoter. A proper level of heme incorporation was achieved by continuous addition of hemin during cultivation. As much as 3 mg of purified MnPs was obtained from 100 mL culture, which is an about 20-fold higher yield than that from inclusion bodies through refolding. Further improvement of the solubility on the expression was achieved by combinatorial coexpression of chaperones. All obtained MnPs had heme-to-protein ratios as high as those of native MnPs. They were all active below pH 5. Our method is applicable to other fungal-secreted enzymes should help the progress of their basic characterization and application for better utilization of woody biomass.
Collapse
Affiliation(s)
- Meng-I Lin
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan.
| |
Collapse
|
15
|
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:58. [PMID: 29507610 PMCID: PMC5833081 DOI: 10.1186/s13068-018-1060-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. RESULTS Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. CONCLUSIONS The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.
Collapse
Affiliation(s)
- Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
16
|
Wakai S, Arazoe T, Ogino C, Kondo A. Future insights in fungal metabolic engineering. BIORESOURCE TECHNOLOGY 2017; 245:1314-1326. [PMID: 28483354 DOI: 10.1016/j.biortech.2017.04.095] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Filamentous fungi exhibit versatile abilities, including organic acid fermentation, protein production, and secondary metabolism, amongst others, and thus have applications in the medical and food industries. Previous genomic analyses of several filamentous fungi revealed their further potential as host microorganisms for bioproduction. Recent advancements in molecular genetics, marker recycling, and genome editing could be used to alter transformation and metabolism, based on optimized design carbolated with computer science. In this review, we detail the current applications of filamentous fungi and describe modern molecular genetic tools that could be used to expand the role of these microorganisms in bioproduction. The present review shed light on the possibility of filamentous fungi as host microorganisms in the field of bioproduction in the future.
Collapse
Affiliation(s)
- Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Takayoshi Arazoe
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
17
|
Magaña-Ortíz D, Fernández F, Loske AM, Gómez-Lim MA. Extracellular Expression in Aspergillus niger of an Antibody Fused to Leishmania sp. Antigens. Curr Microbiol 2017; 75:40-48. [PMID: 28861662 DOI: 10.1007/s00284-017-1348-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023]
Abstract
Nucleoside hydrolase and sterol 24-c-methyltransferase, two antigenic proteins of Leishmania sp., were expressed in Aspergillus niger. Genetic transformation of conidia was achieved using underwater shock waves. scFv antibody addressed to DEC205, a receptor of dendritic cells, was fused to two proteins of Leishmania sp. Receptor 205 has a relevant role in the immune system in mammals; it can modulate T cell response to different antigens. Extracellular expression strategy of recombinant antibody was achieved using a fragment of native glucoamylase A (514 aa) as a carrier. Fermentations in shake flasks showed that the recombinant protein (104 kDa) was expressed and secreted only when maltose was used as carbon source; on the contrary, the expression was highly repressed in presence of xylose. Noteworthy, recombinant protein was secreted without glucoamylase-carrier and accumulation at intracellular level was not observed. The results presented here demonstrate the high value of Aspergillus niger as biotechnological platform for recombinant antibodies against Leishmania sp. at low cost. To the best of our knowledge, this is the first report about the recombinant expression of antigenic proteins of Leishmania sp. in filamentous fungi. The protein obtained can be used to explore novel strategies to induce immunity against Leishmania sp. or it can be employed in diagnostic kits to detect this neglected disease.
Collapse
Affiliation(s)
- Denis Magaña-Ortíz
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico km. 4.5 S/N, 97118, Mérida, Yucatán, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Querétaro, Mexico
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, 76230, Querétaro, Querétaro, Mexico.
| | - Miguel A Gómez-Lim
- Departamento de Ingeniería Genética, CINVESTAV Irapuato, km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
18
|
Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, Ludwig R. Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems. Microb Cell Fact 2017; 16:37. [PMID: 28245812 PMCID: PMC5331742 DOI: 10.1186/s12934-017-0653-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by lignocellulolytic fungi. cdh gene expression is high in cellulose containing media, but relatively low CDH concentrations are found in the supernatant of fungal cultures due to strong binding to cellulose. Therefore, heterologous expression of CDH in Pichia pastoris was employed in the last 15 years, but the obtained enzymes were over glycosylated and had a reduced specific activity. RESULTS We compare the well-established CDH expression host P. pastoris with the less frequently used hosts Escherichia coli, Aspergillus niger, and Trichoderma reesei. The study evaluates the produced quantity and protein homogeneity of Corynascus thermophilus CDH in the culture supernatants, the purification, and finally compares the enzymes in regard to cofactor loading, glycosylation, catalytic constants and thermostability. CONCLUSIONS Whereas E. coli could only express the catalytic dehydrogenase domain of CDH, all eukaryotic hosts could express full length CDH including the cytochrome domain. The CDH produced by T. reesei was most similar to the CDH originally isolated from the fungus C. thermophilus in regard to glycosylation, cofactor loading and catalytic constants. Under the tested experimental conditions the fungal expression hosts produce CDH of superior quality and uniformity compared to P. pastoris.
Collapse
Affiliation(s)
- Su Ma
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marita Preims
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - François Piumi
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - Lisa Kappel
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, Vienna, Austria
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical Engineering, TU Wien, Gumpendorferstrasse 1a, Vienna, Austria
| | - Eric Record
- Aix Marseille Université, INRA, BBF (Biodiversité et Biotechnologie Fongiques), Marseille, France
| | - Daniel Kracher
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Vienna Institute of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
19
|
Lee AH, Kang CM, Lee YM, Lee H, Yun CW, Kim GH, Kim JJ. Heterologous expression of a new manganese-dependent peroxidase gene from Peniophora incarnata KUC8836 and its ability to remove anthracene in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 122:716-721. [PMID: 27353859 DOI: 10.1016/j.jbiosc.2016.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 06/09/2016] [Indexed: 11/26/2022]
Abstract
The white rot fungus Peniophora incarnata KUC8836 has received an attention as the greatest degrader of polycyclic aromatic hydrocarbons (PAHs), which are hazardous xenobiotics and recalcitrant pollutants. To characterize the mechanisms through which MnP degrades PAHs, heterologous expression of manganese-dependent peroxidase (MnP) gene pimp1 was performed in Saccharomyces cerevisiae BY4741 via the pGEM-T Easy vector, resulting in the recombinant plasmid pESC-URA/pimp1 containing the MnP signal peptide. MnP was significantly secreted into the culture medium with galactose as an active protein with higher efficiency (3.58 U mL-1) by transformants than by the wild-type S. cerevisiae. The recombinant MnP protein was shown to have a molecular weight of 44 kDa by western blotting analysis. With regard to enhancing the bioremediation of PAHs in the environment, anthracene was effectively degraded by the MnP encoded by pimp1, with a degradation rate of 6.5% when Tween 80 was added. In addition, the MnP activity of the transformant exhibited the highest efficiency (2.49 U mL-1) during the degradation. These results show that pimp1 might be useful for biodegradation and gene expression technologies at a transcriptional level, and genetic approaches can be improved by incorporating the highly ligninolytic gene pimp1 and the fungus P. incarnata KUC8836.
Collapse
Affiliation(s)
- Aslan Hwanhwi Lee
- Division of Environmental Science & Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Chang-Min Kang
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Young Min Lee
- Division of Environmental Science & Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hanbyul Lee
- Division of Environmental Science & Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
20
|
Lambertz C, Ece S, Fischer R, Commandeur U. Progress and obstacles in the production and application of recombinant lignin-degrading peroxidases. Bioengineered 2016; 7:145-54. [PMID: 27295524 DOI: 10.1080/21655979.2016.1191705] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Lignin is 1 of the 3 major components of lignocellulose. Its polymeric structure includes aromatic subunits that can be converted into high-value-added products, but this potential cannot yet been fully exploited because lignin is highly recalcitrant to degradation. Different approaches for the depolymerization of lignin have been tested, including pyrolysis, chemical oxidation, and hydrolysis under supercritical conditions. An additional strategy is the use of lignin-degrading enzymes, which imitates the natural degradation process. A versatile set of enzymes for lignin degradation has been identified, and research has focused on the production of recombinant enzymes in sufficient amounts to characterize their structure and reaction mechanisms. Enzymes have been analyzed individually and in combinations using artificial substrates, lignin model compounds, lignin and lignocellulose. Here we consider progress in the production of recombinant lignin-degrading peroxidases, the advantages and disadvantages of different expression hosts, and obstacles that must be overcome before such enzymes can be characterized and used for the industrial processing of lignin.
Collapse
Affiliation(s)
- Camilla Lambertz
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Selin Ece
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| | - Rainer Fischer
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany.,b Fraunhofer Institute for Molecular Biology and Applied Ecology , Aachen , Germany
| | - Ulrich Commandeur
- a Institute for Molecular Biotechnology, RWTH Aachen University , Aachen , Germany
| |
Collapse
|
21
|
Homologous and Heterologous Expression of Basidiomycete Genes Related to Plant Biomass Degradation. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gómez S, López-Estepa M, Fernández FJ, Suárez T, Vega MC. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes. ADVANCED TECHNOLOGIES FOR PROTEIN COMPLEX PRODUCTION AND CHARACTERIZATION 2016; 896:167-84. [DOI: 10.1007/978-3-319-27216-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Nadeem H, Rashid MH, Siddique MH, Azeem F, Muzammil S, Javed MR, Ali MA, Rasul I, Riaz M. Microbial invertases: A review on kinetics, thermodynamics, physiochemical properties. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Recombinant expression of four oxidoreductases in Phanerochaete chrysosporium improves degradation of phenolic and non-phenolic substrates. J Biotechnol 2015; 209:76-84. [PMID: 26113215 DOI: 10.1016/j.jbiotec.2015.06.401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022]
Abstract
Phanerochaete chrysosporium belongs to a group of lignin-degrading fungi that secretes various oxidoreductive enzymes, including lignin peroxidase (LiP) and manganese peroxidase (MnP). Previously, we demonstrated that the heterologous expression of a versatile peroxidase (VP) in P. chrysosporium recombinant strains is possible. However, the production of laccases (Lac) in this fungus has not been completely demonstrated and remains controversial. In order to investigate if the co-expression of Lac and VP in P. chrysosporium would improve the degradation of phenolic and non-phenolic substrates, we tested the constitutive co-expression of the lacIIIb gene from Trametes versicolor and the vpl2 gene from Pleurotus eryngii, and also the endogenous genes mnp1 and lipH8 by shock wave mediated transformation. The co-overexpression of peroxidases and laccases was improved up to five-fold as compared with wild type species. Transformant strains showed a broad spectrum in phenolic/non-phenolic biotransformation and a high percentage in synthetic dye decolorization in comparison with the parental strain. Our results show that the four enzymes can be constitutively expressed in a single transformant of P. chrysosporium in minimal medium. These data offer new possibilities for an easy and efficient co-expression of laccases and peroxidases in suitable basidiomycete species.
Collapse
|
25
|
Zoglowek M, Lübeck PS, Ahring BK, Lübeck M. Heterologous expression of cellobiohydrolases in filamentous fungi – An update on the current challenges, achievements and perspectives. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Krainer FW, Capone S, Jäger M, Vogl T, Gerstmann M, Glieder A, Herwig C, Spadiut O. Optimizing cofactor availability for the production of recombinant heme peroxidase in Pichia pastoris. Microb Cell Fact 2015; 14:4. [PMID: 25586641 PMCID: PMC4299804 DOI: 10.1186/s12934-014-0187-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/26/2014] [Indexed: 02/08/2023] Open
Abstract
Background Insufficient incorporation of heme is considered a central impeding cause in the recombinant production of active heme proteins. Currently, two approaches are commonly taken to overcome this bottleneck; metabolic engineering of the heme biosynthesis pathway in the host organism to enhance intracellular heme production, and supplementation of the growth medium with the desired cofactor or precursors thereof to allow saturation of recombinantly produced apo-forms of the target protein. In this study, we investigated the effect of both, pathway engineering and medium supplementation, to optimize the recombinant production of the heme protein horseradish peroxidase in the yeast Pichia pastoris. Results In contrast to studies with other hosts, co-overexpression of genes of the endogenous heme biosynthesis pathway did not improve the recombinant production of active heme protein. However, medium supplementation with hemin proved to be an efficient strategy to increase the yield of active enzyme, whereas supplementation with the commonly used precursor 5-aminolevulinic acid did not affect target protein yield. Conclusions The yield of active recombinant heme peroxidase from P. pastoris can be easily enhanced by supplementation of the cultivation medium with hemin. Thereby, secreted apo-species of the target protein are effectively saturated with cofactor, maximizing the yield of target enzyme activity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0187-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian W Krainer
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Simona Capone
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Martin Jäger
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Thomas Vogl
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Michaela Gerstmann
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Anton Glieder
- Graz University of Technology, NAWI Graz, Institute of Molecular Biotechnology, Graz, Austria.
| | - Christoph Herwig
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| | - Oliver Spadiut
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Gumpendorfer Strasse 1a, 1060, Vienna, Austria.
| |
Collapse
|
27
|
Zafra G, Moreno-Montaño A, Absalón ÁE, Cortés-Espinosa DV. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1034-42. [PMID: 25106516 DOI: 10.1007/s11356-014-3357-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 05/15/2023]
Abstract
Trichoderma asperellum H15, a previously isolated strain characterized by its high tolerance to low (LMW) and high molecular weight (HMW) PAHs, was tested for its ability to degrade 3-5 ring PAHs (phenanthrene, pyrene, and benzo[a]pyrene) in soil microcosms along with a biostimulation treatment with sugarcane bagasse. T. asperellum H15 rapidly adapted to PAH-contaminated soils, producing more CO2 than uncontaminated microcosms and achieving up to 78 % of phenanthrene degradation in soils contaminated with 1,000 mg Kg(-1) after 14 days. In soils contaminated with 1,000 mg Kg(-1) of a three-PAH mixture, strain H15 was shown to degrade 74 % phenanthrene, 63 % pyrene, and 81 % of benzo[a]pyrene. Fungal catechol 1,2 dioxygenase, laccase, and peroxidase enzyme activities were found to be involved in the degradation of PAHs by T. asperellum. The results demonstrated the potential of T. asperellum H15 to be used in a bioremediation process. This is the first report describing the involvement of T. asperellum in LMW and HMW-PAH degradation in soils. These findings, along with the ability to remove large amounts of PAHs in soil found in the present work provide enough evidence to consider T. asperellum as a promising and efficient PAH-degrading microorganism.
Collapse
Affiliation(s)
- German Zafra
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Carretera Estatal Santa Ines Tecuexcomac-Tepetitla Km 1.5, Tepetitla, Tlaxcala, México, C.P. 70900
| | | | | | | |
Collapse
|
28
|
|
29
|
Zelena K, Eisele N, Berger RG. Escherichia coli as a production host for novel enzymes from basidiomycota. Biotechnol Adv 2014; 32:1382-95. [DOI: 10.1016/j.biotechadv.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/14/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
|
30
|
Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortiz DA, Fernández F, Loske AM, Gómez-Lim MA. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2014; 98:9283-94. [PMID: 25269601 DOI: 10.1007/s00253-014-6105-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 11/30/2022]
Abstract
The white-rot fungus Phanerochaete chrysosporium secretes extracellular oxidative enzymes during secondary metabolism, but lacks versatile peroxidase, an enzyme important in ligninolysis and diverse biotechnology processes. In this study, we report the genetic modification of a P. chrysosporium strain capable of co-expressing two endogenous genes constitutively, manganese peroxidase (mnp1) and lignin peroxidase (lipH8), and the codon-optimized vpl2 gene from Pleurotus eryngii. For this purpose, we employed a highly efficient transformation method based on the use of shock waves developed by our group. The expression of recombinant genes was verified by PCR, Southern blot, quantitative real-time PCR (qRT-PCR), and assays of enzymatic activity. The production yield of ligninolytic enzymes was up to four times higher in comparison to previously published reports. These results may represent significant progress toward the stable production of ligninolytic enzymes and the development of an effective fungal strain with promising biotechnological applications.
Collapse
Affiliation(s)
- Nancy Coconi-Linares
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km. 9.6 Carretera Irapuato-León, 36821, Irapuato, Gto, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Franken ACW, Lechner BE, Werner ER, Haas H, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Genome mining and functional genomics for siderophore production in Aspergillus niger. Brief Funct Genomics 2014; 13:482-92. [DOI: 10.1093/bfgp/elu026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Galiza GJ, Tochetto C, Rosa FB, Panziera W, Silva TMD, Caprioli RA, Kommers GD. Utilização de três métodos imuno-histoquímicos na detecção de aspergilose e zigomicose em animais. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000700005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visando a otimização do uso da técnica de imuno-histoquímica (IHQ) na detecção de Aspergillus spp. e zigomicetos (membros da família Mucoraceae), utilizaram-se dois anticorpos monoclonais fungo-específicos em fragmentos de tecidos de animais (fixados em formol e embebidos em parafina) com diagnóstico histomorfológico prévio de aspergilose e zigomicose, os quais foram submetidos a três sistemas de detecção diferentes (dois biotinilados e um não biotinilado). Os dois anticorpos apresentaram alta especificidade e sensibilidade nos tecidos examinados. Não ocorreram reações cruzadas entre os anticorpos utilizados e os agentes etiológicos avaliados (incluindo casos de aspergilose, zigomicose, candidíase e pitiose). No entanto, reações inespecíficas foram observadas nas hifas em alguns casos, as quais puderam ser eliminadas através de um dos métodos de detecção utilizados. Para a aspergilose, o método da estreptavidina-biotina-fosfatase alcalina não apresentou reações inespecíficas nas hifas. Enquanto que nos casos de zigomicoses, as reações inespecíficas não ocorreram no método por polímero (não biotinilado). A técnica de IHQ mostrou-se uma ferramenta muito útil na detecção e confirmação dos casos de aspergilose e zigomicose neste estudo retrospectivo.
Collapse
|
33
|
Ninomiya R, Zhu B, Kojima T, Iwasaki Y, Nakano H. Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. J Biosci Bioeng 2014; 117:652-7. [DOI: 10.1016/j.jbiosc.2013.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/23/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
|
34
|
Musengi A, Khan N, Le Roes-Hill M, Pletschke B, Burton S. Increasing the scale of peroxidase production by Streptomyces
sp. strain BSII#1. J Appl Microbiol 2013; 116:554-62. [PMID: 24176016 DOI: 10.1111/jam.12380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/15/2013] [Accepted: 10/27/2013] [Indexed: 11/29/2022]
Affiliation(s)
- A. Musengi
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - N. Khan
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - M. Le Roes-Hill
- Biocatalysis and Technical Biology Research Group; Cape Peninsula University of Technology; Bellville South Africa
| | - B.I. Pletschke
- Department of Biochemistry; Microbiology and Biotechnology; Faculty of Science; Rhodes University; Grahamstown South Africa
| | - S.G. Burton
- University of Pretoria; Hatfield Pretoria South Africa
| |
Collapse
|
35
|
The role of coproporphyrinogen III oxidase and ferrochelatase genes in heme biosynthesis and regulation in Aspergillus niger. Appl Microbiol Biotechnol 2013; 97:9773-85. [PMID: 24113826 DOI: 10.1007/s00253-013-5274-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
Heme is a suggested limiting factor in peroxidase production by Aspergillus spp., which are well-known suitable hosts for heterologous protein production. In this study, the role of genes coding for coproporphyrinogen III oxidase (hemF) and ferrochelatase (hemH) was analyzed by means of deletion and overexpression to obtain more insight in fungal heme biosynthesis and regulation. These enzymes represent steps in the heme biosynthetic pathway downstream of the siroheme branch and are suggested to play a role in regulation of the pathway. Based on genome mining, both enzymes deviate in cellular localization and protein domain structure from their Saccharomyces cerevisiae counterparts. The lethal phenotype of deletion of hemF or hemH could be remediated by heme supplementation confirming that Aspergillus niger is capable of hemin uptake. Nevertheless, both gene deletion mutants showed an extremely impaired growth even with hemin supplementation which could be slightly improved by media modifications and the use of hemoglobin as heme source. The hyphae of the mutant strains displayed pinkish coloration and red autofluorescence under UV indicative of cellular porphyrin accumulation. HPLC analysis confirmed accumulation of specific porphyrins, thereby confirming the function of the two proteins in heme biosynthesis. Overexpression of hemH, but not hemF or the aminolevulinic acid synthase encoding hemA, modestly increased the cellular heme content, which was apparently insufficient to increase activity of endogenous peroxidase and cytochrome P450 enzyme activities. Overexpression of all three genes increased the cellular accumulation of porphyrin intermediates suggesting regulatory mechanisms operating in the final steps of the fungal heme biosynthesis pathway.
Collapse
|
36
|
Manganese Peroxidase H4 Isozyme Mediated Degradation and Detoxification of Triarylmethane Dye Malachite Green: Optimization of Decolorization by Response Surface Methodology. Appl Biochem Biotechnol 2013; 171:1178-93. [DOI: 10.1007/s12010-013-0220-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
|
37
|
Järvinen J, Taskila S, Isomäki R, Ojamo H. Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2012. [PMID: 23190610 PMCID: PMC3549895 DOI: 10.1186/2191-0855-2-62] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa.
Collapse
|
38
|
Franken ACW, Lokman BC, Ram AFJ, van den Hondel CAMJJ, de Weert S, Punt PJ. Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. FEMS Microbiol Lett 2012; 335:104-12. [PMID: 22889260 DOI: 10.1111/j.1574-6968.2012.02655.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 11/27/2022] Open
Abstract
To increase knowledge on haem biosynthesis in filamentous fungi like Aspergillus niger, pathway-specific gene expression in response to haem and haem intermediates was analysed. This analysis showed that iron, 5'-aminolevulinic acid (ALA) and possibly haem control haem biosynthesis mostly via modulating expression of hemA [coding for 5'-aminolevulinic acid synthase (ALAS)]. A hemA deletion mutant (ΔhemA) was constructed, which showed conditional lethality. Growth of ΔhemA was supported on standard nitrate-containing media with ALA, but not by hemin. Growth of ΔhemA could be sustained in the presence of hemin in combination with ammonium instead of nitrate as N-source. Our results suggest that a branch-off within the haem biosynthesis pathway required for sirohaem synthesis is responsible for lack of growth of ΔhemA in media containing nitrate as sole N-source, because of the requirement of sirohaem for nitrate assimilation, as a cofactor of nitrite reductase. In contrast to the situation in Saccharomyces cerevisiae, cysteine, but not methionine, was found to further improve growth of ΔhemA. These results demonstrate that A. niger can use exogenous hemin for its cellular processes. They also illustrate important differences in regulation of haem biosynthesis and in the role of haem and sirohaem in A. niger compared to S. cerevisiae.
Collapse
Affiliation(s)
- Angelique C W Franken
- Department of Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
40
|
Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol 2012; 97:4873-85. [PMID: 22940800 DOI: 10.1007/s00253-012-4355-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
Abstract
Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.
Collapse
|
41
|
James ER, van Zyl WH, van Zyl PJ, Görgens JF. Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase. Appl Microbiol Biotechnol 2012; 96:385-94. [DOI: 10.1007/s00253-012-4191-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
42
|
Cortés-Espinosa DV, Absalón ÁE, Sanchez N, Loera O, Rodríguez-Vázquez R, Fernández FJ. Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil. J Mol Microbiol Biotechnol 2012; 21:120-9. [PMID: 22286039 DOI: 10.1159/000331563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A strain of Aspergillus niger, previously isolated from sugarcane bagasse because of its capacity to degrade phenanthrene in soil by solid culture, was used to express a manganese peroxidase gene (mnp1) from Phanerochaete chrysosporium, aiming at increasing its polycyclic aromatic hydrocarbons degradation capacity. Transformants were selected based on their resistance to hygromycin B and the discoloration induced on Poly R-478 dye by the peroxidase activity. The recombinant A. niger SBC2-T3 strain developed MnP activity and was able to remove 95% of the initial phenanthrene (400 ppm) from a microcosm soil system after 17 days, whereas the wild strain removed 72% under the same conditions. Transformation success was confirmed by PCR amplification using gene-specific primers, and a single fragment (1,348 bp long, as expected) of the recombinant mnp1 was amplified in the DNA from transformants, which was absent from the parental strain.
Collapse
Affiliation(s)
- Diana V Cortés-Espinosa
- Centro de Investigación en Biotecnologóa Aplicada del IPN, Carretera Federal Santa Inés, Tepetitla de Lardizabal, Mexico
| | | | | | | | | | | |
Collapse
|
43
|
Chen XZ, Shen W, Fan Y, Wang ZX. [Genomics and metabolic engineering of filamentous fungi in the post-genomics era]. YI CHUAN = HEREDITAS 2011; 33:1067-78. [PMID: 21993281 DOI: 10.3724/sp.j.1005.2011.01067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Filamentous fungi are used in a variety of industrial processes including the production of primary metabolites (e.g., organic acid, vitamins, and extracellular enzymes) and secondary metabolites (e.g., antibiotics, alkaloids, and gibberellins). Moreover, filamentous fungi have become preferred cell factories for production of foreign (heterologous) proteins in biotechnology in recent years. Compared to bacterial and yeast hosts, filamentous fungi showed predominant features such as the ability of growing on rather simple and inexpensive substrates, producing and secreting exceptionally large amounts of proteins, post-translational modifications, and GRAS (generally regarded as safe) approval. Therefore, the exploration of filamentous fungi has been attractive recently. This review summarizes the recent development in genomics, comparative genomics, transcriptomics, proteomics and metabolomics of filamentous fungi, and describes their applications and functions in reconstruction of metabolic network, discovery of novel proteins and genes, investigation of cell physiological and biochemical reactions, and strain breeding. This review also analyzes the bottlenecks of heterologous protein expression in filamentous fungi. Furthermore, special emphasis is given on the strategies for improving the protein production, including fusion expression of heterologous proteins, RNAi technology, manipulations of secretion pathways, codon optimization of foreign genes, and screening of protease mutants. Lastly, this review proposes the future direction of metabolic engineering of filamentous fungi.
Collapse
|
44
|
Franken ACW, Lokman BC, Ram AFJ, Punt PJ, van den Hondel CAMJJ, de Weert S. Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 2011; 91:447-60. [PMID: 21687966 PMCID: PMC3136693 DOI: 10.1007/s00253-011-3391-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 05/16/2011] [Accepted: 05/16/2011] [Indexed: 12/01/2022]
Abstract
Heme biosynthesis in fungal host strains has acquired considerable interest in relation to the production of secreted heme-containing peroxidases. Class II peroxidase enzymes have been suggested as eco-friendly replacements of polluting chemical processes in industry. These peroxidases are naturally produced in small amounts by basidiomycetes. Filamentous fungi like Aspergillus sp. are considered as suitable hosts for protein production due to their high capacity of protein secretion. For the purpose of peroxidase production, heme is considered a putative limiting factor. However, heme addition is not appropriate in large-scale production processes due to its high hydrophobicity and cost price. The preferred situation in order to overcome the limiting effect of heme would be to increase intracellular heme levels. This requires a thorough insight into the biosynthetic pathway and its regulation. In this review, the heme biosynthetic pathway is discussed with regards to synthesis, regulation, and transport. Although the heme biosynthetic pathway is a highly conserved and tightly regulated pathway, the mode of regulation does not appear to be conserved among eukaryotes. However, common factors like feedback inhibition and regulation by heme, iron, and oxygen appear to be involved in regulation of the heme biosynthesis pathway in most organisms. Therefore, they are the initial targets to be investigated in Aspergillus niger.
Collapse
Affiliation(s)
- Angelique C W Franken
- The Netherlands & Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
45
|
Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. J Ind Microbiol Biotechnol 2010; 38:1089-98. [DOI: 10.1007/s10295-010-0888-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
46
|
Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger. Appl Microbiol Biotechnol 2010; 89:357-73. [PMID: 20922374 PMCID: PMC3016150 DOI: 10.1007/s00253-010-2916-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/30/2022]
Abstract
Endoplasmic reticulum associated degradation (ERAD) is a conserved mechanism to remove misfolded proteins from the ER by targeting them to the proteasome for degradation. To assess the role of ERAD in filamentous fungi, we have examined the consequences of disrupting putative ERAD components in the filamentous fungus Aspergillus niger. Deletion of derA, doaA, hrdC, mifA, or mnsA in A. niger yields viable strains, and with the exception of doaA, no significant growth phenotype is observed when compared to the parental strain. The gene deletion mutants were also made in A. niger strains containing single- or multicopies of a glucoamylase–glucuronidase (GlaGus) gene fusion. The induction of the unfolded protein response (UPR) target genes (bipA and pdiA) was dependent on the copy number of the heterologous gene and the ERAD gene deleted. The highest induction of UPR target genes was observed in ERAD mutants containing multiple copies of the GlaGus gene. Western blot analysis revealed that deletion of the derA gene in the multicopy GlaGus overexpressing strain resulted in a 6-fold increase in the intracellular amount of GlaGus protein detected. Our results suggest that impairing some components of the ERAD pathway in combination with high expression levels of the heterologous protein results in higher intracellular protein levels, indicating a delay in protein degradation.
Collapse
|
47
|
Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 2010; 87:1255-70. [DOI: 10.1007/s00253-010-2672-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 11/26/2022]
|
48
|
Aita GM, Kim M. Pretreatment Technologies for the Conversion of Lignocellulosic Materials to Bioethanol. ACS SYMPOSIUM SERIES 2010. [DOI: 10.1021/bk-2010-1058.ch008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Giovanna M. Aita
- Audubon Sugar Institute, Louisiana State University Agricultural Center, 3845 Hwy. 75, St. Gabriel, LA 70776
| | - Misook Kim
- Audubon Sugar Institute, Louisiana State University Agricultural Center, 3845 Hwy. 75, St. Gabriel, LA 70776
| |
Collapse
|
49
|
Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway. Appl Microbiol Biotechnol 2009; 84:335-40. [DOI: 10.1007/s00253-009-1981-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
|
50
|
Ruiz-Dueñas FJ, Martínez AT. Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2009; 2:164-77. [PMID: 21261911 PMCID: PMC3815837 DOI: 10.1111/j.1751-7915.2008.00078.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non-phenolic phenylpropanoid units form a complex three-dimensional network linked by a variety of ether and carbon-carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one-electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide-generating oxidases. These peroxidases poses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non-phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl-free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure-function information currently available is being used to build tailor-made peroxidases and other oxidoreductases as industrial biocatalysts.
Collapse
|