1
|
Hayman K, Oguadinma IC, Mishra A, Kumar GD. Evaluation of the use of ampicillin‐ and streptomycin‐resistant Shiga toxin‐producing
Escherichia coli
to reduce the burden of background microbiota during food safety studies. J Food Saf 2021. [DOI: 10.1111/jfs.12950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaylan Hayman
- Center for Food Safety, College of Agricultural and Environmental Sciences University of Georgia Griffin Georgia USA
| | - Ikechukwu Chukwuma Oguadinma
- Center for Food Safety, College of Agricultural and Environmental Sciences University of Georgia Griffin Georgia USA
| | - Abhinav Mishra
- Department of Food Science & Technology University of Georgia Athens Georgia USA
| | - Govindaraj Dev Kumar
- Center for Food Safety, College of Agricultural and Environmental Sciences University of Georgia Griffin Georgia USA
| |
Collapse
|
2
|
Klein TA, Grebenc DW, Gandhi SY, Shah VS, Kim Y, Whitney JC. Structure of the Extracellular Region of the Bacterial Type VIIb Secretion System Subunit EsaA. Structure 2020; 29:177-185.e6. [PMID: 33238147 DOI: 10.1016/j.str.2020.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
Gram-positive bacteria use type VII secretion systems (T7SSs) to export effector proteins that manipulate the physiology of nearby prokaryotic and eukaryotic cells. Several mycobacterial T7SSs have established roles in virulence. By contrast, the genetically distinct T7SSb pathway found in Firmicutes bacteria more often functions to mediate bacterial competition. A lack of structural information on the T7SSb has limited the understanding of effector export by this protein secretion apparatus. Here, we present the 2.4 Å crystal structure of the extracellular region of the T7SSb subunit EsaA from Streptococcus gallolyticus. Our structure reveals that homodimeric EsaA is an elongated, arrow-shaped protein with a surface-accessible "tip", which in some species of bacteria serves as a receptor for lytic bacteriophages. Because it is the only T7SSb subunit large enough to traverse the peptidoglycan layer of Firmicutes, we propose that EsaA plays a critical role in transporting effectors across the entirety of the Gram-positive cell envelope.
Collapse
Affiliation(s)
- Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dirk W Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shil Y Gandhi
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Vraj S Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL, USA
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Sharma M, Tyagi JL, Poluri KM. Quantifying bacterial cell lysis using GFP based fluorimetric assay. Int J Biol Macromol 2019; 138:881-889. [PMID: 31356938 DOI: 10.1016/j.ijbiomac.2019.07.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Quantitative measurement of cell lysis against a given microbial strain is essential to calculate the antimicrobial potency of protein/peptide/nanomaterial based formulations. Fluorescence spectroscopy based measurements offer precise quantification of a process via selected flurophore emission profile. In this context, we elucidate a reliable and robust green fluorescent protein (GFP) based fluorescence spectroscopy protocol to evaluate the antimicrobial activity of proteins. The technique is based on the fact that the intensity of the GFP emission released from cells correlates with cell lysis and henceforth the antimicrobial potential of the chosen agent. The technique was demonstrated with two different families of bacteriophage endolysins (T7 and T4 endolysins) using GFP expressing E. coli cells. The GFP based method allowed the absolute quantification of T4 and T7 endolysins cell lysis characteristics at different pH, salt concentrations, and metal ions. The results obtained from GFP based fluorimetric assay were substantiated with turbidimetric assay and fluorescence microscopy. This fluorimetric method in conjugation with different GFP expressing microbial strains and antimicrobial agents can be efficiently applied as a quantification technique to precisely measure cell lysis.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Jaya Lakshmi Tyagi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Brown JL, Johnston W, Delaney C, Short B, Butcher MC, Young T, Butcher J, Riggio M, Culshaw S, Ramage G. Polymicrobial oral biofilm models: simplifying the complex. J Med Microbiol 2019; 68:1573-1584. [PMID: 31524581 DOI: 10.1099/jmm.0.001063] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host-pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - William Johnston
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Mark C Butcher
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Tracy Young
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - John Butcher
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.,Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Marcello Riggio
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Shauna Culshaw
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
5
|
Coelho-Rocha ND, de Castro CP, de Jesus LCL, Leclercq SY, de Cicco Sandes SH, Nunes AC, Azevedo V, Drumond MM, Mancha-Agresti P. Microencapsulation of Lactic Acid Bacteria Improves the Gastrointestinal Delivery and in situ Expression of Recombinant Fluorescent Protein. Front Microbiol 2018; 9:2398. [PMID: 30344518 PMCID: PMC6182071 DOI: 10.3389/fmicb.2018.02398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 01/25/2023] Open
Abstract
The microencapsulation process of bacteria has been used for many years, mainly in the food industry and, among the different matrixes used, sodium alginate stands out. This matrix forms a protective wall around the encapsulated bacterial culture, increasing its viability and protecting against environmental adversities, such as low pH, for example. The aim of the present study was to evaluate both in vitro and in vivo, the capacity of the encapsulation process to maintain viable lactic acid bacteria (LAB) strains for a longer period of time and to verify if they are able to reach further regions of mouse intestine. For this purpose, a recombinant strain of LAB (L. lactis ssp. cremoris MG1363) carrying the pExu vector encoding the fluorescence protein mCherry [L. lactis MG1363 (pExu:mCherry)] was constructed. The pExu was designed by our group and acts as a vector for DNA vaccines, enabling the host cell to produce the protein of interest. The functionality of the pExu:mCherry vector, was demonstrated in vitro by fluorescence microscopy and flow cytometry after transfection of eukaryotic cells. After this confirmation, the recombinant strain was submitted to encapsulation protocol with sodium alginate (1%). Non-encapsulated, as well as encapsulated strains were orally administered to C57BL/6 mice and the expression of mCherry protein was evaluated at different times (0-168 h) in different bowel portions. Confocal microscopy showed that the expression of mCherry was higher in animals who received the encapsulated strain in all portions of intestine analyzed. These results were confirmed by qRT-PCR assay. Therefore, this is the first study comparing encapsulated and non-encapsulated L. lactis bacteria for mucosal DNA delivery applications. Our results showed that the microencapsulation process is an effective method to improve DNA delivery, ensuring a greater number of viable bacteria are able to reach different sections of the bowel.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila P de Castro
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Kroton Educacional, Faculdade Pitágoras, Contagem, Brazil
| | - Luis C L de Jesus
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sophie Y Leclercq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Savio H de Cicco Sandes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alvaro C Nunes
- Laboratório de Genética Molecular de Protozoários Parasitas, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana M Drumond
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, Belo Horizonte, Brazil
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin. J Mol Biol 2018; 430:4344-4358. [PMID: 30194969 PMCID: PMC6193138 DOI: 10.1016/j.jmb.2018.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
Gram-positive bacteria deploy the type VII secretion system (T7SS) to facilitate interactions between eukaryotic and prokaryotic cells. In recent work, we identified the TelC protein from Streptococcus intermedius as a T7SS-exported lipid II phosphatase that mediates interbacterial competition. TelC exerts toxicity in the inner wall zone of Gram-positive bacteria; however, intercellular intoxication of sister cells does not occur because they express the TipC immunity protein. In the present study, we sought to characterize the molecular basis of self-protection by TipC. Using sub-cellular localization and protease protection assays, we show that TipC is a membrane protein with an N-terminal transmembrane segment and a C-terminal TelC-inhibitory domain that protrudes into the inner wall zone. The 1.9-Å X-ray crystal structure of a non-protective TipC paralogue reveals that the soluble domain of TipC proteins adopts a crescent-shaped fold that is composed of three α-helices and a seven-stranded β-sheet. Subsequent homology-guided mutagenesis demonstrates that a concave surface formed by the predicted β-sheet of TipC is required for both its interaction with TelC and its TelC-inhibitory activity. S. intermedius cells lacking the tipC gene are susceptible to growth inhibition by TelC delivered between cells; however, we find that the growth of this strain is unaffected by endogenous or overexpressed TelC, although the toxin accumulates in culture supernatants. Together, these data indicate that the TelC-inhibitory activity of TipC is only required for intercellularly transferred TelC and that the T7SS apparatus transports TelC across the cell envelope in a single step, bypassing the cellular compartment in which it exerts toxicity en route. Antibacterial TelC toxin is neutralized in the inner wall zone by membrane-anchored TipC immunity protein. TipC is a crescent-shaped protein that interacts with TelC via its concave surface. TelC and TipC are physically separated by the plasma membrane in TelC-producing cells. The type VII secretion system prevents TelC access to the inner wall zone in TelC-producing bacteria.
Collapse
|
7
|
Omar A, Wright JB, Schultz G, Burrell R, Nadworny P. Microbial Biofilms and Chronic Wounds. Microorganisms 2017; 5:microorganisms5010009. [PMID: 28272369 PMCID: PMC5374386 DOI: 10.3390/microorganisms5010009] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
Background is provided on biofilms, including their formation, tolerance mechanisms, structure, and morphology within the context of chronic wounds. The features of biofilms in chronic wounds are discussed in detail, as is the impact of biofilm on wound chronicity. Difficulties associated with the use of standard susceptibility tests (minimum inhibitory concentrations or MICs) to determine appropriate treatment regimens for, or develop new treatments for use in, chronic wounds are discussed, with alternate test methods specific to biofilms being recommended. Animal models appropriate for evaluating biofilm treatments are also described. Current and potential future therapies for treatment of biofilm-containing chronic wounds, including probiotic therapy, virulence attenuation, biofilm phenotype expression attenuation, immune response suppression, and aggressive debridement combined with antimicrobial dressings, are described.
Collapse
Affiliation(s)
- Amin Omar
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| | - J Barry Wright
- Harkynn Consulting, P.O. Box 104, Albertville, Saskatchewan S0J 0A0, Canada.
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, 1600 South West Archer Road, Room M337F, Gainesville, FL 32610-0294, USA.
| | - Robert Burrell
- Department of Biomedical Engineering, Faculties of Engineering and Medicine & Dentistry, 1101 Research Transition Facility, University of Alberta, Edmonton, Alberta T6G 2G6, Canada.
| | - Patricia Nadworny
- Innovotech Inc., Suite 101, 2011 94 Street, Edmonton, Alberta T6N 1H1, Canada.
| |
Collapse
|
8
|
l-Arginine Modifies the Exopolysaccharide Matrix and Thwarts Streptococcus mutans Outgrowth within Mixed-Species Oral Biofilms. J Bacteriol 2016; 198:2651-61. [PMID: 27161116 DOI: 10.1128/jb.00021-16] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/01/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED l-Arginine, a ubiquitous amino acid in human saliva, serves as a substrate for alkali production by arginolytic bacteria. Recently, exogenous l-arginine has been shown to enhance the alkalinogenic potential of oral biofilm and destabilize its microbial community, which might help control dental caries. However, l-arginine exposure may inflict additional changes in the biofilm milieu when bacteria are growing under cariogenic conditions. Here, we investigated how exogenous l-arginine modulates biofilm development using a mixed-species model containing both cariogenic (Streptococcus mutans) and arginolytic (Streptococcus gordonii) bacteria in the presence of sucrose. We observed that 1.5% (wt/vol) l-arginine (also a clinically effective concentration) exposure suppressed the outgrowth of S. mutans, favored S. gordonii dominance, and maintained Actinomyces naeslundii growth within biofilms (versus vehicle control). In parallel, topical l-arginine treatments substantially reduced the amounts of insoluble exopolysaccharides (EPS) by >3-fold, which significantly altered the three-dimensional (3D) architecture of the biofilm. Intriguingly, l-arginine repressed S. mutans genes associated with insoluble EPS (gtfB) and bacteriocin (SMU.150) production, while spxB expression (H2O2 production) by S. gordonii increased sharply during biofilm development, which resulted in higher H2O2 levels in arginine-treated biofilms. These modifications resulted in a markedly defective EPS matrix and areas devoid of any bacterial clusters (microcolonies) on the apatitic surface, while the in situ pH values at the biofilm-apatite interface were nearly one unit higher in arginine-treated biofilms (versus the vehicle control). Our data reveal new biological properties of l-arginine that impact biofilm matrix assembly and the dynamic microbial interactions associated with pathogenic biofilm development, indicating the multiaction potency of this promising biofilm disruptor. IMPORTANCE Dental caries is one of the most prevalent and costly infectious diseases worldwide, caused by a biofilm formed on tooth surfaces. Novel strategies that compromise the ability of virulent species to assemble and maintain pathogenic biofilms could be an effective alternative to conventional antimicrobials that indiscriminately kill other oral species, including commensal bacteria. l-Arginine at 1.5% has been shown to be clinically effective in modulating cariogenic biofilms via alkali production by arginolytic bacteria. Using a mixed-species ecological model, we show new mechanisms by which l-arginine disrupts the process of biofilm matrix assembly and the dynamic microbial interactions that are associated with cariogenic biofilm development, without impacting the bacterial viability. These results may aid in the development of enhanced methods to control biofilms using l-arginine.
Collapse
|
9
|
Vickerman MM, Mansfield JM, Zhu M, Walters KS, Banas JA. Codon-optimized fluorescent mTFP and mCherry for microscopic visualization and genetic counterselection of streptococci and enterococci. J Microbiol Methods 2015; 116:15-22. [PMID: 26122309 PMCID: PMC4522221 DOI: 10.1016/j.mimet.2015.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/20/2023]
Abstract
Despite the powerful potential of fluorescent proteins for labeling bacteria, their use has been limited in multi-species oral biofilm models. Fermentative metabolism by streptococcal species that initiate biofilm colonization results in an acidic, reduced microenvironment that may limit the activities of some fluorescent proteins which are influenced by pH and oxygen availability. The need to reliably distinguish morphologically similar strains within biofilms was the impetus for this work. Teal fluorescent protein (mTFP1) and red fluorescent protein (mCherry) were chosen because their fluorescent properties made them promising candidates. Since tRNA availability has been implicated in efficient translation of sufficient quantities of protein for maximum fluorescence, a streptococcal codon optimization approach was used. DNA was synthesized to encode either protein using codons most frequently used in streptococci; each coding region was preceded by an engineered ribosomal binding site and restriction sites for cloning a promoter. Plasmids carrying this synthesized DNA under control of the Streptococcus mutans lactate dehydrogenase promoter conferred fluorescence to nine representative streptococcal and two Enterococcus faecalis strains. Further characterization in Streptococcus gordonii showed that mTFP1 and mCherry expressions could be detected in cells grown planktonically, in biofilms, or in colonies on agar when expressed on an extrachromosomal plasmid or in single copy integrated into the chromosome. This latter property facilitated counterselection of chromosomal mutations demonstrating value for bacterial strain construction. Fluorescent and non-fluorescent bacteria were distinguishable at acidic pH. These codon-optimized versions of mTFP1 and mCherry have promising potential for use in multiple experimental applications.
Collapse
Affiliation(s)
- M Margaret Vickerman
- Department of Periodontics and Endodontics, University at Buffalo School of Dental Medicine, Buffalo, NY, USA; Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY, USA.
| | - Jillian M Mansfield
- Department of Periodontics and Endodontics, University at Buffalo School of Dental Medicine, Buffalo, NY, USA; Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, NY, USA
| | - Min Zhu
- Dows Institute for Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Katherine S Walters
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Jeffrey A Banas
- Dows Institute for Research, University of Iowa College of Dentistry, Iowa City, IA, USA
| |
Collapse
|
10
|
Abstract
Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method's broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms.
Collapse
|
11
|
Edlund A, Yang Y, Hall AP, Guo L, Lux R, He X, Nelson KE, Nealson KH, Yooseph S, Shi W, McLean JS. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. MICROBIOME 2013; 1:25. [PMID: 24451062 PMCID: PMC3971625 DOI: 10.1186/2049-2618-1-25] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/17/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND Our knowledge of microbial diversity in the human oral cavity has vastly expanded during the last two decades of research. However, much of what is known about the behavior of oral species to date derives from pure culture approaches and the studies combining several cultivated species, which likely does not fully reflect their function in complex microbial communities. It has been shown in studies with a limited number of cultivated species that early oral biofilm development occurs in a successional manner and that continuous low pH can lead to an enrichment of aciduric species. Observations that in vitro grown plaque biofilm microcosms can maintain similar pH profiles in response to carbohydrate addition as plaque in vivo suggests a complex microbial community can be established in the laboratory. In light of this, our primary goal was to develop a robust in vitro biofilm-model system from a pooled saliva inoculum in order to study the stability, reproducibility, and development of the oral microbiome, and its dynamic response to environmental changes from the community to the molecular level. RESULTS Comparative metagenomic analyses confirmed a high similarity of metabolic potential in biofilms to recently available oral metagenomes from healthy subjects as part of the Human Microbiome Project. A time-series metagenomic analysis of the taxonomic community composition in biofilms revealed that the proportions of major species at 3 hours of growth are maintained during 48 hours of biofilm development. By employing deep pyrosequencing of the 16S rRNA gene to investigate this biofilm model with regards to bacterial taxonomic diversity, we show a high reproducibility of the taxonomic carriage and proportions between: 1) individual biofilm samples; 2) biofilm batches grown at different dates; 3) DNA extraction techniques and 4) research laboratories. CONCLUSIONS Our study demonstrates that we now have the capability to grow stable oral microbial in vitro biofilms containing more than one hundred operational taxonomic units (OTU) which represent 60-80% of the original inoculum OTU richness. Previously uncultivated Human Oral Taxa (HOT) were identified in the biofilms and contributed to approximately one-third of the totally captured 16S rRNA gene diversity. To our knowledge, this represents the highest oral bacterial diversity reported for an in vitro model system so far. This robust model will help investigate currently uncultivated species and the known virulence properties for many oral pathogens not solely restricted to pure culture systems, but within multi-species biofilms.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Youngik Yang
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Adam P Hall
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Lihong Guo
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Renate Lux
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Xuesong He
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Karen E Nelson
- Department of Human Genomic Medicine, J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kenneth H Nealson
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
- Department of Earth Sciences, USC, ZHS 117, Los Angeles, CA 90089, USA
| | - Shibu Yooseph
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| | - Wenyuan Shi
- UCLA School of Dentistry, 10833 Le Conte Avenue, CHS Box 951668, Los Angeles, CA 90095, USA
| | - Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, 10355 Science Center Drive, CA 921 21 San Diego, USA
| |
Collapse
|
12
|
Avalos Vizcarra I, Emge P, Miermeister P, Chabria M, Konradi R, Vogel V, Möller J. Fluorescence-based in situ assay to probe the viability and growth kinetics of surface-adhering and suspended recombinant bacteria. Biointerphases 2013; 8:22. [PMID: 24706134 PMCID: PMC4243816 DOI: 10.1186/1559-4106-8-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 01/24/2023] Open
Abstract
Bacterial adhesion and biofilm growth can cause severe biomaterial-related infections and failure of medical implants. To assess the antifouling properties of engineered coatings, advanced approaches are needed for in situ monitoring of bacterial viability and growth kinetics as the bacteria colonize a surface. Here, we present an optimized protocol for optical real-time quantification of bacterial viability. To stain living bacteria, we replaced the commonly used fluorescent dye SYTO(®) 9 with endogenously expressed eGFP, as SYTO(®) 9 inhibited bacterial growth. With the addition of nontoxic concentrations of propidium iodide (PI) to the culture medium, the fraction of live and dead bacteria could be continuously monitored by fluorescence microscopy as demonstrated here using GFP expressing Escherichia coli as model organism. The viability of bacteria was thereby monitored on untreated and bioactive dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAC)-coated glass substrates over several hours. Pre-adsorption of the antimicrobial surfaces with serum proteins, which mimics typical protein adsorption to biomaterial surfaces upon contact with host body fluids, completely blocked the antimicrobial activity of the DMOAC surfaces as we observed the recovery of bacterial growth. Hence, this optimized eGFP/PI viability assay provides a protocol for unperturbed in situ monitoring of bacterial viability and colonization on engineered biomaterial surfaces with single-bacteria sensitivity under physiologically relevant conditions.
Collapse
Affiliation(s)
- Ima Avalos Vizcarra
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, ETH Zurich, CH-8093, Zurich, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
13
|
Aymanns S, Mauerer S, van Zandbergen G, Wolz C, Spellerberg B. High-level fluorescence labeling of gram-positive pathogens. PLoS One 2011; 6:e19822. [PMID: 21731607 PMCID: PMC3120757 DOI: 10.1371/journal.pone.0019822] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.
Collapse
Affiliation(s)
- Simone Aymanns
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Ger van Zandbergen
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Christiane Wolz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Eberhard-Karls-Universität, Tübingen, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
14
|
Ma L, Zhang G, Doyle MP. Green fluorescent protein labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for safety-related studies. PLoS One 2011; 6:e18083. [PMID: 21483738 PMCID: PMC3070700 DOI: 10.1371/journal.pone.0018083] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP) gene (gfp) provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl2 procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations), the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%–30%, 15.8%–99.9% and 8.1%–93.4%, respectively. Complete loss (>99.99%) of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology and Plant Pathology, National Institute for Microbial Forensics and Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, Maryland, United States of America
| | - Michael P. Doyle
- Center for Food Safety, University of Georgia, Griffin, Georgia, United States of America
- * E-mail:
| |
Collapse
|
15
|
Beier BD, Quivey RG, Berger AJ. Identification of different bacterial species in biofilms using confocal Raman microscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066001. [PMID: 21198175 PMCID: PMC3014224 DOI: 10.1117/1.3505010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 05/21/2023]
Abstract
Confocal Raman microspectroscopy is used to discriminate between different species of bacteria grown in biofilms. Tests are performed using two bacterial species, Streptococcus sanguinis and Streptococcus mutans, which are major components of oral plaque and of particular interest due to their association with healthy and cariogenic plaque, respectively. Dehydrated biofilms of these species are studied as a simplified model of dental plaque. A prediction model based on principal component analysis and logistic regression is calibrated using pure biofilms of each species and validated on pure biofilms grown months later, achieving 96% accuracy in prospective classification. When biofilms of the two species are partially mixed together, Raman-based identifications are achieved within ∼2 μm of the boundaries between species with 97% accuracy. This combination of spatial resolution and predication accuracy should be suitable for forming images of species distributions within intact two-species biofilms.
Collapse
Affiliation(s)
- Brooke D Beier
- University of Rochester, The Institute of Optics, Wilmot Building, Rochester, NY14627, USA
| | | | | |
Collapse
|
16
|
Abstract
Observing naturally occurring biofilms in situ or ex situ has revealed the wide distribution of sessile microbial communities. The ubiquity, variety and complexity of biofilms is now widely accepted by microbiologists. While they are associated with many beneficial functions such as nutrient cycling, bioremediation and colonization resistance, adverse effects including recalcitrance, their involvement in industrial fouling, contamination and infection have made biofilms a priority research topic. We know that most biofilms, other than within certain infections and laboratory flasks, are composed of multiple species and that there is arguably no unifying biofilm architecture. Biofilms do however share certain properties including the presence of gradients of nutrients, gasses and metabolic products, relatively increased cell density, deposition of extracellular polymeric substances and marked recalcitrance towards antimicrobial treatments. Much of our understanding of biofilm physiology and micro-ecology originates from experiments using in vitro biofilm models. Broadly speaking, such models may be used to replicate environmental conditions within the laboratory or to focus on selected variables such a growth rate or fluid flow, etc. This chapter provides an overview of some commonly used biofilm models including microtitre plate systems, flow cells, the constant depth film fermenter, annular reactors and the perfused biofilm fermenter. While perfused biofilm fermenters, in particular, enable growth rate to be controlled within thin, relatively homogenous, quasi steady-state biofilms through modulation of flow rate nutrient availability, other models provide representative modelling of in situ conditions where steady states may be uncommon.
Collapse
|
17
|
Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods 2009; 77:67-71. [DOI: 10.1016/j.mimet.2009.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/17/2008] [Accepted: 01/12/2009] [Indexed: 11/23/2022]
|
18
|
Sliepen I, Hofkens J, Van Essche M, Quirynen M, Teughels W. Aggregatibacter actinomycetemcomitansadhesion inhibited in a flow cell. ACTA ACUST UNITED AC 2008; 23:520-4. [DOI: 10.1111/j.1399-302x.2008.00456.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Huang WC, Chen YYM, Teng LJ, Lien HT, Chen JY, Chia JS. Chromosomal inversion between rrn operons among Streptococcus mutans serotype c oral and blood isolates. J Med Microbiol 2008; 57:198-206. [PMID: 18201986 DOI: 10.1099/jmm.0.47428-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans causes dental caries and infective endocarditis. The aim of this study was to determine genomic diversity among serotype c S. mutans laboratory and clinical strains and to characterize the genetic events involved. A genome-based approach using PFGE coupled with Southern hybridization was employed to examine a total of 58 serotype c oral and blood isolates and seven laboratory strains and to compare them with S. mutans UA159. No significant differences were found in the phenotypic characteristics of the strains tested, except that some of the strains exhibited smooth rather than rough colony morphology. In contrast, PFGE profiles of clinical isolates, from either diseased or healthy subjects, exhibited diverse patterns, suggesting that recombination or point mutations occurred frequently in vivo. Diverse PFGE patterns, with various lengths of insertions and deletions, could be detected even within a localized chromosomal region between rRNA operons. Comparative analysis using Southern hybridization with specific markers revealed that a large chromosomal inversion had also occurred between rrn operons in 25 strains.
Collapse
Affiliation(s)
- Wen-Chuan Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taipei, Taiwan, ROC
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, Taipei, Taiwan, ROC
| | - Huwei-Ting Lien
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Jen-Yang Chen
- National Health Research Institute, Taipei, Taiwan, ROC.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Jean-San Chia
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan, ROC.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
20
|
Simpson-Stroot JM, Kearns EA, Stroot PG, Magaña S, Lim DV. Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7. J Microbiol Methods 2007; 72:29-37. [PMID: 18096260 DOI: 10.1016/j.mimet.2007.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 11/15/2022]
Abstract
One of the known limitations for biosensor assays is the high limit of detection for target cells within complex samples (e.g., Escherichia coli at 10(4) to 10(5) CFU/mL) due to poor capture efficiencies. Currently, researchers can only estimate the cell capture efficiency necessary to produce a positive signal for any type of biosensor using either cumbersome techniques or regression modeling. To solve this problem, green fluorescent protein (GFP) transformed E. coli O157:H7 was used to develop a novel method for directly and easily measuring the cell capture efficiency of any given biosensor platform. For demonstration purposes, E. coli-GFP was assayed on both fiber optic and planar waveguide biosensor platforms. Cells were enumerated using an epifluorescent microscope and digital camera to determine the number of cells captured on the surfaces. Conversion algorithms were used with these digital images to determine the cell density of entire waveguide surface areas. For E. coli-GFP, the range of cell capture efficiency was between 0.4 and 1.2%. This indicates that although the developed model works for calculating cell capture, there is still need for significant improvements in capture methods themselves, to increase the capture efficiency and thereby lower detection limits. The use of GFP-transformed target cells and cell capture efficiency calculations can facilitate the development and optimization processes by allowing direct enumeration of new biosensor design configurations and sample processing strategies.
Collapse
Affiliation(s)
- Joyce M Simpson-Stroot
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, Tampa, FL 33620-5200, USA.
| | | | | | | | | |
Collapse
|
21
|
Teughels W, Sliepen I, De Keersmaecker S, Quirynen M, Lippmann J, Pauwels M, Fives-Taylor P. Influence of genetic background on transformation and expression of Green Fluorescent Protein in Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2005; 20:274-81. [PMID: 16101962 DOI: 10.1111/j.1399-302x.2005.00224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS The development of an electro-transformation system and the construction of shuttle plasmids for Actinobacillus actinomycetemcomitans have enhanced the molecular analysis of virulence factors. However, inefficient transformation is frequently encountered. This study investigated the efficiency of electro-transformation and expression of Green Fluorescent Protein (GFP) in 12 different A. actinomycetemcomitans strains. The influence of the plasmid vector, serotype, and phenotype were the major factors taken into consideration. MATERIAL AND METHODS Twelve serotyped A. actinomycetemcomitans strains were independently electro-transformed with two different Escherichia coli-A. actinomycetemcomitans shuttle plasmids (pVT1303 and pVT1304), both containing an identical ltx-GFPmut2 gene construct but a different backbone (pDMG4 and pPK1, respectively). The transformation efficiency, transformation frequency, and electro-transformation survival rate were determined by culture techniques. GFP expression was observed at the colony level by fluorescence microscopy. RESULTS All strains could be transformed with both plasmids. However, major differences were observed for the transformation efficiency, transformation frequency, and electro-transformation survival rate between strains. The data demonstrated that plasmid vector, serotype, and phenotype are key players for obtaining a successful transformation. An inverted relationship between the electro-transformation survival rate and tranformation frequency was also observed. GFP expression was also influenced by phenotype, serotype and plasmid vector. CONCLUSIONS The serotype of A. actinomycetemcomitans has an important influence on its survival after electro-transformation and on transformation frequency. The expression of GFP is strain and plasmid vector dependent.
Collapse
Affiliation(s)
- W Teughels
- Catholic University Leuven, Department of Periodontology, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
22
|
Vesterlund S, Paltta J, Karp M, Ouwehand AC. Measurement of bacterial adhesion—in vitro evaluation of different methods. J Microbiol Methods 2005; 60:225-33. [PMID: 15590097 DOI: 10.1016/j.mimet.2004.09.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 09/27/2004] [Indexed: 11/17/2022]
Abstract
The adhesion of bacteria to host tissue is the first step in pathogenesis. Similarly, bacterial adhesion to inanimate surfaces is the first step in formation of biofilms-a real problem in industrial processes and medical devices. Various agents capable of blocking the adhesion of bacteria to surfaces have been identified, such as probiotics, which are supposed to prevent the adhesion of pathogenic bacteria to the intestinal mucosa. Although measurement of bacterial adhesion is important itself, especially when agents used to prevent adhesion are developed, a relative small number of techniques can be used in the measurement of adhesion. These techniques are not well validated and there is lack of studies where those methods are compared to each other. Here we have compared different commonly used methods to measure adhesion of bacteria; radioactive labelling, fluorescence tagging, and staining of bacteria. The methods were used to measure the adhesion of Escherichia coli and Salmonella enterica serovar Typhimurium to intestinal mucus. Moreover, selected probiotic strains were used to study whether probiotics or the adhesion method used affected the results. As a result, we show that the best reproducibility and sensitivity were obtained using radioactive labelling. With other methods, the sensitivity was too low due to poorly adhering bacteria and low signal-to-background ratio.
Collapse
Affiliation(s)
- Satu Vesterlund
- Department of Biochemistry and Food Chemistry, University of Turku, Itäinen Pitkäkatu 4A, 20014 Turku, Finland.
| | | | | | | |
Collapse
|
23
|
Aspiras MB, Ellen RP, Cvitkovitch DG. ComX activity ofStreptococcus mutansgrowing in biofilms. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09752.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Lun S, Willson PJ. Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 Streptococcus suis. J Microbiol Methods 2004; 56:401-12. [PMID: 14967232 DOI: 10.1016/j.mimet.2003.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 11/06/2003] [Accepted: 11/11/2003] [Indexed: 11/15/2022]
Abstract
We investigated the interaction between type 2 Streptococcus suis and swine phagocytes during infection of the natural host, by using green fluorescent protein (GFP) as a specific marker to observe the challenge organism. We compared the strength of the S. suis sly promoter (SP332) and the synthetic promoter (CP25) in driving GFP expression. Two GFP alleles, gfpP11 and gfpmut3*, were also compared. The two promoters and two alleles were efficiently compared using three different promoter-GFP gene combinations on a shuttle vector, which were transformed into S. suis strains SX332, SX932 or M2. Plasmid pSL6.81 has SP332 with gfpP11, pSL5.24 has SP332 with gfpmut3*, and pSL5.28 has CP25 with gfpmut3*. The transformants were fluorescent with green light when viewed with an epifluorescence microscope or during flow cytometry. The signal was also detected using a laser scanning confocal microscope. The GFP expression level varied and CP25 with gfpmut3* led to greatest expression. For optimizing GFP detection, fluorescence-based cell sorting was applied to SX332(pSL5.28) and the mean fluorescence intensity increased 25.9% after optimization. Fluorescence activated cell sorting (FACS)-based phagocytosis assay showed that, without opsonization, phagocytosis rates of SX332, SX932 and M2 by both neutrophils and monocytes were similar and low. After opsonization, the phagocytosis of M2 increased 10-fold while phagocytosis of SX332 and SX932 did not change. GFP-labeled S. suis was identified in fresh pig tonsil tissue 18 h after infection. The results of this study indicated that GFP was expressed in type 2 S. suis and GFP labeled S. suis could be used in phagocytosis and pathogenesis studies.
Collapse
Affiliation(s)
- Shichun Lun
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
25
|
Abstract
The demonstration that the green fluorescent protein (GFP) from the jellyfish Aequorea victoria required no jellyfish-specific cofactors and could be expressed as a fluorescent protein in heterologous hosts including both prokaryotes and eukaryotes sparked the development of GFP as one of the most common reporters in use today. Over the past several years, the utility of GFP as a reporter has been optimized through the isolation and engineering of variants with increased folding rates, different in vivo stabilities and colour variants with altered excitation and emission spectral properties. One of the great utilities of GFP is as a probe for characterizing spatial and temporal dynamics of gene expression, protein localization and protein-protein interactions in living cells. The innovative application of GFP as a reporter in bacteria has made a significant contribution to microbial cell biology. This review will highlight recent studies that demonstrate the potential of GFP for real-time analysis of gene expression, protein localization and the dynamics of signalling transduction pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Carolyn M Southward
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
26
|
Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev 2002; 66:486-505, table of contents. [PMID: 12209001 PMCID: PMC120797 DOI: 10.1128/mmbr.66.3.486-505.2002] [Citation(s) in RCA: 614] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.
Collapse
Affiliation(s)
- Paul E Kolenbrander
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA.
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Chia JS, Chang LY, Shun CT, Chang YY, Tsay YG, Chen JY. A 60-kilodalton immunodominant glycoprotein is essential for cell wall integrity and the maintenance of cell shape in Streptococcus mutans. Infect Immun 2001; 69:6987-98. [PMID: 11598074 PMCID: PMC100079 DOI: 10.1128/iai.69.11.6987-6998.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Accepted: 07/12/2001] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated previously by Western blotting that in naturally sensitized humans, the serum or salivary antibody response to Streptococcus mutans was directed predominantly to a protein antigen with a size of approximately 60-kDa. To identify this immunodominant antigen, specific serum antibodies were eluted from immunoblots and five positive clones with inserts ranging in length from 3 to 8 kb from identical chromosomal loci were obtained by screening a genomic expression library of Streptococcus mutans GS-5. Amino acid sequencing established the identity of this immunodominant antigen, a 60-kDa immunodominant glycoprotein (IDG-60), to be a cell wall-associated general stress protein GSP-781, which was originally predicted to have a molecular mass of approximately 45 kDa based on the derived nucleotide sequence. Discrepancy in the molecular mass was also observed in recombinant his-tagged IDG-60 (rIDG-60) expressed from Escherichia coli. Glycosylation, consisting of sialic acid, mannose galactose, and N-acetylgalactosamine, was detected by lectin binding to IDG-60 in cell wall extracts from S. mutans and rIDG-60 expressed in vivo or translated in vitro. Despite the presence of multiple Asn or Ser or Thr glycosylation sites, IDG-60 was resistant to the effect of N-glycosidase F and multiple O-glycosidase molecules but not to beta-galactosidase. Insertional inactivation of the gene encoding IDG-60, sagA, resulted in a retarded growth rate, destabilization of the cell wall, and pleiomorphic cell shape with multifold ingrowth of cell wall. In addition, distinct from the parental GS-5 strain, the isogenic mutant GS-51 was unable to survive the challenge of low pH and high osmotic pressure or high temperature. Expression of the wild-type gene in trans within GS-51 from plasmid pDL277 complemented the growth defect and restored normal cell shape. These results suggested that IDG-60 is essential for maintaining the integrity of the cell wall and the uniformity of cell shape, both of which are indispensable for bacteria survival under stress conditions.
Collapse
Affiliation(s)
- J S Chia
- Graduate Institute of Microbiology, College of Medicine National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
29
|
Aldsworth TG, MacFarlane TW. A novel in vitro model system to grow films of oral bacteria for the study of human tooth root surface caries. J Appl Microbiol 2001; 91:139-46. [PMID: 11442723 DOI: 10.1046/j.1365-2672.2001.01368.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To develop a simple and flexible novel in vitro model system to grow films of oral bacteria that could be used to study aspects of dental caries. METHODS AND RESULTS Standardized suspensions of bacteria were inoculated into Ultrafree-CL (Millipore) ultrafiltration units at various densities. These were incubated for varying time intervals with a range of carbon sources. The bacterial films reproducibly achieved between 107 and 108 cfu cm-2, irrespective of the number inoculated and with no significant changes for 14 d. However, Streptococcus mutans grew through membranes with pores of diameter greater than 0.1 microm after 6 d. Culture of films in sucrose or water for 6 d led to a decreased number of colony-forming units, but returning them to broth reversed this. CONCLUSION Reproducible films of oral bacteria can be cultured in Ultrafree-CL units. SIGNIFICANCE AND IMPACT OF THE STUDY This study has shown that Ultrafree-CL units can be used as a simple model system to grow biofilms that could be used for dental caries research.
Collapse
Affiliation(s)
- T G Aldsworth
- Department of Oral Sciences, Glasgow Dental Hospital and School, Glasgow, Scotland, UK.
| | | |
Collapse
|