1
|
Dannenmann M, Le Moigne A, Hofer C, Pernthaler J. Centimetre scale functional dispersal limitation of freshwater copiotrophs. Environ Microbiol 2024; 26:e16682. [PMID: 39128858 DOI: 10.1111/1462-2920.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
The freshwater microbiome harbours numerous copiotrophic bacteria that rapidly respond to elevated substrate concentrations. We hypothesized that their high centimetre-scale beta diversity in lake water translates into pronounced metabolic variability, and that a large fraction of microbial 'metabolic potential' originates from point sources such as fragile organic aggregates. Three experiments were conducted in pre-alpine Lake Zurich over the course of a harmful cyanobacterial bloom: Spatially explicit 9 ml 'syringe' samples were collected in situ at centimetre distances along with equally sized 'mixed' samples drawn from pre-homogenized lake water and incubated in BIOLOG EcoPlate substrate arrays. Fewer compounds promoted bacterial growth in the syringe than in the mixed samples, in particular during the pre- and late bloom periods. Community analysis of enrichments on three frequently utilized substrates revealed both pronounced heterogeneity and functional redundancy. Bacterial consortia had higher richness in mixed than in syringe samples and differed in composition. Members of the Enterobacter cloacae complex dominated the EcoPlate assemblages during the mid-bloom period irrespective of treatment or substrate. We conclude that small-scale functional dispersal limitation among free-living copiotrophs in lake water reduces local biotransformation potential, and that lacustrine blooms of harmful cyanobacteria can be environmental reservoirs for metabolically versatile potential pathogens.
Collapse
Affiliation(s)
- Marie Dannenmann
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Geological Sciences, Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Alizée Le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Cyrill Hofer
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hou X, Zhu Y, Wu L, Wang J, Yan W, Gao S, Wang Y, Ma Y, Wang Y, Peng Z, Tao Y, Tang Q, Yang J, Xiao L. The investigation of the physiochemical factors and bacterial communities indicates a low-toxic infectious risk of the Qiujiang River in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69135-69149. [PMID: 37131005 DOI: 10.1007/s11356-023-27144-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The overall water quality of urban rivers is closely related to the community structure and the physiochemical factors in them. In this study, the bacterial communities and physiochemical factors of the Qiujiang River, an important urban river in Shanghai, were explored. Water samples were collected from nine sites of the Qiujiang River on November 16, 2020. The water quality and bacterial diversity were studied through physicochemical detection, microbial culture and identification, luminescence bacteria method, and 16S rRNA Illumina MiSeq high-throughput sequencing technology. The water pollution of the Qiujiang River was quite serious with three water quality evaluation indexes, including Cd2+, Pb2+, and NH4+-N, exceeding the Class V standard set by the Environmental Quality Standards for Surface Water (China, GB3838-2002), while the luminescent bacteria test indicated low toxicity of nine sampling sites. Through 16S rRNA sequencing, a total of 45 phyla, 124 classes, and 963 genera were identified, in which Proteobacteria, Gammaproteobacteria, and Limnohabitans were the most abundant phylum, class, and genus, respectively. The Spearman correlation heatmap and redundancy analysis showed that the bacterial communities in the Qiujiang River were correlated with pH; the concentrations of K+, and NH4+-N, and the Limnohabitans were significantly correlated with the concentrations of K+, and NH4+-N in the Zhongyuan Road bridge segment. In addition, opportunistic pathogens Enterobacter cloacae complex and Klebsiella pneumoniae in the samples collected in the Zhongyuan Road bridge segment and Huangpu River segment, respectively, were successfully cultured. The Qiujiang River was a heavily polluted urban river. The bacterial community structure and diversity were greatly affected by the physiochemical factors of the Qiujiang River, and it displayed low toxicity while a relatively high infectious risk of intestinal and lung infectious diseases.
Collapse
Affiliation(s)
- Xiaochuan Hou
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yina Zhu
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ling Wu
- Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Jie Wang
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Wei Yan
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Songyu Gao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yi Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Yushi Ma
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhaoyun Peng
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ye Tao
- Administration Office for Undergraduates, Naval Medical University, Shanghai, 200433, China
| | - Qinglong Tang
- Central Medical District of Chinese, PLA General Hospital, Beijing, 100120, China
| | - Jishun Yang
- Naval Medical Center of PLA, Naval Medical University, Shanghai, 200052, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Liu J, Ding C, Zhang W, Wei Y, Zhou Y, Zhu W. Litter mixing promoted decomposition rate through increasing diversities of phyllosphere microbial communities. Front Microbiol 2022; 13:1009091. [PMID: 36425041 PMCID: PMC9678933 DOI: 10.3389/fmicb.2022.1009091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Decomposition of forest litter is an essential process for returning nutrients to the soil, which is crucial for preserving soil fertility and fostering the regular biological cycle and nutrient balance of the forest ecosystem. About 70% of the land-based forest litter is made up primarily of leaf litter. However, research on the complex effects and key determinants of leaf litter decomposition is still lacking. In this study, we examined the characteristics of nutrient release and microbial diversity structure during the decomposition of three types of litter in arid and semi-arid regions using 16S rRNA and ITS sequencing technology as well as nutrient content determination. It was revealed that the nutrient content and rate of decomposition of mixed litters were significantly different from those of single species. Following litter mixing, the richness and diversity of the microbial community on leaves significantly increased. It was determined that there was a significant correlation between bacterial diversity and content (Total N, Total P, N/P, and C/P). This study provided a theoretical framework for investigating the decomposition mechanism of mixed litters by revealing the microbial mechanism of mixed decomposition of litters from the microbial community and nutrient levels.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Changjun Ding,
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yawei Wei
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agriculture University, Shenyang, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Wu X, Wang J, Amanze C, Yu R, Li J, Wu X, Shen L, Liu Y, Yu Z, Zeng W. Exploring the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115765. [PMID: 35982566 DOI: 10.1016/j.jenvman.2022.115765] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues (TCMRs). Results suggested that TCMRs addition at up to 10% leads to a higher peak temperature (60.5 °C), germination index (GI) value (119.26%), and a greater reduction in total organic carbon (TOC) content (8.08%). 10% TCMRs significantly induced the fluctuation of bacterial community composition, as well as the fungal community in the thermophilic phase. The addition of 10% TCMRs enhanced the abundance of bacterial genera such as Acetobacter, Bacillus, and Brevundimonas, as well as fungal genera such as Chaetomium, Thermascus, and Coprinopsis, which accelerated lignocellulose degradation and humification degree. Conversely, the growth of Lactobacillus and Pseudomonas was inhibited by 10% TCMRs to weaken the acidic environment and reduce nitrogen loss. Metabolic function analysis revealed that 10% TCMRs promoted the metabolism of carbohydrate and amino acid, especially citrate cycle, glycolysis/gluconeogenesis, and cysteine and methionine metabolism. Redundancy analysis showed that the carbon to nitrogen (C/N) ratio was the most significant environmental factor influencing the dynamic of bacterial and fungal communities.
Collapse
Affiliation(s)
- Xiaoyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Jingshu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
5
|
Liu J, Wei Y, Yin Y, Zhu K, Liu Y, Ding H, Lei J, Zhu W, Zhou Y. Effects of Mixed Decomposition of Pinus sylvestris var. mongolica and Morus alba Litter on Microbial Diversity. Microorganisms 2022; 10:1117. [PMID: 35744635 PMCID: PMC9229243 DOI: 10.3390/microorganisms10061117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pinus sylvestris var. mongolica is widely planted in China as a windbreak and sand fixation tree. To improve the current situation of large-scale declines of forested areas planted as P. sylvestris var. mongolica monocultures, we investigated the biological and microbial effects of stand establishment using mixed tree species. The interactions during the mixed decomposition of the litter and leaves of different tree species are an important indicator in determining the relationships among species. In this experiment, a method of simulating the mixed decomposition of P. sylvestris var. mongolica and Morus alba litter under P. sylvestris var. mongolica forest was used to determine the total C, total N, and total P contents in the leaf litter, and the microbial structures were determined by using Illumina MiSeq high-throughput sequencing. It was found that with samples with different proportions of P. sylvestris var. mongolica and M. alba litters, the decomposition rate of P. sylvestris var. mongolica × M. alba litter was significantly higher than that of the pure P. sylvestris var. mongolica forest, and the microbial community and composition diversity of litter in a pure P. sylvestris var. mongolica forest could be significantly improved. The possibility of using M. alba as a mixed tree species to address the declines of pure P. sylvestris var. mongolica forest was verified to provide guidance for pure P. sylvestris var. mongolica forests by introducing tree species with coordinated interspecific relationships and creating a mixed forest.
Collapse
Affiliation(s)
- Jiaying Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
| | - Yawei Wei
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 112000, China
| | - You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Keye Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Yuting Liu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Hui Ding
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Jiawei Lei
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; (J.L.); (Y.W.); (Y.Y.); (K.Z.); (Y.L.); (H.D.); (J.L.)
- Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling 112000, China
| | - Yongbin Zhou
- Institute of Modern Agricultural Research, Dalian University, Dalian 116622, China
- Life Science and Technology College, Dalian University, Dalian 116622, China
| |
Collapse
|
6
|
Can Aggregate-Associated Organisms Influence the Fouling in a SWRO Desalination Plant? Microorganisms 2022; 10:microorganisms10040682. [PMID: 35456734 PMCID: PMC9032733 DOI: 10.3390/microorganisms10040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.
Collapse
|
7
|
Zhang Q, Wu Z, Zhao J, Wang G, Hao J, Wang S, Lin Y, Guan H, Zhang J, Jian S, Li A. Composition and Functional Characteristics and Influencing Factors of Bacterioplankton Community in the Huangshui River, China. Microorganisms 2021; 9:microorganisms9112260. [PMID: 34835386 PMCID: PMC8623840 DOI: 10.3390/microorganisms9112260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial community plays a key role in environmental and ecological processes of river ecosystems. Given the special climatic and geographical conditions, studying the compositional characteristics of microorganisms in highland rivers and the relationship between such microorganisms and water physicochemical factors is important for an in-depth understanding of microbial ecological mechanisms. In the present study, high-throughput sequencing was used to investigate and study the bacterioplankton community of the Huangshui River in the ecotone zone of the Qinghai Plateau and Loess Plateau. The results showed that the Huangshui River had significantly lower alpha diversity than the plain rivers. Despite the similarity in their environmental conditions, the main taxonomic compositions of the bacterial communities were distinct between the Huangshui River and polar regions (the Arctic and Antarctica). Proteobacteria accounted for the largest proportion (30.79–99.98%) of all the sequences, followed by Firmicutes (0–49.38%). Acidiphilium was the most numerous genera, which accounted for 0.03–86.16% of the assigned 16S reads, followed by Acidocella (0–95.9%), both belonging to Alphaproteobacteria. The diverse taxa of potential pathogens, such as Acinetobacter, Pseudomonas, and Aeromonas, were also identified. A principal coordinates analysis, coupled with a canonical correspondence analysis, showed spatial variations in the bacterial community composition. The water physical properties (e.g., Cr6+, total phosphorus, and CODMn); altitude; and land use (e.g., urban land cover and aquaculture) determined the distribution of the bacterioplankton composition. PICRUSt2 revealed that the overall functional profiles of the bacterial communities in different samples were similar, and our results suggested the potential health risks of water sources in this area. This work provided valuable insight into the composition of the plankton bacterial community and its relationship with the environmental factors in the Huangshui River in the ecotone zone of the Qinghai Plateau and Loess Plateau and a theoretical foundation for ecological health management.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
| | - Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Zhao
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining 810012, China; (J.Z.); (G.W.); (H.G.)
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining 810012, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining 810012, China; (J.Z.); (G.W.); (H.G.)
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining 810012, China
| | - Jingwen Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Guan
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining 810012, China; (J.Z.); (G.W.); (H.G.)
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining 810012, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266237, China;
| | - Shenglong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining 810012, China; (J.Z.); (G.W.); (H.G.)
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining 810012, China
- Correspondence: (S.J.); (A.L.); Tel.: +86-27-68780053 (A.L.)
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (Z.W.); (J.H.); (S.W.); (Y.L.)
- Correspondence: (S.J.); (A.L.); Tel.: +86-27-68780053 (A.L.)
| |
Collapse
|
8
|
Insights into Autotrophic Activities and Carbon Flow in Iron-Rich Pelagic Aggregates (Iron Snow). Microorganisms 2021; 9:microorganisms9071368. [PMID: 34201891 PMCID: PMC8305228 DOI: 10.3390/microorganisms9071368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Pelagic aggregates function as biological carbon pumps for transporting fixed organic carbon to sediments. In iron-rich (ferruginous) lakes, photoferrotrophic and chemolithoautotrophic bacteria contribute to CO2 fixation by oxidizing reduced iron, leading to the formation of iron-rich pelagic aggregates (iron snow). The significance of iron oxidizers in carbon fixation, their general role in iron snow functioning and the flow of carbon within iron snow is still unclear. Here, we combined a two-year metatranscriptome analysis of iron snow collected from an acidic lake with protein-based stable isotope probing to determine general metabolic activities and to trace 13CO2 incorporation in iron snow over time under oxic and anoxic conditions. mRNA-derived metatranscriptome of iron snow identified four key players (Leptospirillum, Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6-85.7%) encoding ecologically relevant pathways, including carbon fixation and polysaccharide biosynthesis. No transcriptional activity for carbon fixation from archaea or eukaryotes was detected. 13CO2 incorporation studies identified active chemolithoautotroph Ferrovum under both conditions. Only 1.0-5.3% relative 13C abundances were found in heterotrophic Acidiphilium and Acidocella under oxic conditions. These data show that iron oxidizers play an important role in CO2 fixation, but the majority of fixed C will be directly transported to the sediment without feeding heterotrophs in the water column in acidic ferruginous lakes.
Collapse
|
9
|
Grajal-Puche A, Murray CM, Kearley M, Merchant M, Nix C, Warner JK, Walker DM. Microbial Assemblage Dynamics Within the American Alligator Nesting Ecosystem: a Comparative Approach Across Ecological Scales. MICROBIAL ECOLOGY 2020; 80:603-613. [PMID: 32424717 DOI: 10.1007/s00248-020-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Understanding the ecological processes that shape species assemblage patterns is central to community ecology. The effects of ecological processes on assemblage patterns are scale-dependent. We used metabarcoding and shotgun sequencing to determine bacterial taxonomic and functional assemblage patterns among varying defined focal scales (micro-, meso-, and macroscale) within the American alligator (Alligator mississippiensis) nesting microbiome. We correlate bacterial assemblage patterns among eight nesting compartments within and proximal to alligator nests (micro-), across 18 nests (meso-), and between 4 geographic sampling sites (macro-), to determine which ecological processes may drive bacterial assemblage patterns within the nesting environment. Among all focal scales, bacterial taxonomic and functional richness (α-diversity) did not statistically differ. In contrast, bacterial assemblage structure (β-diversity) was unique across all focal scales, whereas functional pathways were redundant within nests and across geographic sites. Considering these observed scale-based patterns, taxonomic bacterial composition may be governed by unique environmental filters and dispersal limitations relative to microbial functional attributes within the alligator nesting environment. These results advance pattern-process dynamics within the field of microbial community ecology and describe processes influencing the American alligator nest microbiome.
Collapse
Affiliation(s)
| | - Christopher M Murray
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, 70402, USA
- Biology Department, Tennessee Technological University, Cookeville, TN, 38505, USA
| | - Matthew Kearley
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mark Merchant
- Department of Chemistry, McNeese State University, Lake Charles, LA, 70609, USA
| | - Christopher Nix
- Alabama Wildlife and Freshwater Fisheries Division, Montgomery, AL, 36130, USA
| | | | - Donald M Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
10
|
Fielding JJ, Croudace IW, Kemp AES, Pearce RB, Cotterill CJ, Langdon P, Avery R. Tracing lake pollution, eutrophication and partial recovery from the sediments of Windermere, UK, using geochemistry and sediment microfabrics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137745. [PMID: 32199357 DOI: 10.1016/j.scitotenv.2020.137745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Many lakes undergo anthropogenically driven eutrophication and pollution leading to decreased water and sediment quality. These effects can enhance seasonally changing lake redox conditions that may concentrate potentially toxic elements. Here we report the results of a multi-method geochemical and sediment microfabric analysis applied to reconstruct the history of cultural eutrophication and pollution of the North and South Basins of Windermere, UK. Eutrophication developed from the mid-19th to the earliest 20th centuries. Enhanced lake productivity is indicated by increased sedimentary δ13C, and increased pollution by a higher concentration of metals (Pb, Hg, and As) in the sediment, likely enhanced by incorporation and adsorption to settling diatom aggregates, preserved as sedimentary laminae. In the South Basin, increasing sediment δ15N values occur in step with Zn, Hg, and Cu, linking metal enrichment to isotopically heavy nitrate (N) from anthropogenic sources. From around 1930, decreases in Mn and Fe-rich laminae indicate reduced deep-water ventilation, whereas periods of sediment anoxia increased, being most severe in the deeper North Basin. Strongly reducing sediment conditions promoted Fe and Mn reduction and Pb-bearing barite formation, hitherto only described from toxic mine wastes and contaminated soils. From 1980 there was an increase in indicators of bottom water oxygenation, although not to before 1930. But in the South Basin, the continued impacts of sewage are indicated by elevated sediment δ15N. Imaging and X-ray microanalysis using scanning electron microscopy has shown seasonal-scale redox mineralisation of Mn, Fe, and Ba related to intermittent sediment anoxia. Elevated concentrations of these metals and As also occur in the surficial sediment and provide evidence for dynamic redox mobilisation of potentially toxic elements to the lake water. Concentrations of As (up to 80 ppm), exceed international Sediment Quality Standards. This process may become more prevalent in the future with climate change driving lengthened summer stratification.
Collapse
Affiliation(s)
- J James Fielding
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom; School of Geography and Environmental Science, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom.
| | - Ian W Croudace
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom
| | - Alan E S Kemp
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom
| | - Richard B Pearce
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom
| | - Carol J Cotterill
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh EH14 4AP, United Kingdom
| | - Peter Langdon
- School of Geography and Environmental Science, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Rachael Avery
- Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, United Kingdom; Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
11
|
Asaf S, Numan M, Khan AL, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 2020; 40:138-152. [PMID: 31906737 DOI: 10.1080/07388551.2019.1709793] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The species belonging to the Sphingomonas genus possess multifaceted functions ranging from remediation of environmental contaminations to producing highly beneficial phytohormones, such as sphingan and gellan gum. Recent studies have shown an intriguing role of Sphingomonas species in the degradation of organometallic compounds. However, the actual biotechnological potential of this genus requires further assessment. Some of the species from the genus have also been noted to improve plant-growth during stress conditions such as drought, salinity, and heavy metals in agricultural soil. This role has been attributed to their potential to produce plant growth hormones e.g. gibberellins and indole acetic acid. However, the current literature is scattered, and some of the important areas, such as taxonomy, phylogenetics, genome mapping, and cellular transport systems, are still being overlooked in terms of elucidation of the mechanisms behind stress-tolerance and bioremediation. In this review, we elucidated the prospective role and function of this genus for improved utilization during environmental biotechnology.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
12
|
Schweitzer-Natan O, Ofek-Lalzar M, Sher D, Sukenik A. Particle-Associated Microbial Community in a Subtropical Lake During Thermal Mixing and Phytoplankton Succession. Front Microbiol 2019; 10:2142. [PMID: 31572346 PMCID: PMC6753980 DOI: 10.3389/fmicb.2019.02142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ecosystem dynamics in monomictic lakes are characterized by seasonal thermal mixing and stratification. These physical processes bring about seasonal variations in nutrients and organic matter fluxes, affecting the biogeochemical processes that occur in the water column. Physical and chemical dynamics are generally reflected in seasonal structural changes in the phytoplankton and bacterio-plankton community. In this study, we analyzed, using 16S rRNA amplicon sequencing, the structure of the bacterial community associated with large particles (>20 μm) in Lake Kinneret (Sea of Galilee, Israel), and its associations to phytoplankton populations. The study was carried out during late winter and early spring, a highly dynamic period in terms of thermal mixing, nutrient availability, and shifts in phytoplankton composition. Structural changes in the bacterioplankton population corresponded with limnological variations in the lake. In terms of the entire heterotrophic community, the structural patterns of particle-associated bacteria were mainly correlated with abiotic factors such as pH, ammonia, water temperature and nitrate. However, analysis of microbial taxon-specific correlations with phytoplankton species revealed a strong potential link between specific bacterial populations and the presence of different phytoplankton species, such as the cyanobacterium Microcystis, as well as the dinoflagellates Peridinium and Peridiniopsis. We found that Brevundimonas, a common freshwater genus, and Bdellovibrio, a well-known Gram-negative bacteria predator, were positively associated to Microcystis, suggesting a potentially important role of these three taxa in the microbial ecology of the lake. Our results show that the dynamics of environmental abiotic conditions, rather than specific phytoplankton assemblages, are the main factors positively correlated with changes in the community structure as a whole. Nevertheless, some specific bacteria may interact and be linked with specific phytoplankton, which may potentially control the dynamic patterns of the microbial community.
Collapse
Affiliation(s)
- Orna Schweitzer-Natan
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
| |
Collapse
|
13
|
Wang S, Zhao D, Zeng J, Xu H, Huang R, Jiao C, Guo L. Variations of bacterial community during the decomposition of Microcystis under different temperatures and biomass. BMC Microbiol 2019; 19:207. [PMID: 31484494 PMCID: PMC6727399 DOI: 10.1186/s12866-019-1585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The decomposition of Microcystis can dramatically change the physicochemical properties of freshwater ecosystems. Bacteria play an important role in decomposing organic matters and accelerating the cycling of materials within freshwater lakes. However, actions of the bacterial community are greatly influenced by temperature and the amount of organic matter available to decompose during a bloom. Therefore, it is vital to understand how different temperatures and biomass levels affect the bacterial community during the decomposition of Microcystis. RESULTS Microcystis addition reduced the diversity of bacterial community. The composition of bacterial community differed markedly between samples with different biomass of Microcystis (no addition, low biomass addition: 0.17 g/L, and high biomass addition: 0.33 g/L). In contrast, temperature factor did not contribute much to the different bacterial community composition. Total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), ammonia nitrogen (NH4+-N) and oxidation-reduction potential (ORP) were the key measured environmental variables shaping the composition of bacterial community. CONCLUSIONS Decomposition of Microcystis changed the physicochemical characteristics of the water and controlled the diversity and composition of the bacterial community. Microcystis biomass rather than temperature was the dominant factor affecting the diversity and composition of the bacterial community.
Collapse
Affiliation(s)
- Shuren Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China.
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Congcong Jiao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Xikang Road 1, Nanjing, 210098, China
| | - Lin Guo
- Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX, 76129, USA
| |
Collapse
|
14
|
Viana F, Paz LC, Methling K, Damgaard CF, Lalk M, Schramm A, Lund MB. Distinct effects of the nephridial symbionts Verminephrobacter and Candidatus Nephrothrix on reproduction and maturation of its earthworm host Eisenia andrei. FEMS Microbiol Ecol 2019; 94:4768062. [PMID: 29272384 DOI: 10.1093/femsec/fix178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023] Open
Abstract
Verminephrobacter, the most common specific symbionts in the nephridia (excretory organs) of lumbricid earthworms, have been shown to improve reproduction of the garden earthworm Aporrectodea tuberculata under nutrient limitation. It is unknown how general this beneficial trait is in the Verminephrobacter-earthworm symbiosis, whether other nephridial symbionts also affect host fitness and what the mechanism of the fitness increase is. Here we report beneficial effects of Verminephrobacter and Candidatus Nephrothrix on life history traits of the compost worm Eisenia andrei, which in addition to these two symbionts also hosts Agromyces-like bacteria in its mixed nephridial community: while growth was identical between control, Verminephrobacter-free and aposymbiotic worms, control worms produced significantly more cocoons and offspring than both Verminephrobacter-free and aposymbiotic worms, confirming the reproductive benefit of Verminephrobacter in a second host with different ecology and feeding behavior. Furthermore, worms with Verminephrobacter and Ca. Nephrothrix, or with only Ca. Nephrothrix present, reached sexual maturity significantly earlier than aposymbiotic worms; this is the first evidence for a beneficial role of Ca. Nephrothrix in earthworms. Riboflavin content in cocoons and whole earthworms was unaffected by the presence or absence of nephridial symbionts, suggesting that nutritional supplementation with this vitamin does not play a major role in this symbiosis.
Collapse
Affiliation(s)
- Flávia Viana
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Laura-Carlota Paz
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Karen Methling
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Christian F Damgaard
- Section for Plant and Insect Ecology, Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
| | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark
| | - Marie B Lund
- Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Guo B, Manchester M, Luby T, Frigon D. Composition of heterotrophic specialized sub-guilds defined by a positive RNA and polyhydroxyalkanoate correlation in activated sludge. WATER RESEARCH 2018; 144:561-571. [PMID: 30081336 DOI: 10.1016/j.watres.2018.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 06/20/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Microbial heterotrophic guilds in activated sludge wastewater treatment systems have complex population structures and functions. A previously proposed heterotrophic-specialist model states that heterotrophs consist of sub-guilds specialized in consuming specific classes of compounds, either readily degradable substrate (RDS) or slowly degradable substrate (SDS) according to current mathematical modeling practices for wastewater treatment processes. It follows from metabolic considerations that the levels of RNA and polyhydroxyalkanoate (PHA) are correlated for strains of the same species growing in different environments; a conjecture previously tested. The proposed classification of heterotrophs into RDS or SDS consumers predicts that the same correlation would also be found across heterotrophic species in conventional activated sludge systems; this prediction was tested in the current study. The positive correlation between the RNA and PHA levels was observed in 9 conventional activated sludge plants in two independent sampling times and it was also found stable over a 6-month regular sampling period at one of these plants. Together, these results imply that the levels of RNA and PHA can be used to define heterotrophic-specialist sub-guilds. In order to gain insight in the species composition of the defined sub-guilds, flow cytometry cell sorting was used to further analyze one of the activated sludge samples. Four sorted sub-samples were obtained (high-RNA/high-PHA, low-RNA/high-PHA, high-RNA/low-PHA, and low-RNA/low-PHA), and the phylogenetic composition of each was determined using 16S rRNA gene amplicon pyrosequencing. Heterotrophic genera were identified across 12 phyla, and their representation in each sorted sub-sample showed that the high-RNA/high-PHA and low-RNA/low-PHA groups were most dissimilar. The enriched genera in these sorted sub-samples are suggested to represent the composition of heterotrophic-specialized sub-guilds defined by the kinetics of substrate consumption.
Collapse
Affiliation(s)
- Bing Guo
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada
| | - Marie Manchester
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; Story Environmental and Geomatics, 332 Main St, Haileybury, Ontario, P0J 1K0, Canada
| | - Theresa Luby
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada; Stantec, 200-325 25, Street SE, Calgary, Alberta, T2A 7H8, Canada
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
16
|
Bižić-Ionescu M, Ionescu D, Grossart HP. Organic Particles: Heterogeneous Hubs for Microbial Interactions in Aquatic Ecosystems. Front Microbiol 2018; 9:2569. [PMID: 30416497 PMCID: PMC6212488 DOI: 10.3389/fmicb.2018.02569] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
The dynamics and activities of microbes colonizing organic particles (hereafter particles) greatly determine the efficiency of the aquatic carbon pump. Current understanding is that particle composition, structure and surface properties, determined mostly by the forming organisms and organic matter, dictate initial microbial colonization and the subsequent rapid succession events taking place as organic matter lability and nutrient content change with microbial degradation. We applied a transcriptomic approach to assess the role of stochastic events on initial microbial colonization of particles. Furthermore, we asked whether gene expression corroborates rapid changes in carbon-quality. Commonly used size fractionated filtration averages thousands of particles of different sizes, sources, and ages. To overcome this drawback, we used replicate samples consisting each of 3–4 particles of identical source and age and further evaluated the consequences of averaging 10–1000s of particles. Using flow-through rolling tanks we conducted long-term experiments at near in situ conditions minimizing the biasing effects of closed incubation approaches often referred to as “the bottle-effect.” In our open flow-through rolling tank system, however, active microbial communities were highly heterogeneous despite an identical particle source, suggesting random initial colonization. Contrasting previous reports using closed incubation systems, expression of carbon utilization genes didn’t change after 1 week of incubation. Consequently, we suggest that in nature, changes in particle-associated community related to carbon availability are much slower (days to weeks) due to constant supply of labile, easily degradable organic matter. Initial, random particle colonization seems to be subsequently altered by multiple organismic interactions shaping microbial community interactions and functional dynamics. Comparative analysis of thousands particles pooled togethers as well as pooled samples suggests that mechanistic studies of microbial dynamics should be done on single particles. The observed microbial heterogeneity and inter-organismic interactions may have important implications for evolution and biogeochemistry in aquatic systems.
Collapse
Affiliation(s)
- Mina Bižić-Ionescu
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Danny Ionescu
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
17
|
Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of Ice-Algal Aggregate Export on the Connectivity of Bacterial Communities in the Central Arctic Ocean. Front Microbiol 2018; 9:1035. [PMID: 29875749 PMCID: PMC5974969 DOI: 10.3389/fmicb.2018.01035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/01/2018] [Indexed: 11/24/2022] Open
Abstract
In summer 2012, Arctic sea ice declined to a record minimum and, as a consequence of the melting, large amounts of aggregated ice-algae sank to the seafloor at more than 4,000 m depth. In this study, we assessed the composition, turnover and connectivity of bacterial and microbial eukaryotic communities across Arctic habitats from sea ice, algal aggregates and surface waters to the seafloor. Eukaryotic communities were dominated by diatoms, dinoflagellates and other alveolates in all samples, and showed highest richness and diversity in sea-ice habitats (∼400-500 OTUs). Flavobacteriia and Gammaproteobacteria were the predominant bacterial classes across all investigated Arctic habitats. Bacterial community richness and diversity peaked in deep-sea samples (∼1,700 OTUs). Algal aggregate-associated bacterial communities were mainly recruited from the sea-ice community, and were transported to the seafloor with the sinking ice algae. The algal deposits at the seafloor had a unique community structure, with some shared sequences with both the original sea-ice community (22% OTU overlap), as well as with the deep-sea sediment community (17% OTU overlap). We conclude that ice-algal aggregate export does not only affect carbon export from the surface to the seafloor, but may change microbial community composition in central Arctic habitats with potential effects for benthic ecosystem functioning in the future.
Collapse
Affiliation(s)
- Josephine Z. Rapp
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Christina Bienhold
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Boetius
- HGF-MPG Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM – Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
18
|
Srivastava A, Seo SH, Ko SR, Ahn CY, Oh HM. Bioflocculation in natural and engineered systems: current perspectives. Crit Rev Biotechnol 2018; 38:1176-1194. [DOI: 10.1080/07388551.2018.1451984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ankita Srivastava
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seong-Hyun Seo
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Wang K, Mao H, Li X. Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. BIORESOURCE TECHNOLOGY 2018; 249:527-535. [PMID: 29080516 DOI: 10.1016/j.biortech.2017.10.034] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/01/2017] [Accepted: 10/07/2017] [Indexed: 05/25/2023]
Abstract
The metabolic function of microbial community dominated organics and nutrients transformation in aerobic composting process. In this study, the metabolic characteristics of bacterial and fungal communities were evaluated in 60 days composting of sludge and pumice by using FUNGuild and PICRUSt, respectively. The results showed that microbial community structure and metabolic characteristics were distinctively different at four composting periods. Bacterial genes related to carbohydrate metabolisms decreased during the first 30 days, but bacterial sequences associated with oxidative phosphorylation and fatty acids synthesis were enhanced in curing phase. Most of fungal animal pathogen and plant pathogen disappeared after treatment, and the abundance of saprotroph fungi increased from 44.3% to 97.8%. Oxidation reduction potential (ORP) significantly increased from -28 to 175 mV through incubation. RDA analysis showed that ORP was a crucial factor on the succession of both bacterial and fungal communities in sludge composting system.
Collapse
Affiliation(s)
- Ke Wang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Hailong Mao
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
20
|
Kinh CT, Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, Terada A. Counter-diffusion biofilms have lower N 2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. WATER RESEARCH 2017; 124:363-371. [PMID: 28780360 DOI: 10.1016/j.watres.2017.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 07/23/2017] [Indexed: 06/07/2023]
Abstract
The goal of this study was to investigate the effectiveness of a membrane-aerated biofilm reactor (MABR), a representative of counter-current substrate diffusion geometry, in mitigating nitrous oxide (N2O) emission. Two laboratory-scale reactors with the same dimensions but distinct biofilm geometries, i.e., a MABR and a conventional biofilm reactor (CBR) employing co-current substrate diffusion geometry, were operated to determine depth profiles of dissolved oxygen (DO), nitrous oxide (N2O), functional gene abundance and microbial community structure. Surficial nitrogen removal rate was slightly higher in the MABR (11.0 ± 0.80 g-N/(m2 day) than in the CBR (9.71 ± 0.94 g-N/(m2 day), while total organic carbon removal efficiencies were comparable (96.9 ± 1.0% for MABR and 98.0 ± 0.8% for CBR). In stark contrast, the dissolved N2O concentration in the MABR was two orders of magnitude lower (0.011 ± 0.001 mg N2O-N/L) than that in the CBR (1.38 ± 0.25 mg N2O-N/L), resulting in distinct N2O emission factors (0.0058 ± 0.0005% in the MABR vs. 0.72 ± 0.13% in the CBR). Analysis on local net N2O production and consumption rates unveiled that zones for N2O production and consumption were adjacent in the MABR biofilm. Real-time quantitative PCR indicated higher abundance of denitrifying genes, especially nitrous oxide reductase (nosZ) genes, in the MABR versus the CBR. Analyses of the microbial community composition via 16S rRNA gene amplicon sequencing revealed the abundant presence of the genera Thauera (31.2 ± 11%), Rhizobium (10.9 ± 6.6%), Stenotrophomonas (6.8 ± 2.7%), Sphingobacteria (3.2 ± 1.1%) and Brevundimonas (2.5 ± 1.0%) as potential N2O-reducing bacteria in the MABR.
Collapse
Affiliation(s)
- Co Thi Kinh
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Tomoyuki Hori
- Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljoevej, 2800, Lyngby, Denmark
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
21
|
Krausfeldt LE, Tang X, van de Kamp J, Gao G, Bodrossy L, Boyer GL, Wilhelm SW. Spatial and temporal variability in the nitrogen cyclers of hypereutrophic Lake Taihu. FEMS Microbiol Ecol 2017; 93:3045885. [PMID: 28334116 DOI: 10.1093/femsec/fix024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/21/2017] [Indexed: 11/14/2022] Open
Abstract
Harmful cyanobacterial blooms (cyanoHABs) are a major threat to freshwater ecosystems worldwide. Evidence suggests that both nitrogen and phosphorus are important nutrients in the development and proliferation of blooms, yet much less is known about nitrogen cycling dynamics in these systems. To assess the potential nitrogen cycling function of the cyanoHAB community, surface water samples were collected in Lake Tai (Taihu), China over a 5-month bloom event in 2014. The expression of six nitrogen cycling genes (nifH, hzsA, nxrB, nrfA, amoA, nosZ) was surveyed using a targeted microarray with probes designed to provide phylogenetic information. N-Cycling gene expression varied spatially across Taihu, most notably near the mouth of the Dapu River. Expression of nifH was observed across the lake and attributable to both Proteobacteria and Cyanobacteria: Proteobacteria were major contributors to nifH signal near shore. Other N transformations such as anaerobic ammonia oxidation and denitrification were evident in the surface waters as well. Observations in this study highlight the potential importance of heterotrophic bacteria in N-cycling associated with cyanoHABs.
Collapse
Affiliation(s)
- Lauren E Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37919, USA
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jodie van de Kamp
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, Tasmania 7004, Australia
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Levente Bodrossy
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, Tasmania 7004, Australia
| | - Gregory L Boyer
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37919, USA
| |
Collapse
|
22
|
Zhao D, Xu H, Zeng J, Cao X, Huang R, Shen F, Yu Z. Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 2017; 93:3814240. [DOI: 10.1093/femsec/fix062] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/09/2017] [Indexed: 11/12/2022] Open
|
23
|
Paz LC, Schramm A, Lund MB. Biparental transmission of Verminephrobacter symbionts in the earthworm Aporrectodea tuberculata (Lumbricidae). FEMS Microbiol Ecol 2017; 93:3045886. [DOI: 10.1093/femsec/fix025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 11/13/2022] Open
|
24
|
Naz I, Hodgson D, Smith A, Marchesi J, Ahmed S, Avignone-Rossa C, Saroj DP. Effect of the chemical composition of filter media on the microbial community in wastewater biofilms at different temperatures. RSC Adv 2016; 6:104345-104353. [PMID: 28018581 PMCID: PMC5154295 DOI: 10.1039/c6ra21040f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/24/2016] [Indexed: 01/22/2023] Open
Abstract
This study investigates the microbial community composition in the biofilms grown on two different support media in fixed biofilm reactors for aerobic wastewater treatment, using next generation sequencing (NGS) technology. The chemical composition of the new type of support medium (TDR) was found to be quite different from the conventionally used support medium (stone). The analysis of 16S rRNA gene fragments recovered from the laboratory scale biofilm system show that biofilm support media and temperature conditions influence bacterial community structure and composition. Greater bacterial diversity was observed under each condition, primarily due to the large number of sequences available and sustenance of rare species. There were 6 phyla found, with the highest relative abundance shown by the phylum Proteobacteria (52.71%) followed by Bacteroidetes (33.33%), Actinobacteria (4.65%), Firmicutes, Verrucomicrobia (3.1%) and Chloroflex (>1%). The dataset showed 17 genera of bacterial populations to be commonly shared under all conditions, suggesting the presence of a core microbial community in the biofilms for wastewater treatment. However, some genera in the biofilms on TDR were observed in high proportions, which may be attributed to its chemical composition, explaining the improved level of wastewater treatment. The findings show that the structure of microbial communities in biofilm systems for wastewater treatment is affected by the properties of support matrix.
Collapse
Affiliation(s)
- Iffat Naz
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK. ; Department of Biology, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia; Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Douglas Hodgson
- Department of Microbial Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Ann Smith
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3XQ, UK
| | - Julian Marchesi
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3XQ, UK; Centre for Digestive and Gut Health, Imperial College London, London W2 1NY, UK
| | - Safia Ahmed
- Environmental Microbiology Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Devendra P Saroj
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
25
|
Russo DA, Couto N, Beckerman AP, Pandhal J. A Metaproteomic Analysis of the Response of a Freshwater Microbial Community under Nutrient Enrichment. Front Microbiol 2016; 7:1172. [PMID: 27536273 PMCID: PMC4971099 DOI: 10.3389/fmicb.2016.01172] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/14/2016] [Indexed: 11/25/2022] Open
Abstract
Eutrophication can lead to an uncontrollable increase in algal biomass, which has repercussions for the entire microbial and pelagic community. Studies have shown how nutrient enrichment affects microbial species succession, however details regarding the impact on community functionality are rare. Here, we applied a metaproteomic approach to investigate the functional changes to algal and bacterial communities, over time, in oligotrophic and eutrophic conditions, in freshwater microcosms. Samples were taken early during algal and cyanobacterial dominance and later under bacterial dominance. 1048 proteins, from the two treatments and two timepoints, were identified and quantified by their exponentially modified protein abundance index. In oligotrophic conditions, Bacteroidetes express extracellular hydrolases and Ton-B dependent receptors to degrade and transport high molecular weight compounds captured while attached to the phycosphere. Alpha- and Beta-proteobacteria were found to capture different substrates from algal exudate (carbohydrates and amino acids, respectively) suggesting resource partitioning to avoid direct competition. In eutrophic conditions, environmental adaptation proteins from cyanobacteria suggested better resilience compared to algae in a low carbon nutrient enriched environment. This study provides insight into differences in functional microbial processes between oligo- and eutrophic conditions at different timepoints and highlights how primary producers control bacterial resources in freshwater environments. The data have been deposited to the ProteomeXchange with identifier PXD004592.
Collapse
Affiliation(s)
- David A Russo
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield Sheffield, UK
| |
Collapse
|
26
|
Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Ricão Canelhas M, Eiler A, Bertilsson S. Are freshwater bacterioplankton indifferent to variable types of amino acid substrates? FEMS Microbiol Ecol 2016; 92:fiw005. [PMID: 26738554 DOI: 10.1093/femsec/fiw005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/13/2022] Open
Abstract
A wide range of carbon compounds sustain bacterial activity and growth in freshwater ecosystems and the amount and quality of these substrates influence bacterial diversity and metabolic function. Biologically labile low-molecular-weight compounds, such as dissolved free amino acids, are particularly important substrates and can fuel as much as 20% of the total heterotrophic production. In this study, we show that extensive laboratory incubations with variable amino acids as substrates caused only minimal differences in bacterial growth rate, growth yield, quantitative amino acid usage, community composition and diversity. This was in marked contrast to incubations under dark or light regimes, where significant responses were observed in bacterial community composition and with higher diversity in the dark incubations. While a few individual taxa still responded to amendment with specific amino acids, our results suggest that compositional shifts in the specific supply of amino acids and possibly also other labile organic substrates have a minor impact on heterotrophic bacterioplankton communities, at least in nutrient rich lakes and compared to other prevailing environmental factors.
Collapse
Affiliation(s)
- Monica Ricão Canelhas
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, SE-75236, Uppsala, Sweden
| |
Collapse
|
28
|
Application of Microalgae and Fungal-Microalgal Associations for Wastewater Treatment. FUNGAL APPLICATIONS IN SUSTAINABLE ENVIRONMENTAL BIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42852-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
29
|
Kanukollu S, Wemheuer B, Herber J, Billerbeck S, Lucas J, Daniel R, Simon M, Cypionka H, Engelen B. Distinct compositions of free-living, particle-associated and benthic communities of the Roseobacter group in the North Sea. FEMS Microbiol Ecol 2015; 92:fiv145. [PMID: 26607167 DOI: 10.1093/femsec/fiv145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The Roseobacter group is one of the predominant lineages in the marine environment. While most investigations focus on pelagic roseobacters, the distribution and metabolic potential of benthic representatives is less understood. In this study, the diversity of the Roseobacter group was characterized in sediment and water samples along the German/Scandinavian North Sea coast by 16S rRNA gene analysis and cultivation-based methods. Molecular analysis indicated an increasing diversity between communities of the Roseobacter group from the sea surface to the seafloor and revealed distinct compositions of free-living and attached fractions. Culture media containing dimethyl sulfide (DMS), dimethyl sulfonium propionate (DMSP) or dimethyl sulfoxide (DMSO) stimulated growth of roseobacters showing highest most probable numbers (MPN) in DMSO-containing dilutions of surface sediments (2.1 × 10(7) roseobacters cm(-3)). Twenty roseobacters (12 from sediments) were isolated from DMSP- and DMS-containing cultures. Sequences of the isolates represented 0.04% of all Bacteria and 4.7% of all roseobacters in the pyrosequencing dataset from sediments. Growth experiments with the isolate Shimia sp. SK013 indicated that benthic roseobacters are able to switch between aerobic and anaerobic utilization of organic sulfur compounds. This response to changing redox conditions might be an adaptation to specific environmental conditions on particles and in sediments.
Collapse
Affiliation(s)
- Saranya Kanukollu
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Bernd Wemheuer
- Georg-August-Universität Göttingen, Genomische und Angewandte Mikrobiologie, Institut für Mikrobiologie und Genetik, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Janina Herber
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Sara Billerbeck
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Judith Lucas
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Rolf Daniel
- Georg-August-Universität Göttingen, Genomische und Angewandte Mikrobiologie, Institut für Mikrobiologie und Genetik, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Meinhard Simon
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Heribert Cypionka
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| | - Bert Engelen
- Carl-von-Ossietzky Universität Oldenburg, Institut für Chemie und Biologie des Meeres, Carl-von-Ossietzky Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
30
|
Ionescu D, Bizic-Ionescu M, Khalili A, Malekmohammadi R, Morad MR, de Beer D, Grossart HP. A new tool for long-term studies of POM-bacteria interactions: overcoming the century-old Bottle Effect. Sci Rep 2015; 5:14706. [PMID: 26435525 PMCID: PMC4592964 DOI: 10.1038/srep14706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/07/2015] [Indexed: 12/05/2022] Open
Abstract
Downward fluxes of particulate organic matter (POM) are the major process for sequestering atmospheric CO2 into aquatic sediments for thousands of years. Budget calculations of the biological carbon pump are heavily based on the ratio between carbon export (sedimentation) and remineralization (release to the atmosphere). Current methodologies determine microbial dynamics on POM using closed vessels, which are strongly biased towards heterotrophy due to rapidly changing water chemistry (Bottle Effect). We developed a flow-through rolling tank for long term studies that continuously maintains POM at near in-situ conditions. There, bacterial communities resembled in-situ communities and greatly differed from those in the closed systems. The active particle-associated community in the flow-through system was stable for days, contrary to hours previously reported for closed incubations. In contrast to enhanced respiration rates, the decrease in photosynthetic rates on particles throughout the incubation was much slower in our system than in traditional ones. These results call for reevaluating experimentally-derived carbon fluxes estimated using traditional methods.
Collapse
Affiliation(s)
- Danny Ionescu
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, OT Neuglobsow, 16775, Stechlin, Germany
| | - Mina Bizic-Ionescu
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, OT Neuglobsow, 16775, Stechlin, Germany
| | - Arzhang Khalili
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Reza Malekmohammadi
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | | | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhuette 2, OT Neuglobsow, 16775, Stechlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469,10 Potsdam, Germany
| |
Collapse
|
31
|
Litter Breakdown and Microbial Succession on Two Submerged Leaf Species in a Small Forested Stream. PLoS One 2015; 10:e0130801. [PMID: 26098687 PMCID: PMC4476575 DOI: 10.1371/journal.pone.0130801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/25/2015] [Indexed: 02/01/2023] Open
Abstract
Microbial succession during leaf breakdown was investigated in a small forested stream in west-central Georgia, USA, using multiple culture-independent techniques. Red maple (Acer rubrum) and water oak (Quercus nigra) leaf litter were incubated in situ for 128 days, and litter breakdown was quantified by ash-free dry mass (AFDM) method and microbial assemblage composition using phospholipid fatty acid analysis (PLFA), ribosomal intergenic spacer analysis (RISA), denaturing gradient gel electrophoresis (DGGE), and bar-coded next-generation sequencing of 16S rRNA gene amplicons. Leaf breakdown was faster for red maple than water oak. PLFA revealed a significant time effect on microbial lipid profiles for both leaf species. Microbial assemblages on maple contained a higher relative abundance of bacterial lipids than oak, and oak microbial assemblages contained higher relative abundance of fungal lipids than maple. RISA showed that incubation time was more important in structuring bacterial assemblages than leaf physicochemistry. DGGE profiles revealed high variability in bacterial assemblages over time, and sequencing of DGGE-resolved amplicons indicated several taxa present on degrading litter. Next-generation sequencing revealed temporal shifts in dominant taxa within the phylum Proteobacteria, whereas γ-Proteobacteria dominated pre-immersion and α- and β-Proteobacteria dominated after 1 month of instream incubation; the latter groups contain taxa that are predicted to be capable of using organic material to fuel further breakdown. Our results suggest that incubation time is more important than leaf species physicochemistry in influencing leaf litter microbial assemblage composition, and indicate the need for investigation into seasonal and temporal dynamics of leaf litter microbial assemblage succession.
Collapse
|
32
|
Møller P, Lund MB, Schramm A. Evolution of the tripartite symbiosis between earthworms, Verminephrobacter and Flexibacter-like bacteria. Front Microbiol 2015; 6:529. [PMID: 26074907 PMCID: PMC4445045 DOI: 10.3389/fmicb.2015.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022] Open
Abstract
Nephridial (excretory organ) symbionts are widespread in lumbricid earthworms and the complexity of the nephridial symbiont communities varies greatly between earthworm species. The two most common symbionts are the well-described Verminephrobacter and less well-known Flexibacter-like bacteria. Verminephrobacter are present in almost all lumbricid earthworms, they are species-specific, vertically transmitted, and have presumably been associated with their hosts since the origin of lumbricids. Flexibacter-like symbionts have been reported from about half the investigated earthworms; they are also vertically transmitted. To investigate the evolution of this tri-partite symbiosis, phylogenies for 18 lumbricid earthworm species were constructed based on two mitochondrial genes, NADH dehydrogenase subunit 2 (ND2) and cytochrome c oxidase subunit I (COI), and compared to their symbiont phylogenies based on RNA polymerase subunit B (rpoB) and 16S rRNA genes. The two nephridial symbionts showed markedly different evolutionary histories with their hosts. For Verminephrobacter, clear signs of long-term host-symbiont co-evolution with rare host switching events confirmed its ancient association with lumbricid earthworms, likely dating back to their last common ancestor about 100 million years (MY) ago. In contrast, phylogenies for the Flexibacter-like symbionts suggested an ability to switch to new hosts, to which they adapted and subsequently became species-specific. Putative co-speciation events were only observed with closely related host species; on that basis, this secondary symbiosis was estimated to be minimum 45 MY old. Based on the monophyletic clustering of the Flexibacter-like symbionts, the low 16S rRNA gene sequence similarity to the nearest described species (<92%) and environmental sequences (<94.2%), and the specific habitat in the earthworm nephridia, we propose a new candidate genus for this group, Candidatus Nephrothrix.
Collapse
Affiliation(s)
- Peter Møller
- Section for Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| | - Marie B Lund
- Aarhus Institute of Advanced Studies, Aarhus University Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University Aarhus, Denmark
| |
Collapse
|
33
|
Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review. J Pharm Biomed Anal 2015; 106:25-36. [DOI: 10.1016/j.jpba.2014.11.040] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 01/13/2023]
|
34
|
Grenni P, Patrolecco L, Ademollo N, Di Lenola M, Barra Caracciolo A. Capability of the natural microbial community in a river water ecosystem to degrade the drug naproxen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13470-13479. [PMID: 25012207 DOI: 10.1007/s11356-014-3276-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
The present work aims at evaluating the ability of the River Tiber natural microbial community to degrade naproxen in water samples collected downstream from a wastewater treatment plant. For this purpose, different water microcosms were set up (microbiologically active vs sterile ones) and treated with naproxen (100 μg/L) alone or in the co-presence of gemfibrozil in order to evaluate if the co-presence of the latter had an influence on naproxen degradation. The experiment was performed in the autumn and was compared with the same experimental set performed in spring of the same year to highlight if seasonal differences in the river water influenced the naproxen degradation. Pharmaceutical concentrations and microbial analysis (total cell number, viability, and microbial community composition) were performed at different times in the degradation experiments. The overall results show that the natural microbial community in the river water had a key role in the naproxen degradation. In fact, although there was a transient negative effect on the natural microbial community in all the experiments (3 h after adding the pharmaceutical), the latter was able to degrade naproxen within about 40 days. On the contrary, no decrease in the pharmaceutical concentration was observed in the sterile river water. Moreover, the co-presence of the two drugs lengthened the naproxen lag phase. As regards the natural microbial community composition detected by Fluorescence in situ Hybridization, Alpha and Gamma-Proteobacteria increased when the pharmaceutical halved, suggesting their role in the degradation. This study shows that with the concentration studied, naproxen was degraded by the natural microbial populations collected from a river chronically contaminated by this pharmaceutical.
Collapse
Affiliation(s)
- Paola Grenni
- Water Research Institute, National Research Council of Italy, Via Salaria Km 29.300, Monterotondo St., 00015, Rome, Italy,
| | | | | | | | | |
Collapse
|
35
|
Bižić-Ionescu M, Zeder M, Ionescu D, Orlić S, Fuchs BM, Grossart HP, Amann R. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ Microbiol 2014; 17:3500-14. [DOI: 10.1111/1462-2920.12466] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Mina Bižić-Ionescu
- Max Planck Institute for Marine Microbiology; Bremen 28359 Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Stechlin 16775 Germany
| | - Michael Zeder
- Max Planck Institute for Marine Microbiology; Bremen 28359 Germany
- Technobiology GmbH; Rütiweidhalde 7a 6033 Buchrain Switzerland
| | - Danny Ionescu
- Max Planck Institute for Marine Microbiology; Bremen 28359 Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Stechlin 16775 Germany
| | | | | | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Stechlin 16775 Germany
- Institute for Biochemistry and Biology; Potsdam University; Potsdam 14469 Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Bremen 28359 Germany
| |
Collapse
|
36
|
Mini-review: A priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. ALGAL RES 2014. [DOI: 10.1016/j.algal.2013.11.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Martini S, Al Ali B, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C. Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 2013; 8:e66580. [PMID: 23818946 PMCID: PMC3688590 DOI: 10.1371/journal.pone.0066580] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Bacterial bioluminescence is commonly found in the deep sea and depends on environmental conditions. Photobacterium phosphoreum ANT-2200 has been isolated from the NW Mediterranean Sea at 2200-m depth (in situ temperature of 13°C) close to the ANTARES neutrino telescope. The effects of hydrostatic pressure on its growth and luminescence have been investigated under controlled laboratory conditions, using a specifically developed high-pressure bioluminescence system. The growth rate and the maximum population density of the strain were determined at different temperatures (from 4 to 37°C) and pressures (from 0.1 to 40 MPa), using the logistic model to define these two growth parameters. Indeed, using the growth rate only, no optimal temperature and pressure could be determined. However, when both growth rate and maximum population density were jointly taken into account, a cross coefficient was calculated. By this way, the optimum growth conditions for P. phosphoreum ANT-2200 were found to be 30°C and, 10 MPa defining this strain as mesophile and moderately piezophile. Moreover, the ratio of unsaturated vs. saturated cellular fatty acids was found higher at 22 MPa, in agreement with previously described piezophile strains. P. phosphoreum ANT-2200 also appeared to respond to high pressure by forming cell aggregates. Its maximum population density was 1.2 times higher, with a similar growth rate, than at 0.1 MPa. Strain ANT-2200 grown at 22 MPa produced 3 times more bioluminescence. The proposed approach, mimicking, as close as possible, the in situ conditions, could help studying deep-sea bacterial bioluminescence and validating hypotheses concerning its role into the carbon cycle in the deep ocean.
Collapse
Affiliation(s)
- Séverine Martini
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - Badr Al Ali
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - Marc Garel
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - David Nerini
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - Vincent Grossi
- Laboratoire de Géologie de Lyon, UMR5276 Université Lyon1, CNRS, Villeurbanne, France
| | - Muriel Pacton
- ETH Zürich, Geological Institute, Zürich, Switzerland
| | - Laurence Casalot
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - Philippe Cuny
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
| | - Christian Tamburini
- Aix Marseille Université, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, Marseille, France
- Université du Sud Toulon-Var, CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, La Garde, France
- * E-mail:
| |
Collapse
|
38
|
Zhou L, Li H, Zhang Y, Han S, Xu H. Development of genus-specific primers for better understanding the diversity and population structure of Sphingomonas in soils. J Basic Microbiol 2013; 54:880-8. [PMID: 23686867 DOI: 10.1002/jobm.201200679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/03/2013] [Indexed: 11/06/2022]
Abstract
Genus Sphingomonas has received increasing attentions due to its somewhat unique metabolic versatilities in the contaminated environment. However, due to the lack of genus-specific primers, the ecological significance of Sphingomonas in polluted soils has been rarely documented by 16S rDNA finger-printing methods. In this study, three genus-specific primer sets targeted at the 16S rRNA gene of Sphingomonas were developed and their specificities were tested with four contaminated soils from Shenfu petroleum-wastewater irrigation zone by constructing clone libraries, amplified ribosomal DNA restriction analysis (ARDRA) and sequencing the represented ARDRA patterns. Meanwhile, the newly designed primer sets and a previously reported primer set were compared, and the results showed that the newly developed primer set SA/429f-933r could detect a larger spectrum (90%) of Sphingomonas strains with higher specificity. Despite the superiority of primer set SA/429f-933r in specifically detecting Sphingomonas from contaminated soils, we cannot blink the fact that different primer sets preferentially amplified different dominant species. Therefore, two or more primer sets are recommended for evaluating the diversity and population structure of genus Sphingomonas. Additionally, a proportion (9.7%) of the cloned sequences discovered in this study were different from known Sphingomonas sequences, suggesting that new Sphingomonas sequences might present in soils from Shenfu irrigation zone.
Collapse
Affiliation(s)
- Lisha Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | | | | | | | | |
Collapse
|
39
|
Davidson SK, Powell R, James S. A global survey of the bacteria within earthworm nephridia. Mol Phylogenet Evol 2012; 67:188-200. [PMID: 23268186 DOI: 10.1016/j.ympev.2012.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022]
Abstract
Earthworms comprise 16 described families in the Crassiclitellata plus a few other minor groups. Microscopy studies of the early 20th century detected bacteria within the excretory organs, the nephridia, of species within a few of these families. More recent evidence for the consistent and specific association of bacteria with nephridia within the Lumbricidae has been well documented, but the presence and identity of nephridial bacteria among the rest of the Crassiclitellata families had not been explored. The study presented here aimed to identify members of Crassiclitellata families that harbor bacteria in their nephridia, and identify these bacteria based on 16S rRNA gene sequences. Eleven earthworm families were surveyed from countries of six continents, and two island nations. The results revealed members of four bacterial orders commonly occurred within nephridia of genera within nine Crassiclitellata families. Members of the bacterial phyla Bacteroidetes (order Sphingobacteriales), Betaproteobacteria (order Burkholderiales; family Comamonadaceae), and Alphaproteobacteria (orders Rhodospirillales and Rhizobiales) were detected in the nephridia of basal Crassiclitellata, as well as in derived families. Earthworm genera with meronephridia, multiple small nephridia per segment, lacked bacteria, whereas bacteria were often detected in holonephridia, single pairs of large nephridia with a distinct morphology and external excretory pore. The Acanthodrilidae members, a large derived family of earthworms, did not appear to possess nephridial bacteria regardless of nephridial form. Although earthworms from a variety of habitat types were sampled, there were no clear correlations of lifestyle with symbiont types, with the exception of the aquatic earthworms that contained bacteria unrelated to those in any other earthworms. The findings support an evolutionarily long association of bacteria within the Crassiclitellata, and suggest a contribution to nitrogen conservation for the earthworms.
Collapse
Affiliation(s)
- Seana K Davidson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-5014, USA.
| | | | | |
Collapse
|
40
|
The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA. World J Microbiol Biotechnol 2012; 29:759-74. [PMID: 23264132 DOI: 10.1007/s11274-012-1231-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
41
|
The phylogenetic structure of microbial biofilms and free-living bacteria in a small stream. Folia Microbiol (Praha) 2012; 58:235-43. [DOI: 10.1007/s12223-012-0201-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
42
|
Bouvier T, Del Giorgio PA. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): A quantitative review of published reports. FEMS Microbiol Ecol 2012; 44:3-15. [PMID: 19719646 DOI: 10.1016/s0168-6496(02)00461-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract Fluorescence in situ hybridization (FISH) is widely used to describe bacterial community composition and, to a lesser extent, to describe the physiological state of cells. One of the limitations of the technique is that the effectiveness of the detection of target cells appears to vary widely. Here, we present a quantitative review of published reports on the percentage of cells detected using the common EUB338 probe (%Eub) in aquatic ecosystems. The %Eub varies from 1 to 100% in the different published reports, with an average of 56%. There is a methodological component in this variation, with a significant effect of the fluorochrome type and the stringency conditions of the reaction. But there is also a strong environmental component, and the type of ecosystem and dominant phylogenetic group significantly influence %Eub. We argue that the optimization of the FISH protocol to describe the phylogenetic composition of bacterial assemblages will probably lead to techniques that are not effective to describe the physiological state of cells.
Collapse
Affiliation(s)
- Thierry Bouvier
- Dépt. des Sciences Biologiques, Université du Québec à Montréal, CP 8888, Succ. Centre Ville, Montréal, QC, Canada H3C 3P8
| | | |
Collapse
|
43
|
Devine SP, Pelletreau KN, Rumpho ME. 16S rDNA-based metagenomic analysis of bacterial diversity associated with two populations of the kleptoplastic sea slug Elysia chlorotica and its algal prey Vaucheria litorea. THE BIOLOGICAL BULLETIN 2012; 223:138-154. [PMID: 22983039 DOI: 10.1086/bblv223n1p138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The molluscan sea slug Elysia chlorotica is best known for its obligate endosymbiosis with chloroplasts (= kleptoplasty) from its algal prey Vaucheria litorea and its ability to sustain itself photoautotrophically for several months. This unusual photosynthetic sea slug also harbors an array of undescribed bacteria, which may contribute to the long-term success of the symbiosis. Here, we utilized 16S rDNA-based metagenomic analyses to characterize the microbial diversity associated with two populations of E. chlorotica from Halifax, Nova Scotia, Canada, and from Martha's Vineyard, Massachusetts, USA. Animals were examined immediately after collection from their native environments, after being starved of their algal prey for several months, and after being bred in the laboratory (second-generation sea slugs) to characterize the effect of varying environmental and culturing conditions on the associated bacteria. Additionally, the microbiome of the algal prey, laboratory-cultured V. litorea, was analyzed to determine whether the laboratory-bred sea slugs obtained bacteria from their algal food source during development. Bacterial profiles varied between populations and among all conditions except for the F2 laboratory-bred samples, which were similar in diversity and abundance, but not to the algal microbiome. Alpha-, beta-, and gamma-proteobacteria dominated all of the samples along with Actinobacteria, Bacilli, Flavobacteria, and Sphingobacteria. Bacteria capable of polysaccharide digestion and photosynthesis, as well as putative nitrogen fixation, vitamin B(12) production, and natural product biosynthesis were associated with the sea slug and algal samples.
Collapse
Affiliation(s)
- Susan P Devine
- University of Maine, Department of Molecular and Biomedical Sciences, Orono, Maine 04469, USA
| | | | | |
Collapse
|
44
|
Ling J, Dong JD, Wang YS, Zhang YY, Deng C, Lin L, Wu ML, Sun FL. Spatial variation of bacterial community structure of the Northern South China Sea in relation to water chemistry. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1669-1679. [PMID: 22707093 DOI: 10.1007/s10646-012-0941-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Spatial distribution, diversity and composition of bacterial communities of the northern South China Sea (SCS) surface water and the relationship with the in situ environmental chemistry were investigated. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was used to investigate the bacterial community structure. The DGGE gel showed that each sample harbored a distinct bacterial community structure and spatial variations of bacterial community composition among all samples were obviously. A total of 17 intensive bands were excised and the sequence analysis of these DGGE bands revealed that Proteobacteria were the dominant bacterial group of surface water in the north part of SCS. Results of the taxonomic analysis showed that the communities consisted of Proteobacteria (α-subdivision, β-subdivision, γ-subdivision), Actinobacteria, Cyanobacteria, Bacteroidetes and Firmicutes. Unweighted pair group method with arithmetic averages clustering of the sampling stations indicated that all stations were classified mainly based on geographical proximity. Canonical correspondence analysis (CCA) was employed to further investigate the relationships between DGGE band pattern and the environmental variables and the first two CCA ordination axes suggested that the structure of the bacterial community was significantly correlated with the variables of nitrate (F = 1.24, P < 0.05).
Collapse
Affiliation(s)
- Juan Ling
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dulla GFJ, Go RA, Stahl DA, Davidson SK. Verminephrobacter eiseniae type IV pili and flagella are required to colonize earthworm nephridia. THE ISME JOURNAL 2012; 6:1166-75. [PMID: 22170422 PMCID: PMC3358029 DOI: 10.1038/ismej.2011.183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/08/2022]
Abstract
The bacterial symbiont Verminephrobacter eiseniae colonizes nephridia, the excretory organs, of the lumbricid earthworm Eisenia fetida. E. fetida transfers V. eisenia into the egg capsule albumin during capsule formation and V. eiseniae cells migrate into the earthworm nephridia during embryogenesis, where they bind and persist. In order to characterize the mechanistic basis of selective tissue colonization, methods for site-directed mutagenesis and colonization competence were developed and used to evaluate the consequences of individual gene disruptions. Using these newly developed tools, two distinct modes of bacterial motility were shown to be required for V. eiseniae colonization of nascent earthworm nephridia. Flagella and type IV pili mutants lacked motility in culture and were not able to colonize embryonic earthworms, indicating that both twitching and flagellar motility are required for entrance into the nephridia.
Collapse
Affiliation(s)
- Glenn F J Dulla
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Ruth A Go
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Seana K Davidson
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
46
|
Besemer K, Peter H, Logue JB, Langenheder S, Lindström ES, Tranvik LJ, Battin TJ. Unraveling assembly of stream biofilm communities. ISME JOURNAL 2012; 6:1459-68. [PMID: 22237539 PMCID: PMC3400417 DOI: 10.1038/ismej.2011.205] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microbial biofilms assemble from cells that attach to a surface, where they develop into matrix-enclosed communities. Mechanistic insights into community assembly are crucial to better understand the functioning of natural biofilms, which drive key ecosystem processes in numerous aquatic habitats. We studied the role of the suspended microbial community as the source of the biofilm community in three streams using terminal-restriction fragment length polymorphism and 454 pyrosequencing of the 16S ribosomal RNA (rRNA) and the 16S rRNA gene (as a measure for the active and the bulk community, respectively). Diversity was consistently lower in the biofilm communities than in the suspended stream water communities. We propose that the higher diversity in the suspended communities is supported by continuous inflow from various sources within the catchment. Community composition clearly differed between biofilms and suspended communities, whereas biofilm communities were similar in all three streams. This suggests that biofilm assembly did not simply reflect differences in the source communities, but that certain microbial groups from the source community proliferate in the biofilm. We compared the biofilm communities with random samples of the respective community suspended in the stream water. This analysis confirmed that stochastic dispersal from the source community was unlikely to shape the observed community composition of the biofilms, in support of species sorting as a major biofilm assembly mechanism. Bulk and active populations generated comparable patterns of community composition in the biofilms and the suspended communities, which suggests similar assembly controls on these populations.
Collapse
|
47
|
Verminephrobacter aporrectodeae sp. nov. subsp. tuberculatae and subsp. caliginosae, the specific nephridial symbionts of the earthworms Aporrectodea tuberculata and A. caliginosa. Antonie van Leeuwenhoek 2011; 101:507-14. [PMID: 22041977 DOI: 10.1007/s10482-011-9659-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
Abstract
Clone library-based studies have shown that almost all lumbricid earthworm species harbour host-specific symbiotic bacteria belonging to the novel genus Verminephrobacter in their nephridia (excretory organs). To date the only described representative from this genus is Verminephrobacter eiseniae, the specific symbiont of the earthworm Eisenia fetida. In this study two novel rod-shaped, non-endosporeforming, betaproteobacterial symbionts were isolated from the nephridia of two closely related earthworm species. Both isolates were affiliated with the genus Verminephrobacter by 16S rRNA gene sequence analysis. Similarly to V. eiseniae, the two isolates grew aerobically with a preference for low oxygen concentrations on a range of sugars, fatty acids and amino acids and fermentatively on glucose and pyruvate. These phenotypes match well with the conditions reported or inferred for the nephridial environment. Based on 16S rRNA gene similarity, DNA-DNA hybridization value and phenotypic characteristics the two isolates are clearly distinct from V. eiseniae. Phenotypic characteristics could not clearly differentiate the two strains as separate species but a low DNA-DNA hybridization value of 57.3%, their earthworm host specificity, differing temperature ranges and pH optima suggest that they represent two subspecies of a novel species of Verminephrobacter. For this species, the name V. aporrectodeae sp. nov. is proposed, with the two subspecies V. aporrectodeae subsp. tuberculatae (type strain, At4(T) = DSM 21361(T) = LMG 25313(T)) and V. aporrectodeae subsp. caliginosae (type strain, Ac9(T) = DSM 21895(T) = LMG 25312(T)) isolated from the nephridia of the earthworms Aporrectodea tuberculata and A. caliginosa, respectively.
Collapse
|
48
|
Identification and targeted cultivation of abundant novel freshwater sphingomonads and analysis of their population substructure. Appl Environ Microbiol 2011; 77:7355-64. [PMID: 21873487 DOI: 10.1128/aem.05832-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Little is known with respect to bacterial population structures in freshwater environments. Using complementary culture-based, cloning, and high-throughput Illumina sequencing approaches, we investigated microdiverse clusters of bacteria that comprise members with identical or very similar 16S rRNA gene sequences. Two 16S rRNA phylotypes could be recovered by cultivation in low-nutrient-strength liquid media from two lakes of different trophic status. Both phylotypes were found to be physiologically active in situ throughout most of the year, as indicated by the presence of their rRNA sequences in the samples. Analyses of internal transcribed spacer (ITS1) sequences revealed the presence of seven different sequence types among cultured representatives and the cloned rrn fragments. Illumina sequencing yielded 8,576 ITS1 sequences that encompassed 15 major and numerous rare sequence types. The major ITS1 types exhibited distinct temporal patterns, suggesting that the corresponding Sphingomonadaceae lineages occupy different ecological niches. However, since strains of the same ITS1 type showed highly variable substrate utilization patterns, the potential mechanism of niche separation in Sphingomonadaceae cannot be explained by substrate utilization alone and may be related to other traits.
Collapse
|
49
|
Parveen B, Reveilliez JP, Mary I, Ravet V, Bronner G, Mangot JF, Domaizon I, Debroas D. Diversity and dynamics of free-living and particle-associatedBetaproteobacteriaandActinobacteriain relation to phytoplankton and zooplankton communities. FEMS Microbiol Ecol 2011; 77:461-76. [DOI: 10.1111/j.1574-6941.2011.01130.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
50
|
Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture. Appl Environ Microbiol 2010; 76:6156-63. [PMID: 20656874 DOI: 10.1128/aem.01455-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated predator-prey interactions in a model system consisting of the bacterivorous flagellate Poterioochromonas sp. strain DS and the freshwater bacterium Sphingobium sp. strain Z007. This bacterial strain tends to form a subpopulation of grazing-resistant microscopic flocs, presumably by aggregation. Enhanced formation of such flocs could be demonstrated in static batch culture experiments in the presence of the predator. The ratio of aggregates to single cells reached >0.1 after 120 h of incubation in an oligotrophic growth medium. The inoculation of bacteria into supernatants from cocultures of bacteria and flagellates (grown in oligotrophic or in rich media) also resulted in a substantially higher level of floc formation than that in supernatants from bacterial monocultures only. After separation of supernatants on a C(18) cartridge, the aggregate-inducing activity could be assigned to the 50% aqueous methanolic fraction, and further separation of this bioactive fraction could be achieved by high-pressure liquid chromatography. These results strongly suggest the involvement of one or several chemical factors in the induction of floc formation by Sphingobium sp. strain Z007 that are possibly released into the surrounding medium by flagellate grazing.
Collapse
|