1
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
2
|
Inteins in Science: Evolution to Application. Microorganisms 2020; 8:microorganisms8122004. [PMID: 33339089 PMCID: PMC7765530 DOI: 10.3390/microorganisms8122004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Inteins are mobile genetic elements that apply standard enzymatic strategies to excise themselves post-translationally from the precursor protein via protein splicing. Since their discovery in the 1990s, recent advances in intein technology allow for them to be implemented as a modern biotechnological contrivance. Radical improvement in the structure and catalytic framework of cis- and trans-splicing inteins devised the development of engineered inteins that contribute to various efficient downstream techniques. Previous literature indicates that implementation of intein-mediated splicing has been extended to in vivo systems. Besides, the homing endonuclease domain also acts as a versatile biotechnological tool involving genetic manipulation and control of monogenic diseases. This review orients the understanding of inteins by sequentially studying the distribution and evolution pattern of intein, thereby highlighting a role in genetic mobility. Further, we include an in-depth summary of specific applications branching from protein purification using self-cleaving tags to protein modification, post-translational processing and labelling, followed by the development of intein-based biosensors. These engineered inteins offer a disruptive approach towards research avenues like biomaterial construction, metabolic engineering and synthetic biology. Therefore, this linear perspective allows for a more comprehensive understanding of intein function and its diverse applications.
Collapse
|
3
|
Wang XJ, Dong YF, Jin X, Yang JT, Wang ZX. The application of gene splitting technique for controlling transgene flow in rice. Transgenic Res 2019; 29:69-80. [PMID: 31654191 DOI: 10.1007/s11248-019-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Controlling transgene flow in China is important, as this country is part of the center of origin of rice. A gene-splitting technique based on intein-mediated trans-splicing represents a new strategy for controlling transgene flow via biological measures. In this study, the G2-aroA gene which provides glyphosate tolerance was split into an N-terminal and a C-terminal region, which were then fused to intein N and intein C of the Ssp DnaE intein, ultimately forming EPSPSn:In and Ic:EPSPSc fusion genes, respectively. These fusion genes were subsequently transformed into the rice cultivar Zhonghua 11 via the Agrobacterium-mediated method. The two split gene fragments were then introduced into the same rice genome by genetic crossings. Glyphosate tolerance analysis revealed that the functional target protein was reconstituted by Ssp DnaE intein-mediated trans-splicing and that the resultant hybrid rice was glyphosate tolerant. The reassembly efficiency of the split gene fragments ranged from 67 to 91% at the molecular level, and 100% of the hybrid F1 progeny were glyphosate tolerant. Transgene flow experiments showed that when the split gene fragments are inserted into homologous chromosomes, the gene-splitting technique can completely avoid the escape of the target trait to the environment. This report is the first on the reassembly efficiency and effectiveness of transgene flow containment via gene splitting in rice. This study provides not only a new biological strategy for controlling rice transgene flow but also a new method for cultivating hybrid transgenic rice.
Collapse
Affiliation(s)
- Xu-Jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Yu-Feng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Xi Jin
- Department of Biochemistry, Baoding University, Baoding, 071000, China
| | - Jiang-Tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Zhi-Xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China.
| |
Collapse
|
4
|
Engineered Ssp DnaX inteins for protein splicing with flanking proline residues. Saudi J Biol Sci 2017; 26:854-859. [PMID: 31049014 PMCID: PMC6486613 DOI: 10.1016/j.sjbs.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 11/23/2022] Open
Abstract
Inteins are internal protein sequences capable of catalyzing a protein splicing reaction by self-excising from a precursor protein and simultaneously joining the flanking sequences with a peptide bond. Split inteins have separate pieces (N-intein and C-intein) that reassemble non-covalently to catalyze a protein trans-splicing reaction joining two polypeptides. Protein splicing has become increasingly useful tools in many fields of biological research and biotechnology. However, natural and engineered inteins have failed previously to function when being flanked by proline residue at the -1 or +2 positions, which limits general uses of inteins. In this study, different engineered inteins were tested. We found that engineered Ssp DnaX mini-intein and split inteins could carry out protein splicing with proline at the +2 positions or at both -1 and +2 positions. Under in vivo conditions in E. coli cells, the mini-intein, S1 split intein, and S11 split intein spliced efficiently, whereas the S0 split intein did not splice with proline at both -1 and +2 positions. The S1 and S11 split inteins also trans-spliced efficiently in vitro with proline at the +2 positions or at both -1 and +2 positions, but the S0 split intein trans-spliced inefficiently with proline at the +2 position and did not trans-splice with proline at both -1 and +2 positions. These findings contribute significantly to the toolbox of intein-based technologies by allowing the use of inteins in proteins having proline at the splicing point.
Collapse
|
5
|
Li Y. Split-inteins and their bioapplications. Biotechnol Lett 2015; 37:2121-37. [DOI: 10.1007/s10529-015-1905-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
|
6
|
Kim H, Siu KH, Raeeszadeh-Sarmazdeh M, Sun Q, Chen Q, Chen W. Bioengineering strategies to generate artificial protein complexes. Biotechnol Bioeng 2015; 112:1495-505. [DOI: 10.1002/bit.25637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Heejae Kim
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | | | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
7
|
Gressel J. Dealing with transgene flow of crop protection traits from crops to their relatives. PEST MANAGEMENT SCIENCE 2015; 71:658-667. [PMID: 24977384 DOI: 10.1002/ps.3850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
Genes regularly move within species, to/from crops, as well as to their con- specific progenitors, feral and weedy forms ('vertical' gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non-transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with.
Collapse
|
8
|
Wood DW, Camarero JA. Intein applications: from protein purification and labeling to metabolic control methods. J Biol Chem 2014; 289:14512-9. [PMID: 24700459 DOI: 10.1074/jbc.r114.552653] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery of inteins in the early 1990s opened the door to a wide variety of new technologies. Early engineered inteins from various sources allowed the development of self-cleaving affinity tags and new methods for joining protein segments through expressed protein ligation. Some applications were developed around native and engineered split inteins, which allow protein segments expressed separately to be spliced together in vitro. More recently, these early applications have been expanded and optimized through the discovery of highly efficient trans-splicing and trans-cleaving inteins. These new inteins have enabled a wide variety of applications in metabolic engineering, protein labeling, biomaterials construction, protein cyclization, and protein purification.
Collapse
Affiliation(s)
- David W Wood
- From the Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210 and
| | - Julio A Camarero
- the Departments of Pharmacology and Pharmaceutical Sciences and Department of Chemistry, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
9
|
Topilina NI, Mills KV. Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 2014; 5:5. [PMID: 24490831 PMCID: PMC3922620 DOI: 10.1186/1759-8753-5-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/07/2014] [Indexed: 01/27/2023] Open
Abstract
Intein-mediated protein splicing has become an essential tool in modern biotechnology. Fundamental progress in the structure and catalytic strategies of cis- and trans-splicing inteins has led to the development of modified inteins that promote efficient protein purification, ligation, modification and cyclization. Recent work has extended these in vitro applications to the cell or to whole organisms. We review recent advances in intein-mediated protein expression and modification, post-translational processing and labeling, protein regulation by conditional protein splicing, biosensors, and expression of trans-genes.
Collapse
Affiliation(s)
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, MA 01610, USA.
| |
Collapse
|
10
|
Lin Y, Li M, Song H, Xu L, Meng Q, Liu XQ. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins. PLoS One 2013; 8:e59516. [PMID: 23593141 PMCID: PMC3620165 DOI: 10.1371/journal.pone.0059516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/30/2022] Open
Abstract
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Mengmeng Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
| | - Huiling Song
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lingling Xu
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, P.R. China
- * E-mail: (QM); (XQL)
| | - Xiang-Qin Liu
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (QM); (XQL)
| |
Collapse
|
11
|
Abstract
A bacterial strain S9-1capable of degrading sulfonylurea herbicide pyrazosulfuron-ethyl (PSE) was isolated from contaminated soil through the enrichment incubation method. Based on morphology, colony and cultural properties, physiological and biochemical characteristics, living-cell absorption spectra, internal photosynthetic membrane, and phylogenetics of its 16S rRNA gene sequence, S9-1was preliminarily identified as belonging to the genus Rhodopseudomonas, a group of photosynthetic bacteria (PSB). The effects of PSE concentration, pH, and temperature on biodegradation were examined. The degradation rate was found to decrease with increasing PSE concentration. Optimal growth pH and temperature were found to be 7.0 and 30°C, respectively. The strain was able to degrade 47.51% of PSE at a concentration of 100 mg ml-1after 7 days of incubation at 30°C and could tolerate 800 mg ml-1PSE. S9-1was also able to completely co-metabolically transform 100 mg ml-1PSE at 30°C, pH 7.0, and 7500 lux in 15 days. As the concentration of PSE increased, the degradation process took longer to complete. The fragment encoding acetolactate synthase (ALS) gene from S9-1was cloned and sequenced. Comparison of deduced amino acid sequences was implemented, and the conserved sites were analyzed. To our knowledge, this is the first report of PSB in PSE biodegradation. These results highlight the potential of this bacterium as a detoxifying agent for use with PSE-contaminated soil and wastewater.
Collapse
|
12
|
Appleby-Tagoe JH, Thiel IV, Wang Y, Wang Y, Mootz HD, Liu XQ. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution. J Biol Chem 2011; 286:34440-7. [PMID: 21832069 DOI: 10.1074/jbc.m111.277350] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inteins are internal protein sequences that post-translationally self-excise and splice together the flanking sequences, the so-called exteins. Natural and engineered inteins have been used in many practical applications. However, inteins are often inefficient or inactive when placed in a non-native host protein and may require the presence of several amino acid residues of the native exteins, which will then remain as a potential scar in the spliced protein. Thus, more general inteins that overcome these limitations are highly desirable. Here we report sequential directed evolution as a new approach to produce inteins with such properties. Random mutants of the Ssp (Synechocystis sp. PCC 6803) DnaB mini-intein were inserted into the protein conferring kanamycin resistance at a site where the parent intein was inactive for splicing. The mutants selected for splicing activity were further improved by iterating the procedure for two more cycles at different positions in the same protein. The resulting improved inteins showed high activity in the positions of the first rounds of selection, in multiple new insertion sites, and in different proteins. One of these inteins, the M86 mutant, which accumulated 8 amino acid substitutions, was also biochemically characterized in an artificially split form with a chemically synthesized N-terminal intein fragment consisting of 11 amino acids. When compared with the unevolved split intein, it exhibited an ∼60-fold increased rate in the protein trans-splicing reaction and a K(d) value for the interaction of the split intein fragments improved by an order of magnitude. Implications on the intein structure-function, practical application, and evolution are discussed.
Collapse
Affiliation(s)
- Julia H Appleby-Tagoe
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Kempe K, Rubtsova M, Gils M. Intein-mediated protein assembly in transgenic wheat: production of active barnase and acetolactate synthase from split genes. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:283-97. [PMID: 19222807 DOI: 10.1111/j.1467-7652.2008.00399.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Engineering traits by the assembly of non-functional gene products is a promising tool for modern plant biotechnology. In this article, we describe the establishment of male sterility and herbicide resistance in wheat (Triticum aestivum) by complementing inactive precursor protein fragments through a split intein system. N- and C-terminal fragments of a barnase gene from Bacillus amyloliquifaciens were fused to intein sequences from the Synechocystis sp. gene DnaB and delivered into the wheat genome via biolistic particle bombardment. Both barnase fragments were expressed under the control of a tapetum-specific promoter. High efficiency of the split barnase system was achieved by introducing GGGGS linkers between the fusion domains of the assembled protein. Depending on the vector version that was transformed, up to 51% of primary transformed plants produced sterile pollen. In the F(1) progeny, the male-sterile phenotype segregated with both barnase gene fragments. Expression of the cytotoxic barnase in the tapetum did not apparently affect the vegetative phenotype and remained stable under increased temperatures. In addition, the reconstitution of sulphonylurea resistance was achieved by DnaE intein-mediated assembly of a mutated acetolactate synthase (ALS) protein from rice. The impacts of the technical advances revealed in this study on the concepts for trait control, transgene containment and hybrid breeding are discussed.
Collapse
Affiliation(s)
- Katja Kempe
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, Corrensstr. 3, 06466 Gatersleben, Germany
| | | | | |
Collapse
|
14
|
Gils M, Marillonnet S, Werner S, Grützner R, Giritch A, Engler C, Schachschneider R, Klimyuk V, Gleba Y. A novel hybrid seed system for plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:226-35. [PMID: 18086236 DOI: 10.1111/j.1467-7652.2007.00318.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A two-component hybrid seed system has been developed that is broadly applicable and provides for effective generation and maintenance of the male-sterile parent, hybrid seed production and full restoration of fertility in the hybrid seed. The technology is based on the functional interaction of two loci that are inserted in the same position on two homologous chromosomes, and thus are 'linked in repulsion', and that jointly code for male sterility and herbicide resistance, both traits being expressed in heterozygous plants only. The localization to the same locus on a chromosome is achieved by the genetic transformation of plants with a construct containing both genetic elements (loci), and subsequent derivatization from the primary pro-locus of the two precursor lines using site-specific deletions. The functional interaction of the two loci is achieved through intein-based trans-splicing of two pairs of complementary protein fragments that provide for male sterility and herbicide resistance. Unlike the hybrid seed systems that are currently in use, the technology relies on the genetic modification of just one parent, and is therefore much simpler to develop and use. Arabidopsis has been used for the proof of principle presented here, but the essential elements of the technology are generic and have been shown to work in many crop species.
Collapse
Affiliation(s)
- Mario Gils
- Nordsaat Saatzucht GmbH, Biozentrum Halle, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dun BQ, Wang XJ, Lu W, Zhao ZL, Hou SN, Zhang BM, Li GY, Evans TC, Xu MQ, Lin M. Reconstitution of glyphosate resistance from a split 5-enolpyruvyl shikimate-3-phosphate synthase gene in Escherichia coli and transgenic tobacco. Appl Environ Microbiol 2007; 73:7997-8000. [PMID: 17951442 PMCID: PMC2168149 DOI: 10.1128/aem.00956-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 10/10/2007] [Indexed: 11/20/2022] Open
Abstract
A highly N-phosphonomethylglycine (glyphosate)-resistant Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) was mapped to identify potential split sites using a transposon-based linker-scanning procedure. Intein-mediated protein complementation was used to reconstitute glyphosate resistance from the genetically divided G2 EPSPS gene in Escherichia coli strain ER2799 and transgenic tobacco.
Collapse
Affiliation(s)
- Bao-Qing Dun
- Biotechnology Research Institute, Chinese Academy of Agriculture Sciences, Beijing 100081, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang J, Henry-Smith TV, Qi M. Functional analysis of the split Synechocystis DnaE intein in plant tissues by biolistic particle bombardment. Transgenic Res 2006; 15:583-93. [PMID: 16830226 DOI: 10.1007/s11248-006-9004-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The DnaE intein of Synechocystis sp. PCC6803 (Ssp DnaE intein) is the first split intein identified in nature. Its N-terminal fragment (Int-n) is attached to the end of the N-terminal half of the DnaE protein (DnaE-n) to form the precursor DnaE-n/Int-n, while the C-terminal fragment (Int-c) precedes the C-terminal half of the DnaE protein (DnaE-c) to form the precursor Int-c/DnaE-c. Int-n and Int-c fragments in the separate precursors catalyze, in concert, a protein trans-splicing process to splice the flanking DnaE-n and DnaE-c into a functional catalytic subunit of DNA polymerase III. They then release themselves from the precursors. Previously, the Ssp DnaE intein has been used to reconstitute a protein trans-splicing mechanism in stably transformed Arabidopsis thaliana, resulting in successful reassembly of an intact and functional GUS from two halves of a split GUS protein. In this report, transient expression using a biolistic particle bombardment approach is described for functional analysis of Ssp DnaE intein. Analyses confirmed that the Ssp DnaE intein could catalyze protein trans-splicing not only in model plants but also in monocot and dicot crops. It also demonstrated that when up to 45 amino acid residues were removed from the C-terminus of the Int-n fragment, the Int-n fragment was still able to function in the protein trans-splicing process.
Collapse
Affiliation(s)
- Jianjun Yang
- Central Research and Development, E. I. DuPont de Nemours & Co., Experimental Station, Wilmington, DE 19880, USA.
| | | | | |
Collapse
|
17
|
Dun B, Lu W, Zhang W, Ping S, Wang X, Chen M, Xu Y, Jin D, Wang J, Zhao Z, Liang A, Hou S, Xu MQ, Lin M. Reconstruction of enzymatic activity from split genes encoding glyphosate-tolerant EPSPS protein of Psedomonas fluorescens G2 strain by intein mediated protein complementation. CHINESE SCIENCE BULLETIN-CHINESE 2006. [DOI: 10.1007/s11434-006-2017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Khan MS, Khalid AM, Malik KA. Intein-mediated protein trans-splicing and transgene containment in plastids. Trends Biotechnol 2005; 23:217-20. [PMID: 15865996 DOI: 10.1016/j.tibtech.2005.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transgenes in plastids are contained by stringent maternal inheritance in most cultivated plant species and their expression yields high levels of protein with bona fide structure. Nevertheless, transfer of plastid genes to the nucleus has been reported, with implications for transgene containment. The significance of these transfers will depend on the likelihood that they will become functional nuclear genes. Recently a novel approach, intein-mediated protein trans-splicing, has been demonstrated promising to yield transgenic plants with greatly reduced risk of genetic outcrossing.
Collapse
Affiliation(s)
- Muhammad Sarwar Khan
- National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad 38000, Pakistan.
| | | | | |
Collapse
|
19
|
Evans TC, Xu MQ, Pradhan S. Protein splicing elements and plants: from transgene containment to protein purification. ANNUAL REVIEW OF PLANT BIOLOGY 2005; 56:375-92. [PMID: 15862101 DOI: 10.1146/annurev.arplant.56.032604.144242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Protein splicing elements, termed inteins, have been discovered in all the domains of life. Basic research on inteins has led to a greater understanding of how they mediate the protein splicing process. Because inteins are natural protein engineering elements they have been harnessed for use in a number of applications, including protein purification, protein semisynthesis, and in vivo and in vitro protein modifications. This review focuses on the use of inteins in plants. A split-gene technique utilizes inteins to reconstitute the activity of a transgene product with the goal of limiting the spread of transgenes from a genetically modified plant to a weedy relative. Furthermore, merging the intein tag for protein purification with the large protein yields possible with plants has the potential to produce pharmaceutically important proteins. Finally, relevant techniques that may be used in plants in the future are discussed.
Collapse
Affiliation(s)
- Thomas C Evans
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA.
| | | | | |
Collapse
|
20
|
Chin HG, Kim GD, Marin I, Mersha F, Evans TC, Chen L, Xu MQ, Pradhan S. Protein trans-splicing in transgenic plant chloroplast: reconstruction of herbicide resistance from split genes. Proc Natl Acad Sci U S A 2003; 100:4510-5. [PMID: 12671070 PMCID: PMC153586 DOI: 10.1073/pnas.0736538100] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Indexed: 11/18/2022] Open
Abstract
Inteins are intervening protein sequences that undergo self-excision from a precursor protein with concomitant joining of the flanking sequences. Here, we demonstrate intein trans-splicing in Nicotiana tabacum chloroplasts by using the naturally split Ssp DnaE intein. Trans-splicing occurred whether both intein fragments were encoded in the chloroplast or were separated into the chloroplast and nuclear genomes. A biolistic approach was used to integrate two fusion genes, one encoding aminoglycoside-3-adenyltransferase (aadA) and the first 123 aa of the Ssp DnaE intein (In) and the other encoding 36 C-terminal amino acid residues of the Ssp DnaE intein (Ic) and soluble modified green fluorescent protein (smGFP) into N. tabacum plastids. Expression of these gene fragments in the chloroplast resulted in ligated aadA-smGFP due to In-Ic-mediated trans-splicing. Furthermore, an N-terminal portion of the herbicide resistance gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) containing a chloroplast localization signal fused to In (EPSPSn-In) was integrated into the nuclear DNA of N. tabacum by using Agrobacterium tumefaciens-mediated transformation. The remaining EPSPS gene fragment (EPSPSc) fused to Ic (Ic-EPSPSc) was integrated into the chloroplast genome by homologous recombination. Western blot analysis of cell extracts from these plants showed a full-length EPSPS, demonstrating that the EPSPSn-In gene product migrated to the chloroplast and underwent trans-splicing. Furthermore, these transgenic plants displayed improved resistance to the herbicide N-(phosphonomethyl)glycine (glyphosate) when compared with wild-type N. tabacum.
Collapse
|
21
|
Yang J, Fox GC, Henry-Smith TV. Intein-mediated assembly of a functional beta-glucuronidase in transgenic plants. Proc Natl Acad Sci U S A 2003; 100:3513-8. [PMID: 12629210 PMCID: PMC152324 DOI: 10.1073/pnas.0635899100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DnaE intein in Synechocystis sp. strain PCC6803 is the first and only naturally split intein that has been identified so far. It is capable of catalyzing a protein trans-splicing mechanism to assemble a mature protein from two separate precursors. Therefore, it is a powerful tool for protein modification and engineering. Inteins have not been identified, nor have intein-mediated protein splicing reactions been demonstrated, in plant cells. In this paper, we describe the use of the Ssp DnaE split intein in transgenic plants for reconstitution of a protein trans-splicing reaction. We have synthesized artificial genes that encode for N-terminal half (Int-n) and C-terminal half (Int-c) fragments of Ssp DnaE split intein and divided beta-glucuronidase (GUS) gene to encode GUS-n and GUS-c parts of the enzyme as reporter. The in-frame fusions of GUSn/Intn and Intc/GUSc were constructed and transfected into Arabidopsis. We have observed in vivo reassembly of functional beta-glucuronidase when both GUSn/Intn and Intc/GUSc constructs were introduced into the same Arabidopsis genome either by cotransformation or through genetic crossing, hereby signifying an intein-mediated protein trans-splicing mechanism reconstituted in plant cells.
Collapse
Affiliation(s)
- Jianjun Yang
- Central Research and Development, E. I. DuPont de Nemours & Co. Experimental Station, Wilmington, DE 19880-0402, USA.
| | | | | |
Collapse
|
22
|
Gogarten JP, Senejani AG, Zhaxybayeva O, Olendzenski L, Hilario E. Inteins: structure, function, and evolution. Annu Rev Microbiol 2003; 56:263-87. [PMID: 12142479 DOI: 10.1146/annurev.micro.56.012302.160741] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inteins are genetic elements that disrupt the coding sequence of genes. However, in contrast to introns, inteins are transcribed and translated together with their host protein. Inteins appear most frequently in Archaea, but they are found in organisms belonging to all three domains of life and in viral and phage proteins. Most inteins consist of two domains: One is involved in autocatalytic splicing, and the other is an endonuclease that is important in the spread of inteins. This review focuses on the evolution and technical application of inteins and only briefly summarizes recent advances in the study of the catalytic activities and structures of inteins. In particular, this review considers inteins as selfish or parasitic genetic elements, a point of view that explains many otherwise puzzling aspects of inteins.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, 75 North Eagleville Road, Storrs 06269-3044, USA.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Thomas C Evans
- New England Biolabs, Inc., 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | | |
Collapse
|
24
|
Ghosh I, Sun L, Xu MQ. Zinc inhibition of protein trans-splicing and identification of regions essential for splicing and association of a split intein*. J Biol Chem 2001; 276:24051-8. [PMID: 11331276 DOI: 10.1074/jbc.m011049200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two important aspects of protein splicing were investigated by employing the trans-splicing intein from the dnaE gene of Synechocystis sp. PCC6803. First, we demonstrated that both protein splicing and cleavage at the N-terminal splice junction were inhibited in the presence of zinc ion. The trans-splicing reaction was partially blocked at a concentration of 1-10 microm Zn(2+) and completely inhibited at 100 microm Zn(2+); the inhibition by zinc was reversed in the presence of ethylenediaminetetraacetic acid. We propose that inactivation of Cys(160) at the C-terminal splice junction by the chelation of zinc affects both the N-S acyl rearrangement and the transesterification steps in the splicing pathway. Furthermore, in vivo and in vitro assays were established for the determination of intein residues and regions required for splicing or association between the N- and C-terminal intein halves. N-terminal truncation of the intein C-terminal segment inhibited both splicing and association activities, suggesting this region is crucial for the formation of an interface between the two intein halves. The replacement of conserved residues in blocks B and F with alanine abolished splicing but allowed for association. This is the first evidence showing that the conserved residues in block F are required for protein splicing.
Collapse
Affiliation(s)
- I Ghosh
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA
| | | | | |
Collapse
|