1
|
Tsvetanova F, Yankov D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022; 10:2290. [PMID: 36422361 PMCID: PMC9693049 DOI: 10.3390/microorganisms10112290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
Red microalgae represent a natural reservoir of beneficial substances with applications in different industrial sectors. They are rich in natural biomolecules known for their antihypertensive, antioxidant, antimicrobial, antiviral, anti-inflammatory, antitumor, and anticoagulant activities. Many red microalgae are a source of vitamins, minerals, photochemicals, polyunsaturated fatty acids, and a wide spectrum of polysaccharides. The content of their valuable compounds and their activities have turned red microalgae into cellular factories of special interest in food, nutraceutical, and pharmaceutical industries. Like all microalgae, the red ones are superior to traditional crops for the aims of biotechnology as they are renewable sources widely available in great quantities and are easy to culture. Moreover, some of the most studied red microalgae are generally recognized as safe. This review summarizes the valuable biochemicals from red microalgae and highlights their health and nutritional benefits.
Collapse
|
2
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2018; 37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
Abstract
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.
Collapse
Affiliation(s)
- Clement Gaignard
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nesrine Gargouch
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Laroche
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
3
|
López-Lozano A, Diez J, Alaoui S, Moreno-Vivián C, García-Fernández JM. Nitrate is reduced by heterotrophic bacteria but not transferred to Prochlorococcus in non-axenic cultures. FEMS Microbiol Ecol 2012; 41:151-60. [PMID: 19709249 DOI: 10.1111/j.1574-6941.2002.tb00976.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract The ability to assimilate nitrate in non-axenic isolates of Prochlorococcus spp. was addressed in this work, particularly in three low-irradiance adapted strains originating from ocean depths with measurable nitrate concentrations. None of the studied strains was able to use nitrate as the sole nitrogen source. Nitrate reductase (NR; EC 1.6.6.2) activity was, however, detected using the methyl viologen/dithionite assay in crude extracts from all studied Prochlorococcus strains. Characterization of this activity unambiguously demonstrated its enzymatic origin. We observed that NR activity did not decrease in vivo under darkness. Attempts to detect the narB gene (coding for NR in other cyanobacteria) by PCR with primers designed on the basis of the specific codon usage in Prochlorococcus were unsuccessful. However, when primers were designed considering the codon frequencies typical of other bacteria, we could amplify different fragments of nas genes, coding for bacterial assimilatory NRs. Similar amplification products were obtained using colonies of contaminant bacteria from Prochlorococcus cultures as PCR template. Furthermore, NR activity was found in cultures of these contaminants, demonstrating the non-cyanobacterial origin of the enzyme. These results strongly suggest that the studied strains of Prochlorococcus lack NR, in spite of inhabiting environments with nitrate as the main nitrogen source. In addition, they indicate that the nitrite produced by heterotrophic bacteria is not transferred to Prochlorococcus for growth, thus discarding a trophic nitrogen chain between heterotrophic bacteria and Prochlorococcus in the studied cultures.
Collapse
Affiliation(s)
- Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1 planta, Campus de Rabanales, Universidad de Córdoba, E-14071 Córdoba, Spain
| | | | | | | | | |
Collapse
|
4
|
Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Syst Appl Microbiol 2010; 33:209-21. [PMID: 20409657 DOI: 10.1016/j.syapm.2010.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
Ruidera Pools Natural Park, Spain, constitutes one of the most representative systems of carbonate precipitation in Europe. The prokaryotic community of a dry modern stromatolite recovered from the park has been analyzed by molecular techniques that included denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis, together with microscopic observations from the sample and cultures. Ribosomal RNA was directly extracted to study the putatively active part of the microbial community present in the sample. A total of 295 16S rRNA gene sequences were analyzed. Libraries were dominated by sequences related to Cyanobacteria, most frequently to the genus Leptolyngbya. A diverse and abundant assemblage of non-cyanobacterial sequences was also found, including members of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Acidobacteria,Planctomycetes and Chloroflexi groups. No amplification was obtained when using archaeal primers. The results showed that at the time of sampling, when the pool was dry, the bacterial community of the stromatolites was dominated by groups of highly related Cyanobacteria, including new groups that had not been previously reported, although a high diversity outside this phylogenetic group was also found. The results indicated that part of the Cyanobacteria assemblage was metabolically active and could thus play a role in the mineralization processes inside the stromatolites.
Collapse
|
5
|
Modeling selective pressures on phytoplankton in the global ocean. PLoS One 2010; 5:e9569. [PMID: 20224766 PMCID: PMC2835739 DOI: 10.1371/journal.pone.0009569] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Accepted: 02/07/2010] [Indexed: 11/19/2022] Open
Abstract
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces—physical, biogeochemical, ecological, and mutational—into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.
Collapse
|
6
|
Norris TB, McDermott TR, Castenholz RW. The long-term effects of UV exclusion on the microbial composition and photosynthetic competence of bacteria in hot-spring microbial mats. FEMS Microbiol Ecol 2009; 39:193-209. [PMID: 19709199 DOI: 10.1111/j.1574-6941.2002.tb00922.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The primary objective of this study was to determine whether the long-term exclusion of ultraviolet (UV) radiation (UVR) from hot-spring microbial mats resulted in an alteration of microbial composition, such as a shift to more UV-sensitive species. Over a 1-3-month period, microbial mats in two alkaline geothermal streams in Yellowstone National Park were covered with filters that excluded or transmitted UVR. Over some, 25% transmission neutral density screens were also used. In the 40-47 degrees C range, there were no apparent changes in community composition during the summer with or without high or low UVR, as assessed by denaturing gradient gel electrophoresis (DGGE) profiles after polymerase chain reaction amplification of 16S-rRNA genes with general Bacteria and Cyanobacteria primers. Major bands were purified from the DGGE gels and sequenced. Only one of the cyanobacterial sequences matched known strains in the database; the others appear to be unique. Although the bacterial composition of these communities was apparently stable, surface layers of cyanobacteria protected from UVR were not as competent photosynthetically as those that had been maintained under UVR. This decrease in competence was expressed as a loss of the ability to perform at a maximum rate under full UVR plus visible irradiance. However, even +UV-maintained cyanobacteria performed better when UVR was excluded during the photosynthesis tests. It is probable that the large differences in photosynthetic competence observed reflect changes at the level of gene expression in the dominant species rather than changes in species composition.
Collapse
Affiliation(s)
- Tracy B Norris
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
7
|
Nitrite transport activity of the ABC-type cyanate transporter of the cyanobacterium Synechococcus elongatus. J Bacteriol 2009; 191:3265-72. [PMID: 19286804 DOI: 10.1128/jb.00013-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the ATP-binding cassette (ABC)-type nitrate/nitrite-bispecific transporter, which has a high affinity for both substrates (K(m), approximately 1 microM), Synechococcus elongatus has an active nitrite transport system with an apparent K(m) (NO(2)(-)) value of 20 microM. We found that this activity depends on the cynABD genes, which encode a putative cyanate (NCO(-)) ABC-type transporter. Accordingly, nitrite transport by CynABD was competitively inhibited by NCO(-) with a K(i) value of 0.025 microM. The transporter was induced under conditions of nitrogen deficiency, and the induced cells showed a V(max) value of 11 to 13 micromol/mg of chlorophyll per h for cyanate or nitrite, which could supply approximately 30% of the amount of nitrogen required for optimum growth. Its relative specificity for the substrates and regulation at transcriptional and posttranslational levels suggested that the physiological role of the bispecific cyanate/nitrite transporter in S. elongatus is to allow nitrogen-deficient cells to assimilate low concentrations of cyanate in the medium. Its contribution to nitrite assimilation was significant in a mutant lacking the ABC-type nitrate/nitrite transporter, suggesting a possible role for CynABD in nitrite assimilation by cyanobacterial species that lack another high-affinity mechanism(s) for nitrite transport.
Collapse
|
8
|
Sorokovikova EG, Tikhonova IV, Belykh OI, Klimenkov IV, Likhoshwai EV. Identification of two cyanobacterial strains isolated from the Kotel’nikovskii hot spring of the Baikal rift. Microbiology (Reading) 2008. [DOI: 10.1134/s002626170803017x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
McGregor GB, Rasmussen JP. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation. FEMS Microbiol Ecol 2008; 63:23-35. [DOI: 10.1111/j.1574-6941.2007.00405.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Jenkins BD, Zehr JP, Gibson A, Campbell L. Cyanobacterial assimilatory nitrate reductase gene diversity in coastal and oligotrophic marine environments. Environ Microbiol 2006; 8:2083-95. [PMID: 17107550 DOI: 10.1111/j.1462-2920.2006.01084.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyanobacteria are important primary producers in many marine ecosystems and their abundances and growth rates depend on their ability to assimilate various nitrogen sources. To examine the diversity of nitrate-utilizing marine cyanobacteria, we developed PCR primers specific for cyanobacterial assimilatory nitrate reductase (narB) genes. We obtained amplification products from diverse strains of cultivated cyanobacteria and from several marine environments. Phylogenetic trees constructed with the narB gene are congruent with those based on ribosomal RNA genes and RNA polymerase genes. Analysis of sequence library data from coastal and oligotrophic marine environments shows distinct groups of Synechococcus sp. in each environment; some of which are represented by sequences from cultivated organisms and others that are unrelated to known sequences and likely represent novel phylogenetic groups. We observed spatial differences in the distribution of sequences between two sites in Monterey Bay and differences in the vertical distribution of sequence types at the Hawai'i Ocean Time-series Station ALOHA, suggesting that nitrogen assimilation in Synechococcus living in different ecological niches can be followed with the nitrate reductase gene.
Collapse
Affiliation(s)
- Bethany D Jenkins
- Department of Cell and Molecular Biology and Graduate School of Oceanography, University of Rhode Island, 45 Lower College Road, Kingston, RI 02881, USA.
| | | | | | | |
Collapse
|
11
|
Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A. Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 2006; 57:272-89. [PMID: 16867145 DOI: 10.1111/j.1574-6941.2006.00110.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For the first time, the cyanobacterial diversity from microbial mats in lakes of Eastern Antarctica was investigated using microscopic and molecular approaches. The present study assessed the biogeographical distribution of cyanobacteria in Antarctica. Five samples were taken from four lakes spanning a range of different ecological environments in Larsemann Hills, Vestfold Hills and Rauer Islands to evaluate the influence of lake characteristics on the cyanobacterial diversity. Seventeen morphospecies and 28 16S rRNA gene-based operational taxonomic units belonging to the Oscillatoriales, Nostocales and Chroococcales were identified. The internal transcribed spacer was evaluated to complement the 16S rRNA gene data and showed similar but more clear-cut tendencies. The molecular approach suggested that potential Antarctic endemic species, including a previously undiscovered diversity, are more abundant than has been estimated by morphological methods. Moreover, operational taxonomic units, also found outside Antarctica, were more widespread over the continent than potential endemics. The cyanobacterial diversity of the most saline lakes was found to differ from the others, and correlations between the sampling depth and the cyanobacterial communities can also be drawn. Comparison with database sequences illustrated the ubiquity of several cyanobacterial operational taxonomic units and their remarkable range of tolerance to harsh environmental conditions.
Collapse
Affiliation(s)
- Arnaud Taton
- Laboratoire d'Algologie, de Mycologie et de Systématique Expérimentale, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
12
|
Lacap DC, Smith GJD, Warren-Rhodes K, Pointing SB. Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines. Can J Microbiol 2005; 51:583-9. [PMID: 16175207 DOI: 10.1139/w05-038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyanobacterial mats were characterized from pools of 45–60 °C in near-neutral pH, low-sulphide geothermal springs in the Philippines. Mat structure did not vary with temperature. All mats possessed highly ordered layers of airspaces at both the macroscopic and microscopic level, and these appear to be an adaptation to a free-floating growth habit. Upper mat layers supported biomass with elevated carotenoid:chlorophyll a ratios and an as yet uncharacterized waxy layer on the dorsal surface. Microscopic examination revealed mats comprised a single Fischerella morphotype, with abundant heterocysts throughout mats at all temperatures. Molecular analysis of mat community structure only partly matched morphological identification. All samples supported greater 16S rDNA-defined diversity than morphology suggested, with a progressive loss in the number of genotypes with increasing temperature. Fischerella-like sequences were recovered from mats occurring at all temperatures, but some mats also yielded Oscillatoria-like sequences, although corresponding phenotypes were not observed. Phylogenetic analysis revealed that Fischerella-like sequences were most closely affiliated with Fischerella major and the Oscillatoria-like sequences with Oscillatoria amphigranulata.Key words: cyanobacteria, Fischerella, geothermal springs, microbial mats, Oscillatoria.
Collapse
Affiliation(s)
- Donnabella C Lacap
- Extremophiles Research Group, Department of Ecology and Biodiversity, The University of Hong Kong, China
| | | | | | | |
Collapse
|
13
|
Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles 2005; 9:325-32. [PMID: 15970994 DOI: 10.1007/s00792-005-0456-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/11/2005] [Indexed: 12/01/2022]
Abstract
Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.
Collapse
Affiliation(s)
- Jing Hongmei
- Department of Ecology and Biodiversity, The University of Hong Kong, China
| | | | | | | | | | | |
Collapse
|
14
|
Flores E, Frías JE, Rubio LM, Herrero A. Photosynthetic nitrate assimilation in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2005; 83:117-33. [PMID: 16143847 DOI: 10.1007/s11120-004-5830-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 11/02/2004] [Indexed: 05/03/2023]
Abstract
Nitrate uptake and reduction to nitrite and ammonium are driven in cyanobacteria by photosynthetically generated assimilatory power, i.e., ATP and reduced ferredoxin. High-affinity nitrate and nitrite uptake takes place in different cyanobacteria through either an ABC-type transporter or a permease from the major facilitator superfamily (MFS). Nitrate reductase and nitrite reductase are ferredoxin-dependent metalloenzymes that carry as prosthetic groups a [4Fe-4S] center and Mo-bis-molybdopterin guanine dinucleotide (nitrate reductase) and [4Fe-4S] and siroheme centers (nitrite reductase). Nitrate assimilation genes are commonly found forming an operon with the structure: nir (nitrite reductase)-permease gene(s)-narB (nitrate reductase). When the cells perceive a high C to N ratio, this operon is transcribed from a complex promoter that includes binding sites for NtcA, a global nitrogen-control regulator that belongs to the CAP family of bacterial transcription factors, and NtcB, a pathway-specific regulator that belongs to the LysR family of bacterial transcription factors. Transcription is also affected by other factors such as CnaT, a putative glycosyl transferase, and the signal transduction protein P(II). The latter is also a key factor for regulation of the activity of the ABC-type nitrate/nitrite transporter, which is inhibited when the cells are incubated in the presence of ammonium or in the absence of CO(2). Notwithstanding significant advance in understanding the regulation of nitrate assimilation in cyanobacteria, further post-transcriptional regulatory mechanisms are likely to be discovered.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C.-Universidad de Sevilla, Avda. Américo Vespucio 49, Seville 41092, Spain.
| | | | | | | |
Collapse
|
15
|
Miller SR, Bebout BM. Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appl Environ Microbiol 2004; 70:736-44. [PMID: 14766549 PMCID: PMC348820 DOI: 10.1128/aem.70.2.736-744.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 11/02/2003] [Indexed: 11/20/2022] Open
Abstract
Physiological and molecular phylogenetic approaches were used to investigate variation among 12 cyanobacterial strains in their tolerance of sulfide, an inhibitor of oxygenic photosynthesis. Cyanobacteria from sulfidic habitats were found to be phylogenetically diverse and exhibited an approximately 50-fold variation in photosystem II performance in the presence of sulfide. Whereas the degree of tolerance was positively correlated with sulfide levels in the environment, a strain's phenotype could not be predicted from the tolerance of its closest relatives. These observations suggest that sulfide tolerance is a dynamic trait primarily shaped by environmental variation. Despite differences in absolute tolerance, similarities among strains in the effects of sulfide on chlorophyll fluorescence induction indicated a common mode of toxicity. Based on similarities with treatments known to disrupt the oxygen-evolving complex, it was concluded that sulfide toxicity resulted from inhibition of the donor side of photosystem II.
Collapse
Affiliation(s)
- Scott R Miller
- NASA Ames Research Center, Moffett Field, California 94035, USA.
| | | |
Collapse
|
16
|
Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 2003; 69:5157-69. [PMID: 12957897 PMCID: PMC194958 DOI: 10.1128/aem.69.9.5157-5169.2003] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, there is no consensus concerning the geographic distribution and extent of endemism in Antarctic cyanobacteria. In this paper we describe the phenotypic and genotypic diversity of cyanobacteria in a field microbial mat sample from Lake Fryxell and in an artificial cold-adapted sample cultured in a benthic gradient chamber (BGC) by using an inoculum from the same mat. Light microscopy and molecular tools, including 16S rRNA gene clone libraries, denaturing gradient gel electrophoresis, and sequencing, were used. For the first time in the study of cyanobacterial diversity of environmental samples, internal transcribed spacer (ITS) sequences were retrieved and analyzed to complement the information obtained from the 16S rRNA gene. Microscopy allowed eight morphotypes to be identified, only one of which is likely to be an Antarctic endemic morphotype. Molecular analysis, however, revealed an entirely different pattern. A much higher number of phylotypes (15 phylotypes) was found, but no sequences from Nodularia and Hydrocoryne, as observed by microscopy, were retrieved. The 16S rRNA gene sequences determined in this study were distributed in 11 phylogenetic lineages, 3 of which were exclusively Antarctic and 2 of which were novel. Collectively, these Antarctic sequences together with all the other polar sequences were distributed in 22 lineages, 9 of which were exclusively Antarctic, including the 2 novel lineages observed in this study. The cultured BGC mat had lower diversity than the field mat. However, the two samples shared three morphotypes and three phylotypes. Moreover, the BGC mat allowed enrichment of one additional phylotype. ITS sequence analysis revealed a complex signal that was difficult to interpret. Finally, this study provided evidence of molecular diversity of cyanobacteria in Antarctica that is much greater than the diversity currently known based on traditional microscopic analysis. Furthermore, Antarctic endemic species were more abundant than was estimated on the basis of morphological features. Decisive arguments concerning the global geographic distribution of cyanobacteria should therefore incorporate data obtained with the molecular tools described here.
Collapse
Affiliation(s)
- Arnaud Taton
- Laboratoire d'Algologie, de Mycologie et de Systématique Expérimentale, Institut de Botanique B22, Université de Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
17
|
Alland D, Whittam TS, Murray MB, Cave MD, Hazbon MH, Dix K, Kokoris M, Duesterhoeft A, Eisen JA, Fraser CM, Fleischmann RD. Modeling bacterial evolution with comparative-genome-based marker systems: application to Mycobacterium tuberculosis evolution and pathogenesis. J Bacteriol 2003; 185:3392-9. [PMID: 12754238 PMCID: PMC155390 DOI: 10.1128/jb.185.11.3392-3399.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The comparative-genomic sequencing of two Mycobacterium tuberculosis strains enabled us to identify single nucleotide polymorphism (SNP) markers for studies of evolution, pathogenesis, and epidemiology in clinical M. tuberculosis. Phylogenetic analysis using these "comparative-genome markers" (CGMs) produced a highly unusual phylogeny with a complete absence of secondary branches. To investigate CGM-based phylogenies, we devised computer models to simulate sequence evolution and calculate new phylogenies based on an SNP format. We found that CGMs represent a distinct class of phylogenetic markers that depend critically on the genetic distances between compared "reference strains." Properly distanced reference strains generate CGMs that accurately depict evolutionary relationships, distorted only by branch collapse. Improperly distanced reference strains generate CGMs that distort and reroot outgroups. Applying this understanding to the CGM-based phylogeny of M. tuberculosis, we found evidence to suggest that this species is highly clonal without detectable lateral gene exchange. We noted indications of evolutionary bottlenecks, including one at the level of the PHRI "C" strain previously associated with particular virulence characteristics. Our evidence also suggests that loss of IS6110 to fewer than seven elements per genome is uncommon. Finally, we present population-based evidence that KasA, an important component of mycolic acid biosynthesis, develops G312S polymorphisms under selective pressure.
Collapse
Affiliation(s)
- David Alland
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol 2003; 69:2430-43. [PMID: 12732508 PMCID: PMC154553 DOI: 10.1128/aem.69.5.2430-2443.2003] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic relationships among members of the marine Synechococcus genus were determined following sequencing of the 16S ribosomal DNA (rDNA) from 31 novel cultured isolates from the Red Sea and several other oceanic environments. This revealed a large genetic diversity within the marine Synechococcus cluster consistent with earlier work but also identified three novel clades not previously recognized. Phylogenetic analyses showed one clade, containing halotolerant isolates lacking phycoerythrin (PE) and including strains capable, or not, of utilizing nitrate as the sole N source, which clustered within the MC-A (Synechococcus subcluster 5.1) lineage. Two copies of the 16S rRNA gene are present in marine Synechococcus genomes, and cloning and sequencing of these copies from Synechococcus sp. strain WH 7803 and genomic information from Synechococcus sp. strain WH 8102 reveal these to be identical. Based on the 16S rDNA sequence information, clade-specific oligonucleotides for the marine Synechococcus genus were designed and their specificity was optimized. Using dot blot hybridization technology, these probes were used to determine the in situ community structure of marine Synechococcus populations in the Red Sea at the time of a Synechococcus maximum during April 1999. A predominance of genotypes representative of a single clade was found, and these genotypes were common among strains isolated into culture. Conversely, strains lacking PE, which were also relatively easily isolated into culture, represented only a minor component of the Synechococcus population. Genotypes corresponding to well-studied laboratory strains also appeared to be poorly represented in this stratified water column in the Red Sea.
Collapse
Affiliation(s)
- Nicholas J Fuller
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|