1
|
Okabe S, Oshiki M, Kamagata Y, Yamaguchi N, Toyofuku M, Yawata Y, Tashiro Y, Nomura N, Ohta H, Ohkuma M, Hiraishi A, Minamisawa K. A great leap forward in microbial ecology. Microbes Environ 2011; 25:230-40. [PMID: 21576878 DOI: 10.1264/jsme2.me10178] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ribosomal RNA (rRNA) sequence-based molecular techniques emerged in the late 1980s, which completely changed our general view of microbial life. Coincidentally, the Japanese Society of Microbial Ecology (JSME) was founded, and its official journal "Microbes and Environments (M&E)" was launched, in 1985. Thus, the past 25 years have been an exciting and fruitful period for M&E readers and microbiologists as demonstrated by the numerous excellent papers published in M&E. In this minireview, recent progress made in microbial ecology and related fields is summarized, with a special emphasis on 8 landmark areas; the cultivation of uncultured microbes, in situ methods for the assessment of microorganisms and their activities, biofilms, plant microbiology, chemolithotrophic bacteria in early volcanic environments, symbionts of animals and their ecology, wastewater treatment microbiology, and the biodegradation of hazardous organic compounds.
Collapse
Affiliation(s)
- Satoshi Okabe
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Nishimura Y, Kenzaka T, Sueyoshi A, Li P, Fujiyama H, Baba T, Yamaguchi N, Nasu M. Similarity of Bacterial Community Structure between Asian Dust and Its Sources Determined by rRNA Gene-Targeted Approaches. Microbes Environ 2010; 25:22-7. [DOI: 10.1264/jsme2.me09166] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Takehiko Kenzaka
- Graduate School of Pharmaceutical Sciences, Osaka University
- Faculty of Pharmacy, Osaka Ohtani University
| | - Akio Sueyoshi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Pinfang Li
- College of Resources and Environmental Sciences, China Agricultural University
| | | | - Takashi Baba
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Masao Nasu
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
3
|
Porter J. Flow cytometry and environmental microbiology. CURRENT PROTOCOLS IN CYTOMETRY 2008; Chapter 11:Unit 11.2. [PMID: 18770789 DOI: 10.1002/0471142956.cy1102s27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This survey unit discusses many of the issues involved for flow cytometry in the field of microbiology, particularly the preparative procedures, which are far more stringent than many other procedures using larger cells. For instance, it is often necessary to filter laboratory agents multiple times to obtain the true particle-free solutions needed for flow cytometry of microbes. It is difficult enough to recognize bacteria in cell extracts from soil, sediment, or sludge given the background of same-size particles. This unit provides an excellent overview of a potentially large application area in flow cytometry and is written by one of the most respected scientists in the field.
Collapse
|
4
|
Choi NC, Kim DJ, Kim SB. Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength. Res Microbiol 2007; 158:70-8. [PMID: 17125973 DOI: 10.1016/j.resmic.2006.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/17/2006] [Accepted: 09/11/2006] [Indexed: 11/16/2022]
Abstract
Transport of bacteria in aquifer systems plays an important role in bioaugmentation, which relies upon successful bacterial delivery to a target area. In the present study, we conducted a set of laboratory column experiments under various conditions of pore-water velocity (upsilon(omega)) and ionic strength (IS) of culture medium for Pseudomonas aeruginosa, known to be a benzene-degrading bacteria, in order to investigate their relationship to mass recovery in saturated quartz sands. The column experiments revealed that both peak concentrations and mass recoveries of bacteria were lower than those of a conservative tracer KCl when deionized water was used as leaching water for all ranges of pore-water velocity (0.18-6.23 cm/min). Thus, the parameter responsible for transport of P. aeruginosa was only the deposition coefficient. Bacterial cells could not be attached to the mineral surfaces by predominance of electrostatic charge or repulsive forces over hydrophobicity or attractive forces due to the very low ionic strength ( approximately 0 mM) of deionized water. The loss of bacterial mass was attributed to the deposition in the crevice formed on the quartz surfaces, as evidenced by SEM images. For a given pore-water velocity, the ionic strength markedly influenced bacterial deposition, showing decreased peak concentrations and mass recoveries with increasing ionic strength of column leaching water. An optimum range of upsilon(omega) and IS for achieving bacterial mass recovery higher than 70% in the studied quartz sand was found such that: (i) at low IS ( approximately 0 mM), a pore-water velocity higher than 0.30 cm/min, and (ii) at pore-water velocity of 0.52 cm/min, an IS lower than 290 mM, were required, respectively.
Collapse
Affiliation(s)
- Nag-Choul Choi
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | | | | |
Collapse
|
5
|
Jiang Y, Wen J, Caiyin Q, Lin L, Hu Z. Mutant AFM 2 of Alcaligenes faecalis for phenol biodegradation using He-Ne laser irradiation. CHEMOSPHERE 2006; 65:1236-41. [PMID: 16730779 DOI: 10.1016/j.chemosphere.2006.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 04/05/2006] [Accepted: 04/06/2006] [Indexed: 05/09/2023]
Abstract
He-Ne laser technology was utilized in this study to investigate the response of Alcaligenes faecalis to laser stimulation. The irradiation experiments were conducted by the adjustment of the output power from 5 to 25 mW and the exposure time from 5 to 25 min. The results showed that the survival rate changed regularly with the variety of irradiation dose, and high positive mutation frequency was determined by both the energy density and the output power. The mutant strain AFM 2 was obtained. Phenol biodegradation assay demonstrated that AFM 2 possessed a more prominent phenol-degrading potential than its parent strain, which presumably attributed to the improvements of phenol hydroxylase and catechol 1,2-dioxygenase activities. The phenol of 2000 mgl(-1) was completely degraded by AFM 2 within 85.5h at 30 degrees C. In addition, the cell growth and phenol degradation kinetics of the mutant strain AFM 2 and its parent strain in batch cultures were also investigated at the wide initial phenol concentration ranging from 0 to 2000 mgl(-1) by Haldane model. The results of these experiments further demonstrated that the mutant strain AFM 2 possessed a higher capacity to resist phenol.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | | | | | | | | |
Collapse
|
6
|
Maruyama F, Tani K, Kenzaka T, Yamaguchi N, Nasu M. Quantitative determination of free-DNA uptake in river bacteria at the single-cell level by in situ rolling-circle amplification. Appl Environ Microbiol 2006; 72:6248-56. [PMID: 16957252 PMCID: PMC1563595 DOI: 10.1128/aem.03035-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 06/22/2006] [Indexed: 11/20/2022] Open
Abstract
Detection of plasmid DNA uptake in river bacteria at the single-cell level was carried out by rolling-circle amplification (RCA). Uptake of a plasmid containing the green fluorescent protein gene (gfp) by indigenous bacteria from two rivers in Osaka, Japan, was monitored for 506 h using this in situ gene amplification technique with optimized cell permeabilization conditions. Plasmid uptake determined by in situ RCA was compared to direct counts of cells expressing gfp under fluorescence microscopy to examine differences in detection sensitivities between the two methods. Detection of DNA uptake as monitored by in situ RCA was 20 times higher at maximum than that by direct counting of gfp-expressing cells. In situ RCA could detect bacteria taking up the plasmid in several samples in which no gfp-expressing cells were apparent, indicating that in situ gene amplification techniques can be used to determine accurate rates of extracellular DNA uptake by indigenous bacteria in aquatic environments.
Collapse
Affiliation(s)
- Fumito Maruyama
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
7
|
Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Appl Environ Microbiol 2006; 71:7933-40. [PMID: 16332770 PMCID: PMC1317385 DOI: 10.1128/aem.71.12.7933-7940.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rolling circle amplification (RCA) generates large single-stranded and tandem repeats of target DNA as amplicons. This technique was applied to in situ nucleic acid amplification (in situ RCA) to visualize and count single Escherichia coli cells carrying a specific gene sequence. The method features (i) one short target sequence (35 to 39 bp) that allows specific detection; (ii) maintaining constant fluorescent intensity of positive cells permeabilized extensively after amplicon detection by fluorescence in situ hybridization, which facilitates the detection of target bacteria in various physiological states; and (iii) reliable enumeration of target bacteria by concentration on a gelatin-coated membrane filter. To test our approach, the presence of the following genes were visualized by in situ RCA: green fluorescent protein gene, the ampicillin resistance gene and the replication origin region on multicopy pUC19 plasmid, as well as the single-copy Shiga-like toxin gene on chromosomes inside E. coli cells. Fluorescent antibody staining after in situ RCA also simultaneously identified cells harboring target genes and determined the specificity of in situ RCA. E. coli cells in a nonculturable state from a prolonged incubation were periodically sampled and used for plasmid uptake study. The numbers of cells taking up plasmids determined by in situ RCA was up to 10(6)-fold higher than that measured by selective plating. In addition, in situ RCA allowed the detection of cells taking up plasmids even when colony-forming cells were not detected during the incubation period. By optimizing the cell permeabilization condition for in situ RCA, this method can become a valuable tool for studying free DNA uptake, especially in nonculturable bacteria.
Collapse
Affiliation(s)
- Fumito Maruyama
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
8
|
Zilouei H, Soares A, Murto M, Guieysse B, Mattiasson B. Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Appl Microbiol Biotechnol 2006; 72:591-9. [PMID: 16402167 DOI: 10.1007/s00253-005-0296-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 12/09/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
Two reactors, initially operated at 14 and 23+/-1 degrees C (RA and RB, respectively), were inoculated with a bacterial consortium enriched and acclimatized to the respective temperatures over 4 months. The biofilms, formed in the reactors, were studied using scanning electron microscopy, cultivation of the biofilm microflora, and physiological analysis of the isolates. Two bacteria able to mineralize chlorophenols under a large range of temperature (10-30 degrees C) were isolated from the biofilm communities of reactors RA and RB and characterized as Alcaligenaceae bacterium R14C4 and Cupriavidus basilensis R25C6, respectively. When temperature was decreased by 10 degrees C, the chlorophenols removal capacity was reduced from 51.6 to 22.8 mg l(-1) h(-1) in bioreactor RA (from 14 to 4 degrees C) and from 59.3 to 34.7 mg l(-1) h(-1) in bioreactor RB (from 23+/-1 to 14 degrees C). Fluorescence in situ hybridization (FISH) of the biofilm communities showed that, in all temperatures tested, the beta-proteobacteria were the major bacterial community (35-47%) followed by the gamma-proteobacteria (12.0-6.5%). When the temperature was decreased by 10 degrees C, the proportions of gamma-proteobacteria and Pseudomonas species increased significantly in both microbial communities.
Collapse
Affiliation(s)
- H Zilouei
- Department of Biotechnology, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
9
|
Kenzaka T, Tamaki S, Yamaguchi N, Tani K, Nasu M. Recognition of individual genes in diverse microorganisms by cycling primed in situ amplification. Appl Environ Microbiol 2005; 71:7236-44. [PMID: 16269764 PMCID: PMC1287630 DOI: 10.1128/aem.71.11.7236-7244.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) was developed to recognize individual genes in a single bacterial cell. In CPRINS, the amplicon was long single-stranded DNA and thus retained within the permeabilized microbial cells. FISH with a multiply labeled fluorescent probe set enabled significant reduction in nonspecific background while maintaining high fluorescence signals of target bacteria. The ampicillin resistance gene in Escherichia coli, chloramphenicol acetyltransferase gene in different gram-negative strains, and RNA polymerase sigma factor (rpoD) gene in Aeromonas spp. could be detected under identical permeabilization conditions. After concentration of environmental freshwater samples onto polycarbonate filters and subsequent coating of filters in gelatin, no decrease in bacterial cell numbers was observed with extensive permeabilization. The detection rates of bacterioplankton in river and pond water samples by CPRINS-FISH with a universal 16S rRNA gene primer and probe set ranged from 65 to 76% of total cell counts (mean, 71%). The concentrations of cells detected by CPRINS-FISH targeting of the rpoD genes of Aeromonas sobria and A. hydrophila in the water samples varied between 2.1 x 10(3) and 9.0 x 10(3) cells ml(-1) and between undetectable and 5.1 x 10(2) cells ml(-1), respectively. These results demonstrate that CPRINS-FISH provides a high sensitivity for microscopic detection of bacteria carrying a specific gene in natural aquatic samples.
Collapse
Affiliation(s)
- Takehiko Kenzaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
10
|
Minamida K, Sujaya IN, Tamura A, Shigematsu N, Sone T, Yokota A, Asano K, Benno Y, Tomita F. The effects of di-D-fructofuranose-1,2':2,3'-dianhydride (DFA III) administration on human intestinal microbiota. J Biosci Bioeng 2005; 98:244-50. [PMID: 16233700 DOI: 10.1016/s1389-1723(04)00276-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 07/01/2004] [Indexed: 10/25/2022]
Abstract
Di-D-fructofuranose-1,2':2,3'-dianhydride (DFA III) was shown to enhance Ca absorption in rat and human intestine. The effects of DFA III administration (9 g per day for 4 weeks that corresponded to 3-fold the optimal dosage of DFA III) on human intestinal microbiota were studied using denaturing gradient gel electrophoresis (DGGE). The major groups of human intestinal microbiota reported previously: the Bacteroides, the Clostridium coccoides group (Clostridium cluster XIVa), the Clostridium leptum group (Clostridium cluster IV), and the Bifidobacterium group were detected. The similarity of 30 DGGE profiles based on the V3 region (before and after administration to the 15 subjects) of the 16S rDNA were calculated using Pearson's correlation based on numbers, positions and intensity of bands, and then a dendrogram of DGGE profiles was constructed by the unweighted pair group method using arithmetic average (UPGMA) clustering method. By these analyses, no difference in DGGE profiles after DFA III administration was observed in healthy subjects, while two subjects with chronic constipation showed different profiles, namely on numbers, positions and the intensity of some bands. Their stools were softer and stool frequencies increased and they obtained relief from constipation.
Collapse
Affiliation(s)
- Kimiko Minamida
- Northern Advancement Center for Science and Technology, Nishi 12, Kita 21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ogawa M, Tani K, Ochiai A, Yamaguchi N, Nasu M. Multicolour digital image analysis system for identification of bacteria and concurrent assessment of their respiratory activity. J Appl Microbiol 2005; 98:1101-6. [PMID: 15836479 DOI: 10.1111/j.1365-2672.2005.02551.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To develop a rapid and simple multicolour digital image analysis system for simultaneous identification of bacteria and assessment of their metabolic activity. METHODS AND RESULTS We developed an image analyser capable of distinguishing triple-stained bacterial cells. Bacteria were stained with a nucleic acid stain, a fluorescent antibody and a fluorescent metabolic indicator for enumeration, species identification and assessment of metabolic activity. This multicolour image analyser was used to simultaneously identify Escherichia coli O157:H7 in milk samples and assess their respiratory activity. The images of the triple-stained bacteria were captured using a combination of blue light and u.v. excitation and an epifluorescence microscope and were processed by our image analyser. We found a good correlation between the counts of actively respiring (r = 0.93) and total (r = 0.94) E. coli O157:H7 measured by digital image analysis and visual observation. CONCLUSION The multicolour digital image analysis system described here was able to quantify active pathogenic micro-organisms within 2 h. SIGNIFICANCE AND IMPACT OF THE STUDY This multicolour image analysis allows the rapid and simultaneous quantification of bacteria, identification of species and assessment of metabolic activity.
Collapse
Affiliation(s)
- M Ogawa
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
12
|
Futamata H, Nagano Y, Watanabe K, Hiraishi A. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 2005; 71:904-11. [PMID: 15691947 PMCID: PMC546690 DOI: 10.1128/aem.71.2.904-911.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities. To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter(-1) day(-1)) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter(-1) day(-1) (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.
Collapse
Affiliation(s)
- Hiroyuki Futamata
- Department of Ecological Engineering, Toyohashi University of Technology, Tenpakutyo 1-1, Toyohashi, Aichi 441-8580, Japan.
| | | | | | | |
Collapse
|
13
|
Futamata H, Nagano Y, Watanabe K, Hiraishi A. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 2005. [PMID: 15691947 DOI: 10.1128/aem.71.2.904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities. To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter(-1) day(-1)) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter(-1) day(-1) (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.
Collapse
Affiliation(s)
- Hiroyuki Futamata
- Department of Ecological Engineering, Toyohashi University of Technology, Tenpakutyo 1-1, Toyohashi, Aichi 441-8580, Japan.
| | | | | | | |
Collapse
|
14
|
Chen WM, Chang JS, Wu CH, Chang SC. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis. Res Microbiol 2005; 155:672-80. [PMID: 15380556 DOI: 10.1016/j.resmic.2004.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/10/2004] [Indexed: 11/18/2022]
Abstract
Ralstonia taiwanensis is a root nodule bacterium originally isolated from Mimosa sp. in southern Taiwan. Some strains of R. taiwanensis demonstrated the ability to grow on medium containing phenol as the sole carbon source, especially strain TJ86, which was able to survive and grow at phenol concentrations of up to 900 mg/l. The dependence of the phenol degradation rate on the phenol concentration can be described by Haldane's model with a low KS (the apparent half-saturation constant) of 5.46 microM and an extremely high KSI (the apparent inhibition constant) 9075 microM. The optimal phenol degradation rate was 61 micromol/min/g cell, which occurred at a phenol concentration of 228 microM. The phenol-limited growth kinetics of TJ86 by Andrews's model also followed a similar trend to that of phenol degradation, indicating the close links between phenol degradation and cell growth. Strain TJ86 also achieved 100 and 40% degradation for soil samples amended with 500 and 1000 microg phenol/g soil (dry weight) within 9 days, respectively. Moreover, strain TJ86 cometabolically degraded trichloroethene (TCE) after being cultivated with media containing phenol or m-cresol as the carbon substrate. The sequence of the large-subunit phenol hydroxylase (LmPH) gene obtained from TJ86 displayed high homology to that of other phenol-utilizing bacteria. Results from kinetic and phylogenetic analyses suggest that strain TJ86 most likely belongs to group I phenol-degrading bacteria which are considered to be efficient TCE degraders. It is proposed that the symbiotic relationship between rhizobia R. taiwanensis and its host plant Mimosa sp. may have the potential for rhizoremediation of aquatic and soil environments contaminated by phenol and TCE.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Department of Seafood Science, National Kaohsiung Marine University, Nan-Tzu, Kaohsiung City 811, Hai-Chuan Rd. No. 142, Taiwan.
| | | | | | | |
Collapse
|
15
|
Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl Environ Microbiol 2003; 69:5023-8. [PMID: 12902306 PMCID: PMC169117 DOI: 10.1128/aem.69.8.5023-5028.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new in situ DNA amplification technique for microscopic detection of bacteria carrying a specific gene is described. Loop-mediated isothermal amplification (LAMP) was used to detect stxA(2) in Escherichia coli O157:H7 cells. The mild permeabilization conditions and low isothermal temperature used in the in situ LAMP method caused less cell damage than in situ PCR. It allowed use of fluorescent antibody labeling in the bacterial mixture after the DNA amplification for identification of E. coli O157:H7 cells with an stxA(2) gene. Higher-contrast images were obtained with this method than with in situ PCR.
Collapse
Affiliation(s)
- Fumito Maruyama
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|