1
|
Rymaszewska A, Piotrowski M. Rickettsia Species: Genetic Variability, Vectors, and Rickettsiosis-A Review. Pathogens 2024; 13:661. [PMID: 39204262 PMCID: PMC11357061 DOI: 10.3390/pathogens13080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Rickettsiae are an interesting group of bacteria comprising a large number of obligate intracellular species. The circulation of these bacteria in the environment depends on the presence of vectors (blood-sucking invertebrates) and their hosts. On the basis of phylogenetic analyses in 2022, a division into five groups of Rickettsia has been proposed: I belli group, II canadensis group, III typhus group, and IV and V spotted group fever (respectively II, phylogenetically older, and I). The genus Rickettsia includes species that are both pathogenic and nonpathogenic to humans and domestic and wild animals. Some Rickettsia species are invertebrate symbionts. Currently, rickettsiae, which are transmitted mainly by ticks, are spreading worldwide. This has been promoted by climate change, environmental changes caused by humans, and the synanthropisation of plants and animals. Therefore, it is extremely important to monitor the natural and urban environments. The study of potential vectors and reservoirs of bacteria in the genus Rickettsia should be a permanent part of the analysis of the modern human environment.
Collapse
Affiliation(s)
- Anna Rymaszewska
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, ul. Felczaka 3C, 71-412 Szczecin, Poland;
| | - Mariusz Piotrowski
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, ul. Felczaka 3C, 71-412 Szczecin, Poland;
- BIOSPACE Foundation, ul. Karpia 31, 61-619 Poznań, Poland
| |
Collapse
|
2
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
3
|
Fenton A, Camus MF, Hurst GDD. Positive selection on mitochondria may eliminate heritable microbes from arthropod populations. Proc Biol Sci 2021; 288:20211735. [PMID: 34583583 PMCID: PMC8488761 DOI: 10.1098/rspb.2021.1735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host–symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA.
Collapse
Affiliation(s)
- Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Current tools for the diagnosis and detection of spotted fever group Rickettsia. Acta Trop 2021; 218:105887. [PMID: 33713627 DOI: 10.1016/j.actatropica.2021.105887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Spotted fever group (SFG) rickettsiae causes a number of diseases in humans worldwide, which can range from mild to highly lethal. Since the clinical presentations of rickettsioses caused by SFG rickettsiae are variable and may be similar to the diseases caused by other rickettsiae, such as Orientia tsutsugamushi (agent for scrub typhus), Coxiella burnetii (agent for Q fever) and the typhus group rickettsiae (agents for epidemic and murine typhus), the accurate diagnosis of infections caused by SFG Rickettsia remains challenging especially in resource-poor settings in developing countries. This review summarizes the various diagnostic and detection tools that are currently available for the confirmation of infections by SFG rickettsiae. The advantages and challenges pertaining to the different serological and molecular detections methods, as well as new assays in development, are discussed. The utility of the detection tools contributing to the surveillance of SFG rickettsiae in arthropods and animals are reviewed.
Collapse
|
5
|
Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, Ratnasingham S, deWaard JR, Macadam CR, Smith MA, Hurst GDD. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience 2021; 10:giab021. [PMID: 33764469 PMCID: PMC7992394 DOI: 10.1093/gigascience/giab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 03/05/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia. RESULTS This study describes the serendipitous discovery of Rickettsia amplicons in the Barcode of Life Data System (BOLD), a sequence database specifically designed for the curation of mitochondrial DNA barcodes. Of 184,585 barcode sequences analysed, Rickettsia is observed in ∼0.41% of barcode submissions and is more likely to be found than Wolbachia (0.17%). The Torix group of Rickettsia are shown to account for 95% of all unintended amplifications from the genus. A further targeted PCR screen of 1,612 individuals from 169 terrestrial and aquatic invertebrate species identified mostly Torix strains and supports the "aquatic hot spot" hypothesis for Torix infection. Furthermore, the analysis of 1,341 SRA deposits indicates that Torix infections represent a significant proportion of all Rickettsia symbioses found in arthropod genome projects. CONCLUSIONS This study supports a previous hypothesis that suggests that Torix Rickettsia are overrepresented in aquatic insects. In addition, multiple methods reveal further putative hot spots of Torix Rickettsia infection, including in phloem-feeding bugs, parasitoid wasps, spiders, and vectors of disease. The unknown host effects and transmission strategies of these endosymbionts make these newly discovered associations important to inform future directions of investigation involving the understudied Torix Rickettsia.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| | - Matthew Baylis
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Sujeevan Ratnasingham
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Craig R Macadam
- Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK
| | - M Alex Smith
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK
| |
Collapse
|
6
|
Thongprem P, Davison HR, Thompson DJ, Lorenzo-Carballa MO, Hurst GDD. Incidence and Diversity of Torix Rickettsia-Odonata Symbioses. MICROBIAL ECOLOGY 2021; 81:203-212. [PMID: 32770272 PMCID: PMC7794209 DOI: 10.1007/s00248-020-01568-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/28/2020] [Indexed: 05/05/2023]
Abstract
Heritable microbes are an important component of invertebrate biology, acting both as beneficial symbionts and reproductive parasites. Whilst most previous research has focussed on the 'Wolbachia pandemic', recent work has emphasised the importance of other microbial symbionts. In this study, we present a survey of odonates (dragonflies and damselflies) for torix group Rickettsia, following previous research indicating that this clade can be common in other aquatic insect groups. PCR assays were used to screen a broad range of odonates from two continents and revealed 8 of 76 species tested were infected with Rickettsia. We then conducted further deeper screening of UK representatives of the Coenagrionidae damselfly family, revealing 6 of 8 UK coenagrionid species to be positive for torix Rickettsia. Analysis of Rickettsia gene sequences supported multiple establishments of symbiosis in the group. Some strains were shared between UK coenagrionid species that shared mtDNA barcodes, indicating a likely route for mitochondrial introgression between sister species. There was also evidence of coinfecting Rickettsia strains in two species. FISH analysis indicated Rickettsia were observed in the ovarioles, consistent with heritable symbiosis. We conclude that torix Rickettsia represent an important associate of odonates, being found in a broad range of species from both Europe and South America. There is evidence that coinfection can occur, vertical transmission is likely, and that symbiont movement following hybridisation may underpin the lack of 'barcoding gap' between well-established species pairs in the genus. Future work should establish the biological significance of the symbioses observed.
Collapse
Affiliation(s)
- Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Helen R Davison
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David J Thompson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - M Olalla Lorenzo-Carballa
- ECOEVO Group, Universidade de Vigo, E.E. Forestal, Campus Universitario A Xunqueira, 36005, Pontevedra, Spain
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
7
|
Thongprem P, Evison SEF, Hurst GDD, Otti O. Transmission, Tropism, and Biological Impacts of Torix Rickettsia in the Common Bed Bug Cimex lectularius (Hemiptera: Cimicidae). Front Microbiol 2020; 11:608763. [PMID: 33424811 PMCID: PMC7785988 DOI: 10.3389/fmicb.2020.608763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The torix group of Rickettsia have been recorded from a wide assemblage of invertebrates, but details of transmission and biological impacts on the host have rarely been established. The common bed bug (Cimex lectularius) is a hemipteran insect which lives as an obligatory hematophagous pest of humans and is host to a primary Wolbachia symbiont and two facultative symbionts, a BEV-like symbiont, and a torix group Rickettsia. In this study, we first note the presence of a single Rickettsia strain in multiple laboratory bed bug isolates derived from Europe and Africa. Importantly, we discovered that the Rickettsia has segregated in two laboratory strains, providing infected and uninfected isogenic lines for study. Crosses with these lines established transmission was purely maternal. Fluorescence in-situ hybridization analysis indicates Rickettsia infection in oocytes, bacteriomes, and other somatic tissues. We found no evidence that Rickettsia infection was associated with sex ratio distortion activity, but Rickettsia infected individuals developed from first instar to adult more slowly. The impact of Rickettsia on fecundity and fertility resulted in infected females producing fewer fertile eggs. However, we could not find any evidence for cytoplasmic incompatibility associated with Rickettsia presence. These data imply the existence of an unknown benefit to C. lectularius carrying Rickettsia that awaits further research.
Collapse
Affiliation(s)
- Panupong Thongprem
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sophie E. F. Evison
- Faculty of Medicine & Health Sciences, University Park, Nottingham, United Kingdom
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Oliver Otti
- Animal Population Ecology, Animal Ecology I, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
8
|
Sontowski R, Gerth M, Richter S, Gruppe A, Schlegel M, van Dam NM, Bleidorn C. Infection Patterns and Fitness Effects of Rickettsia and Sodalis Symbionts in the Green Lacewing Chrysoperla carnea. INSECTS 2020; 11:insects11120867. [PMID: 33297293 PMCID: PMC7762206 DOI: 10.3390/insects11120867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacteria have occupied a wide range of habitats including insect hosts. There they can strongly affect host physiology and ecology in a positive or negative way. Bacteria living exclusively inside other organisms are called endosymbionts. They often establish a long-term and stable association with their host. Although more and more studies focus on endosymbiont–insect interactions, the group of Neuroptera is largely neglected in such studies. We were interested in the common green lacewing (Chrysoperla carnea), a representative of Neuroptera, which is mainly known for its use in biological pest control. We asked ourselves which endosymbionts are present in these lacewings. By screening natural and laboratory populations, we found that the endosymbiont Rickettsia is present in all populations but the symbiont Sodalis only occurred in laboratory populations. We were curious whether both endosymbionts affect reproduction success. Through establishing and studying green lacewing lines carrying different endosymbionts, we found that Rickettsia had no effect on the insect reproduction, while Sodalis reduced the number of eggs laid by lacewings, alone and in co-infections with Rickettsia. The economic and ecological importance of green lacewings in biological pest control warrants a more profound understanding of its biology, which might be strongly influenced by symbionts. Abstract Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts.
Collapse
Affiliation(s)
- Rebekka Sontowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Michael Gerth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Sandy Richter
- Department of Basic and Clinical Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RT, UK;
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Axel Gruppe
- Chair of Zoology—Entomology Group, Technical University of Munich, 85354 Freising, Germany;
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Animal Evolution and Biodiversity, Georg-Augustus-University, 37073 Göttingen, Germany
- Correspondence: ; Tel.: +49-5513925459
| |
Collapse
|
9
|
Park E, Poulin R. Widespread Torix Rickettsia in New Zealand amphipods and the use of blocking primers to rescue host COI sequences. Sci Rep 2020; 10:16842. [PMID: 33033309 PMCID: PMC7546637 DOI: 10.1038/s41598-020-73986-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
Endosymbionts and intracellular parasites are common in arthropod hosts. As a consequence, (co)amplification of untargeted bacterial sequences has been occasionally reported as a common problem in DNA barcoding. While identifying amphipod species with universal COI primers, we unexpectedly detected rickettsial endosymbionts belonging to the Torix group. To map the distribution and diversity of Rickettsia species among amphipod hosts, we conducted a nationwide molecular screening of seven families of New Zealand freshwater amphipods. In addition to uncovering a diversity of Torix Rickettsia species across multiple amphipod populations from three different families, our research indicates that: (1) detecting Torix Rickettsia with universal primers is not uncommon, (2) obtaining 'Rickettsia COI sequences' from many host individuals is highly likely when a population is infected, and (3) obtaining 'host COI' may not be possible with a conventional PCR if an individual is infected. Because Rickettsia COI is highly conserved across diverse host taxa, we were able to design blocking primers that can be used in a wide range of host species infected with Torix Rickettsia. We propose the use of blocking primers to circumvent problems caused by unwanted amplification of Rickettsia and to obtain targeted host COI sequences for DNA barcoding, population genetics, and phylogeographic studies.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| |
Collapse
|
10
|
Matsuyama H, Taira M, Suzuki M, Sando E. Associations between Japanese spotted fever (JSF) cases and wildlife distribution on the Boso Peninsula, Central Japan (2006-2017). J Vet Med Sci 2020; 82:1666-1670. [PMID: 33012734 PMCID: PMC7719884 DOI: 10.1292/jvms.20-0377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Populations of large mammals have been dramatically increasing in Japan, resulting in damage to agriculture, forestry, and ecosystems. However, their effects
on tick-borne diseases have been poorly studied. Here, we focused on the relationship between Japanese spotted fever (JSF), a tick-borne disease caused by
Rickettsia japonica, and populations of large mammals. To explore factors that affected the area in which JSF cases occur, we used
generalized linear mixed models (GLMMs). We demonstrated that the expansion of the area of JSF occurrence can be predicted by deer density and geographical
factors, which is likely due to differences in landscape structure. However, the associated models have limitations because of the lack of information about the
distribution of vectors and reservoirs. To reduce the risk of humans contracting JSF, potential reservoirs should be confirmed.
Collapse
Affiliation(s)
- Hiroyuki Matsuyama
- Graduate School of Frontier Sciences, The University of Tokyo, 5F Environmental Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Masakatsu Taira
- Division of Virology and Medical Zoology, Chiba Prefectural Institute of Public Health, 666-2 Nitona-cho, Chuo-ku, Chiba 260-8715, Japan
| | - Maki Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, 5F Environmental Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Eiichiro Sando
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
11
|
Wang HL, Lei T, Wang XW, Maruthi MN, Zhu DT, Cameron SL, Rao Q, Shan HW, Colvin J, Liu YQ, Liu SS. A newly recorded Rickettsia of the Torix group is a recent intruder and an endosymbiont in the whitefly Bemisia tabaci. Environ Microbiol 2020; 22:1207-1221. [PMID: 31997547 DOI: 10.1111/1462-2920.14927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Abstract
The bacterium Rickettsia is found widely in phytophagous insects and often exerts profound effects on the phenotype and fitness of its hosts. Here, we decrypt a new, independent, phylogenetically ancient Torix Rickettsia endosymbiont found constantly in a laboratory line of an economically important insect Asia II 7, a putative species of the Bemisia tabaci whitefly complex (Hemiptera: Aleyrodidae), and occasionally in field whitefly populations. This new Rickettsia distributes throughout the body of its whitefly host. Genetically, compared to Rickettsia_bellii_MEAM1 found earlier in whiteflies, the new Rickettsia species has more gene families and pathways, which may be important factors in shaping specific symbiotic relationships. We propose the name 'Candidatus Rickettsia_Torix_Bemisia_tabaci (RiTBt)' for this new endosymbiont associated with whiteflies. Comparative genomic analyses indicate that RiTBi may be a relatively recent intruder in whiteflies given its low abundance in the field and relatively larger genome compared to Rickettsia_bellii_MEAM1.
Collapse
Affiliation(s)
- Hua-Ling Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Teng Lei
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Dan-Tong Zhu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Stephen L Cameron
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, 479074, USA
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, Zhejiang, China
| | - Hong-Wei Shan
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Yin-Quan Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shu-Sheng Liu
- The Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
12
|
Sando E, Suzuki M, Katayama M, Taira M, Fujita H, Ariyoshi K. Rickettsia japonica Infection after Land Leech Bite, Japan. Emerg Infect Dis 2019; 25:1243-1245. [PMID: 31107234 PMCID: PMC6537741 DOI: 10.3201/eid2506.181985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report a case of Rickettsia japonica infection in an 81-year-old man in central Japan. The patient had fever, rash, and an eschar but no evidence of a tick bite. His symptoms began 8 days after a land leech bite. The land leech is a potential vector of R. japonica.
Collapse
|
13
|
Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG, Fokin SI, Modeo L, Petroni G. The Hidden World of Rickettsiales Symbionts: "Candidatus Spectririckettsia obscura," a Novel Bacterium Found in Brazilian and Indian Paramecium caudatum. MICROBIAL ECOLOGY 2019; 77:748-758. [PMID: 30105505 DOI: 10.1007/s00248-018-1243-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.
Collapse
Affiliation(s)
- Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy.
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Charan K Basuri
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
14
|
Kambayashi C, Kurabayashi A, Nakano T. Evaluating the ontogenetic external morphology of an ectoparasitic Torix tukubana (Hirudinida: Glossiphoniidae), with records of its new host amphibian species. Parasitol Res 2018; 118:663-666. [PMID: 30426225 DOI: 10.1007/s00436-018-6141-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023]
Abstract
Torix is a leech genus containing freshwater proboscidate species, and several members of this taxon are ectoparasites specific to amphibians. Torix tukubana inhabits mountain streams in Japan, and only two frog species are known to be hosts. We collected this leech from two other amphibians, Onychodactylus japonicus (Japanese clawed salamander) and Rana ornativentris (montane brown frog), for the first time. This finding suggests that the host specificity of T. tukubana is low. The immature individuals of T. tukubana were also collected and identified based on DNA data. This is the first juvenile record of this species confirmed by its DNA barcode sequences. Several morphological characters known from large individuals and used as diagnostic characteristics in taxonomic keys were not observed in the juveniles, suggesting that these are ontogenetic traits.
Collapse
Affiliation(s)
| | - Atsushi Kurabayashi
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Shiga, Japan.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Takafumi Nakano
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Luce-Fedrow A, Lehman ML, Kelly DJ, Mullins K, Maina AN, Stewart RL, Ge H, John HS, Jiang J, Richards AL. A Review of Scrub Typhus (Orientia tsutsugamushi and Related Organisms): Then, Now, and Tomorrow. Trop Med Infect Dis 2018; 3:E8. [PMID: 30274407 PMCID: PMC6136631 DOI: 10.3390/tropicalmed3010008] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022] Open
Abstract
Scrub typhus and the rickettsial diseases represent some of the oldest recognized vector-transmitted diseases, fraught with a rich historical aspect, particularly as applied to military/wartime situations. The vectors of Orientia tsutsugamushi were once thought to be confined to an area designated as the Tsutsugamushi Triangle. However, recent reports of scrub typhus caused by Orientia species other than O. tsutsugamushi well beyond the limits of the Tsutsugamushi Triangle have triggered concerns about the worldwide presence of scrub typhus. It is not known whether the vectors of O. tsutsugamushi will be the same for the new Orientia species, and this should be a consideration during outbreak/surveillance investigations. Additionally, concerns surrounding the antibiotic resistance of O. tsutsugamushi have led to considerations for the amendment of treatment protocols, and the need for enhanced public health awareness in both the civilian and medical professional communities. In this review, we discuss the history, outbreaks, antibiotic resistance, and burgeoning genomic advances associated with one of the world's oldest recognized vector-borne pathogens, O. tsutsugamushi.
Collapse
Affiliation(s)
- Alison Luce-Fedrow
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Marcie L Lehman
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
| | - Daryl J Kelly
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - Kristin Mullins
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Alice N Maina
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Richard L Stewart
- Department of Biology, Shippensburg University, Shippensburg, PA 17202, USA.
| | - Hong Ge
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Heidi St John
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA.
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
16
|
Maina AN, Klein TA, Kim HC, Chong ST, Yang Y, Mullins K, Jiang J, St. John H, Jarman RG, Hang J, Richards AL. Molecular characterization of novel mosquito-borne Rickettsia spp. from mosquitoes collected at the Demilitarized Zone of the Republic of Korea. PLoS One 2017; 12:e0188327. [PMID: 29155880 PMCID: PMC5695765 DOI: 10.1371/journal.pone.0188327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
Rickettsiae are associated with a diverse range of invertebrate hosts. Of these, mosquitoes could emerge as one of the most important vectors because of their ability to transmit significant numbers of pathogens and parasites throughout the world. Recent studies have implicated Anopheles gambiae as a potential vector of Rickettsia felis. Herein we report that a metagenome sequencing study identified rickettsial sequence reads in culicine mosquitoes from the Republic of Korea. The detected rickettsiae were characterized by a genus-specific quantitative real-time PCR assay and sequencing of rrs, gltA, 17kDa, ompB, and sca4 genes. Three novel rickettsial genotypes were detected (Rickettsia sp. A12.2646, Rickettsia sp. A12.2638 and Rickettsia sp. A12.3271), from Mansonia uniformis, Culex pipiens, and Aedes esoensis, respectively. The results underscore the need to determine the Rickettsia species diversity associated with mosquitoes, their evolution, distribution and pathogenic potential.
Collapse
Affiliation(s)
- Alice N. Maina
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Terry A. Klein
- 65 Medical Brigade, Medical Department Activity-Korea, Unit 15281, Seoul, South Korea
| | - Heung-Chul Kim
- 65 Medical Brigade, Medical Department Activity-Korea, Unit 15247, Seoul, South Korea
| | - Sung-Tae Chong
- 65 Medical Brigade, Medical Department Activity-Korea, Unit 15247, Seoul, South Korea
| | - Yu Yang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Kristin Mullins
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- University of Maryland, School of Medicine, Department of Pathology, Baltimore, Maryland, United States of America
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Heidi St. John
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Allen L. Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| |
Collapse
|
17
|
Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol 2017; 19:4238-4255. [PMID: 28805302 PMCID: PMC5656822 DOI: 10.1111/1462-2920.13887] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022]
Abstract
There is increasing interest in the heritable bacteria of invertebrate vectors of disease as they present novel targets for control initiatives. Previous studies on biting midges (Culicoides spp.), known to transmit several RNA viruses of veterinary importance, have revealed infections with the endosymbiotic bacteria, Wolbachia and Cardinium. However, rickettsial symbionts in these vectors are underexplored. Here, we present the genome of a previously uncharacterized Rickettsia endosymbiont from Culicoides newsteadi (RiCNE). This genome presents unique features potentially associated with host invasion and adaptation, including genes for the complete non-oxidative phase of the pentose phosphate pathway, and others predicted to mediate lipopolysaccharides and cell wall modification. Screening of 414 Culicoides individuals from 29 Palearctic or Afrotropical species revealed that Rickettsia represent a widespread but previously overlooked association, reaching high frequencies in midge populations and present in 38% of the species tested. Sequence typing clusters the Rickettsia within the Torix group of the genus, a group known to infect several aquatic and hematophagous taxa. FISH analysis indicated the presence of Rickettsia bacteria in ovary tissue, indicating their maternal inheritance. Given the importance of biting midges as vectors, a key area of future research is to establish the impact of this endosymbiont on vector competence.
Collapse
Affiliation(s)
- Jack Pilgrim
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Mats Ander
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Claire Garros
- CIRAD, UMR ASTRE, Montpellier 34398, France.,CIRAD, UMR ASTRE, Sainte-Clotilde, La Réunion 97490, France
| | - Matthew Baylis
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 3GL, UK
| | - Gregory D D Hurst
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Stefanos Siozios
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
18
|
Maina AN, Luce-Fedrow A, Omulo S, Hang J, Chan TC, Ade F, Jima DD, Ogola E, Ge H, Breiman RF, Njenga MK, Richards AL. Isolation and characterization of a novel Rickettsia species (Rickettsia asembonensis sp. nov.) obtained from cat fleas (Ctenocephalides felis). Int J Syst Evol Microbiol 2016; 66:4512-4517. [DOI: 10.1099/ijsem.0.001382] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alice N. Maina
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Alison Luce-Fedrow
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA
| | | | - Jun Hang
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Teik-Chye Chan
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | - Dereje D. Jima
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Eric Ogola
- Kenya Medical Research Institute, Kisumu, Kenya
| | - Hong Ge
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | - Allen L. Richards
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| |
Collapse
|
19
|
Takacs-Vesbach C, King K, Van Horn D, Larkin K, Neiman M. Distinct Bacterial Microbiomes in Sexual and Asexual Potamopyrgus antipodarum, a New Zealand Freshwater Snail. PLoS One 2016; 11:e0161050. [PMID: 27563725 PMCID: PMC5001651 DOI: 10.1371/journal.pone.0161050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 07/29/2016] [Indexed: 02/01/2023] Open
Abstract
Different reproductive strategies and the transition to asexuality can be associated with microbial symbionts. Whether such a link exists within mollusks has never been evaluated. We took the first steps towards addressing this possibility by performing pyrosequencing of bacterial 16S rRNA genes associated with Potamopyrgus antipodarum, a New Zealand freshwater snail. A diverse set of 60 tissue collections from P. antipodarum that were genetically and geographically distinct and either obligately sexual or asexual were included, which allowed us to evaluate whether reproductive mode was associated with a particular bacterial community. 2624 unique operational taxonomic units (OTU, 97% DNA similarity) were detected, which were distributed across ~30 phyla. While alpha diversity metrics varied little among individual samples, significant differences in bacterial community composition and structure were detected between sexual and asexual snails, as well as among snails from different lakes and genetic backgrounds. The mean dissimilarity of the bacterial communities between the sexual and asexual P. antipodarum was 90%, largely driven by the presence of Rickettsiales in sexual snails and Rhodobacter in asexual snails. Our study suggests that there might be a link between reproductive mode and the bacterial microbiome of P. antipodarum, though a causal connection requires additional study.
Collapse
Affiliation(s)
- Cristina Takacs-Vesbach
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| | - Kayla King
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - David Van Horn
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Katelyn Larkin
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
20
|
Yang A, Narechania A, Kim E. Rickettsial endosymbiont in the "early-diverging" streptophyte green alga Mesostigma viride. JOURNAL OF PHYCOLOGY 2016; 52:219-229. [PMID: 27037587 DOI: 10.1111/jpy.12385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
A bacterial endosymbiont was unexpectedly found in the "axenic" culture strain of the streptophyte green alga Mesostigma viride (NIES-995). Phylogenetic analyses based on 16S rRNA gene sequences showed that the symbiont belongs to the order Rickettsiales, specifically to the recently designated clade "Candidatus Megaira," which is closely related to the well-known Rickettsia clade. Rickettsiales bacteria of the "Ca. Megaira" clade are found in a taxonomically diverse array of eukaryotic hosts, including chlorophycean green algae, several ciliate species, and invertebrates such as Hydra. Transmission electron microscopy, fluorescence in situ hybridi-zation, and SYBR Green I staining experiments revealed that the endosymbiont of M. viride NIES-995 is rod shaped, typically occurs in clusters, and is surrounded by a halo-like structure, presumably formed by secretory substances from the bacterium. Two additional M. viride strains (NIES-296 and NIES-475), but not SAG50-1, were found to house the rickettsial endosymbiont. Analyses of strain NIES-995 transcriptome data indicated the presence of at least 91 transcriptionally active genes of symbiont origins. These include genes for surface proteins (e.g., rOmpB) that are known to play key roles in bacterial attachment onto host eukaryotes in related Rickettsia species. The assembled M. viride transcriptome includes transcripts that code for a suite of predicted algal-derived proteins, such as Ku70, WASH, SCAR, and CDC42, which may be important in the formation of the algal-rickettsial association.
Collapse
Affiliation(s)
- Ashley Yang
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Apurva Narechania
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York, 10024, USA
| |
Collapse
|
21
|
Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M, Soares CAG, da Silva-Neto ID, Berendonk TU, Petroni G. "Candidatus Fokinia solitaria", a Novel "Stand-Alone" Symbiotic Lineage of Midichloriaceae (Rickettsiales). PLoS One 2016; 11:e0145743. [PMID: 26731731 PMCID: PMC4701390 DOI: 10.1371/journal.pone.0145743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
Collapse
Affiliation(s)
- Franziska Szokoli
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Biologisches Institut II, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
| | - Carlos A. G. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thomas U. Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
22
|
Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a Bloody Mess: B-Vitamin Independent Metabolic Convergence among Gammaproteobacterial Obligate Endosymbionts from Blood-Feeding Arthropods and the Leech Haementeria officinalis. Genome Biol Evol 2015; 7:2871-84. [PMID: 26454017 PMCID: PMC4684696 DOI: 10.1093/gbe/evv188] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Endosymbiosis is a common phenomenon in nature, especially between bacteria and insects, whose typically unbalanced diets are usually complemented by their obligate endosymbionts. While much interest and focus has been directed toward phloem-feeders like aphids and mealybugs, blood-feeders such as the Lone star tick (Amblyomma americanum), Glossina flies, and the human body louse (Pediculus humanus corporis) depend on obligate endosymbionts which complement their B-vitamin-deficient diets, and thus are required for growth and survival. Glossiphoniid leeches have also been found to harbor distinct endosymbionts housed in specialized organs. Here, we present the genome of the bacterial endosymbiont from Haementeria officinalis, first of a glossiphoniid leech. This as-yet-unnamed endosymbiont belongs to the Gammaproteobacteria, has a pleomorphic shape and is restricted to bacteriocytes. For this bacterial endosymbiont, we propose the name Candidatus Providencia siddallii. This symbiont possesses a highly reduced genome with high A+T content and a reduced set of metabolic capabilities, all of which are common characteristics of ancient obligate endosymbionts of arthropods. Its genome has retained many pathways related to the biosynthesis of B-vitamins, pointing toward a role in supplementing the blood-restricted diet of its host. Through comparative genomics against the endosymbionts of A. americanum, Glossina flies, and P. humanus corporis, we were able to detect a high degree of metabolic convergence among these four very distantly related endosymbiotic bacteria.
Collapse
Affiliation(s)
| | - Alejandro Oceguera-Figueroa
- Laboratorio de Helmintología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain
| | - Luis F Jiménez-García
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Andres Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain Área de Genómica y Salud de la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Valencia, Spain
| |
Collapse
|
23
|
Kawafune K, Hongoh Y, Hamaji T, Sakamoto T, Kurata T, Hirooka S, Miyagishima SY, Nozaki H. Two different rickettsial bacteria invading Volvox carteri. PLoS One 2015; 10:e0116192. [PMID: 25671568 PMCID: PMC4324946 DOI: 10.1371/journal.pone.0116192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. METHODOLOGY/PRINCIPAL FINDINGS Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. CONCLUSION/SIGNIFICANCE At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Takashi Hamaji
- Donald Danforth Plant Science Center, Saint Louis, Missouri, United States of America
| | - Tomoaki Sakamoto
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tetsuya Kurata
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Shunsuke Hirooka
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
24
|
Flagellar movement in two bacteria of the family rickettsiaceae: a re-evaluation of motility in an evolutionary perspective. PLoS One 2014; 9:e87718. [PMID: 24505307 PMCID: PMC3914857 DOI: 10.1371/journal.pone.0087718] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023] Open
Abstract
Bacteria of the family Rickettsiaceae have always been largely studied not only for their importance in the medical field, but also as model systems in evolutionary biology. In fact, they share a recent common ancestor with mitochondria. The most studied species, belonging to genera Rickettsia and Orientia, are hosted by terrestrial arthropods and include many human pathogens. Nevertheless, recent findings show that a large part of Rickettsiaceae biodiversity actually resides outside the group of well-known pathogenic bacteria. Collecting data on these recently described non-conventional members of the family is crucial in order to gain information on ancestral features of the whole group. Although bacteria of the family Rickettsiaceae, and of the whole order Rickettsiales, are formally described as non-flagellated prokaryotes, some recent findings renewed the debate about this feature. In this paper we report the first finding of members of the family displaying numerous flagella and active movement inside their host cells. These two new taxa are hosted in aquatic environments by protist ciliates and are described here by means of ultrastructural and molecular characterization. Data here reported suggest that the ancestor of Rickettsiales displayed flagellar movement and re-evaluate the hypothesis that motility played a key-role in the origin of mitochondria. Moreover, our study highlights that the aquatic environment represents a well exploited habitat for bacteria of the family Rickettsiaceae. Our results encourage a deep re-consideration of ecological and morphological traits of the family and of the whole order.
Collapse
|
25
|
Schrallhammer M, Ferrantini F, Vannini C, Galati S, Schweikert M, Görtz HD, Verni F, Petroni G. 'Candidatus Megaira polyxenophila' gen. nov., sp. nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae. PLoS One 2013; 8:e72581. [PMID: 23977321 PMCID: PMC3748036 DOI: 10.1371/journal.pone.0072581] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/10/2013] [Indexed: 01/23/2023] Open
Abstract
"Neglected Rickettsiaceae" (i.e. those harboured by non-hematophagous eukaryotic hosts) display greater phylogenetic variability and more widespread dispersal than pathogenic ones; yet, the knowledge about their actual host range and host shift mechanism is scarce. The present work reports the characterization following the full-cycle rRNA approach (SSU rRNA sequence, specific in situ hybridization, and ultrastructure) of a novel rickettsial bacterium, herewith proposed as 'Candidatus Megaira polyxenophila' gen. nov., sp. nov. We found it in association with four different free-living ciliates (Diophrys oligothrix, Euplotes octocarinatus, Paramecium caudatum, and Spirostomum sp., all belonging to Alveolata, Ciliophora); furthermore it was recently observed as intracellular occurring in Carteria cerasiformis and Pleodorina japonica (Chlorophyceae, Chlorophyta). Phylogenetic analyses demonstrated the belonging of the candidate new genus to the family Rickettsiaceae (Alphaproteobacteria, Rickettsiales) as a sister group of the genus Rickettsia. In situ observations revealed the ability of the candidate new species to colonize either nuclear or cytoplasmic compartments, depending on the host organism. The presence of the same bacterial species within different, evolutionary distant, hosts indicates that 'Candidatus Megaira polyxenophila' recently underwent several distinct host shifts, thus suggesting the existence of horizontal transmission pathways. We consider these findings as indicative of an unexpected spread of rickettsial infections in aquatic communities, possibly by means of trophic interactions, and hence propose a new interpretation of the origin and phylogenetic diversification of rickettsial bacteria.
Collapse
Affiliation(s)
- Martina Schrallhammer
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- Biologisches Institut, Universität Stuttgart, Stuttgart, Germany
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- * E-mail: (GP); (MS)
| | | | | | - Stefano Galati
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | | | | | - Franco Verni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
- * E-mail: (GP); (MS)
| |
Collapse
|
26
|
"Candidatus Midichloriaceae" fam. nov. (Rickettsiales), an ecologically widespread clade of intracellular alphaproteobacteria. Appl Environ Microbiol 2013; 79:3241-8. [PMID: 23503305 DOI: 10.1128/aem.03971-12] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
"Candidatus Midichloria mitochondrii" is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus. Bacteria phylogenetically related to "Ca. Midichloria mitochondrii" (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including humans. Despite numerous studies focused on specific members of the MALO group, no comprehensive phylogenetic and statistical analyses have so far been performed on the group as a whole. Here, we present a multidisciplinary investigation based on 16S rRNA gene sequences using both phylogenetic and statistical methods, thereby analyzing MALOs in the overall framework of the Rickettsiales. This study revealed that (i) MALOs form a monophyletic group; (ii) the MALO group is structured into distinct subgroups, verifying current genera as significant evolutionary units and identifying several subclades that could represent novel genera; (iii) the MALO group ranks at the level of described Rickettsiales families, leading to the proposal of the novel family "Candidatus Midichloriaceae." In addition, based on the phylogenetic trees generated, we present an evolutionary scenario to interpret the distribution and life history transitions of these microorganisms associated with highly divergent eukaryotic hosts: we suggest that aquatic/environmental protista have acted as evolutionary reservoirs for members of this novel family, from which one or more lineages with the capacity of infecting metazoa have evolved.
Collapse
|
27
|
Yamauchi A, Telschow A. Bistability of endosymbiont evolution of genome size and host sex control. J Theor Biol 2012; 309:58-66. [DOI: 10.1016/j.jtbi.2012.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 05/16/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
28
|
Goffredi SK, Morella NM, Pulcrano ME. Affiliations between bacteria and marine fish leeches (Piscicolidae), with emphasis on a deep-sea species from Monterey Canyon, CA. Environ Microbiol 2012; 14:2429-44. [PMID: 22681178 DOI: 10.1111/j.1462-2920.2012.02798.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leeches within the Piscicolidae are of great numerical and taxonomic importance, yet little is known about bacteria that associate with this diverse group of blood-feeding marine parasites of fish and elasmobranchs. We focused primarily on the bacteria from a deep-sea leech species of unknown identity, collected at ∼ 600 m depth in Monterey Canyon, CA, along with two shallow-living leech genera, Austrobdella and Branchellion, from Los Angeles Harbor, CA. Molecular analysis of all five leech species revealed a dominance of gammaproteobacteria, which were distinct from each other and from previously reported freshwater leech symbionts. Bacteria related to members of the genus Psychromonas (99% similarity in 16S rRNA) were dominant in the deep-sea leech species (80-94% of recovered ribotypes) collected over 19 months from two different locations. Psychromonas was not detected in cocoons or 2-16 week-old juveniles, suggesting that acquisition is via the environment at a later stage. Transmission electron microscopy did, however, reveal abundant bacteria-like cells near areas of thinning of the juvenile epithelial surface, as well as Psychromonas sparsely distributed internally. Electron and fluorescence in situ microscopy of adults also showed Psychromonas-like bacteria concentrated within the crop. Despite the apparent non-transient nature of the association between Psychromonas and the deep-sea leech, their functional role, if any, is not known. The prevalence, however, of an abundant bacterial genus in one piscicolid leech species, as well as the presence of a dominant bacterial species in singular observations of four additional marine species, suggests that members of the Piscicolidae, possibly basal within the class Hirudinea, form specific alliances with microbes.
Collapse
Affiliation(s)
- S K Goffredi
- Biology Department, Occidental College, Los Angeles, CA, USA.
| | | | | |
Collapse
|
29
|
Transovarial transmission of Rickettsia spp. and organ-specific infection of the whitefly Bemisia tabaci. Appl Environ Microbiol 2012; 78:5565-74. [PMID: 22660706 DOI: 10.1128/aem.01184-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The whitefly Bemisia tabaci is a cosmopolitan insect pest that harbors Portiera aleyrodidarum, the primary obligatory symbiotic bacterium, and several facultative secondary symbionts. Secondary symbionts in B. tabaci are generally associated with the bacteriome, ensuring their vertical transmission; however, Rickettsia is an exception and occupies most of the body cavity, except the bacteriome. The mode of Rickettsia transfer between generations and its subcellular localization in insect organs have not been investigated. Using electron and fluorescence microscopy, we show that Rickettsia infects the digestive, salivary, and reproductive organs of the insect; however, it was not observed in the bacteriome. Rickettsia invades the oocytes during early developmental stages and resides in follicular cells and cytoplasm; it is mostly excluded when the egg matures; however, some bacterial cells remain in the egg, ensuring their transfer to subsequent generations. Rickettsia was localized to testicles and the spermatheca, suggesting a horizontal transfer between males and females during mating. The bacterium was further observed at large amounts in midgut cells, concentrating in vacuole-like structures, and was located in the hemolymph, specifically at exceptionally large amounts around bacteriocytes and in fat bodies. Organs further infected by Rickettsia included the primary salivary glands and stylets, sites of possible secretion of the bacterium outside the whitefly body. The close association between Rickettsia and the B. tabaci digestive system might be important for digestive purposes. The vertical transmission of Rickettsia to subsequent generations occurs via the oocyte and not, like other secondary symbionts, the bacteriome.
Collapse
|
30
|
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 2012; 27:300-5. [PMID: 22446312 PMCID: PMC4036045 DOI: 10.1264/jsme2.me12020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats.
Collapse
Affiliation(s)
- Masaki Enomoto
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|
31
|
Balcells ME, Rabagliati R, García P, Poggi H, Oddó D, Concha M, Abarca K, Jiang J, Kelly DJ, Richards AL, Fuerst PA. Endemic scrub typhus-like illness, Chile. Emerg Infect Dis 2012; 17:1659-63. [PMID: 21888791 PMCID: PMC3322051 DOI: 10.3201/eid1709.100960] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
TOC Summary: Rickettsiae closely related to the scrub typhus agent are present in the Western Hemisphere. We report a case of scrub typhus in a 54-year-old man who was bitten by several terrestrial leeches during a trip to Chiloé Island in southern Chile in 2006. A molecular sample, identified as related to Orientia tsutsugamushi based on the sequence of the16S rRNA gene, was obtained from a biopsy specimen of the eschar on the patient’s leg. Serologic analysis showed immunoglobulin G conversion against O. tsutsugamushi whole cell antigen. This case and its associated molecular analyses suggest that an Orientia-like agent is present in the Western Hemisphere that can produce scrub typhus–like illness. The molecular analysis suggests that the infectious agent is closely related, although not identical, to members of the Orientia sp. from Asia.
Collapse
Affiliation(s)
- M Elvira Balcells
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kawafune K, Hongoh Y, Hamaji T, Nozaki H. Molecular identification of rickettsial endosymbionts in the non-phagotrophic volvocalean green algae. PLoS One 2012; 7:e31749. [PMID: 22363720 PMCID: PMC3283676 DOI: 10.1371/journal.pone.0031749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background The order Rickettsiales comprises Gram-negative obligate intracellular bacteria (also called rickettsias) that are mainly associated with arthropod hosts. This group is medically important because it contains human-pathogenic species that cause dangerous diseases. Until now, there has been no report of non-phagotrophic photosynthetic eukaryotes, such as green plants, harboring rickettsias. Methodology/Principal Findings We examined the bacterial endosymbionts of two freshwater volvocalean green algae: unicellular Carteria cerasiformis and colonial Pleodorina japonica. Epifluorescence microscopy using 4′-6-deamidino-2-phenylindole staining revealed the presence of endosymbionts in all C. cerasiformis NIES-425 cells, and demonstrated a positive correlation between host cell size and the number of endosymbionts. Strains both containing and lacking endosymbionts of C. cerasiformis (NIES-425 and NIES-424) showed a >10-fold increase in cell number and typical sigmoid growth curves over 192 h. A phylogenetic analysis of 16 S ribosomal (r)RNA gene sequences from the endosymbionts of C. cerasiformis and P. japonica demonstrated that they formed a robust clade (hydra group) with endosymbionts of various non-arthropod hosts within the family Rickettsiaceae. There were significantly fewer differences in the 16 S rRNA sequences of the rickettsiacean endosymbionts between C. cerasiformis and P. japonica than in the chloroplast 16 S rRNA or 18 S rRNA of the host volvocalean cells. Fluorescence in situ hybridization demonstrated the existence of the rickettsiacean endosymbionts in the cytoplasm of two volvocalean species. Conclusions/Significance The rickettsiacean endosymbionts are likely not harmful to their volvocalean hosts and may have been recently transmitted from other non-arthropod organisms. Because rickettsias are the closest relatives of mitochondria, incipient stages of mitochondrial endosymbiosis may be deduced using both strains with and without C. cerasiformis endosymbionts.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, School of Bioscience and Biotechnology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
Ferrantini F, Fokin SI, Modeo L, Andreoli I, Dini F, Görtz HD, Verni F, Petroni G. "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like organism in the ciliated protist Pseudomicrothorax dubius (Ciliophora, Nassophorea). J Eukaryot Microbiol 2011; 56:119-29. [PMID: 19457052 DOI: 10.1111/j.1550-7408.2008.00377.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsia-like organisms (RLO) are obligate, often highly fastidious, intracellular bacterial parasites associated with a variety of vertebrate and invertebrate hosts. Despite their importance as causative agents of severe mortality outbreaks in farmed aquatic species, little is known about their life cycle and their host range. The present work reports the characterization of "Candidatus Cryptoprodotis polytropus," a novel Rickettsia-like bacterium associated with the common ciliate species Pseudomicrothorax dubius by means of the "Full-Cycle rRNA Approach" and ultrastructural observations. The morphological description by in vivo and scanning electron microscopy and the 18S rRNA gene sequence of the host species is provided as well. Phylogenetic analysis based on the 16S rRNA gene supports the inclusion of "Candidatus Cryptoprodotis polytropus" within the family Rickettsiaceae (cl. Alphaproteobacteria) together with the genera Rickettsia and Orientia. Observations on natural ciliate populations account for the occasional nature of this likely parasitic association. The presence of a previously unknown RLO in ciliates sheds a new light on the possible role of protists as transient hosts, vectors or natural reservoir for some economically important pathogens.
Collapse
Affiliation(s)
- Filippo Ferrantini
- Department of Biology, Protistology and Zoology Unit, University of Pisa, Via A. Volta 4/6, I-56126 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Faisal M, Schulz C, Eissa A, Whelan G. High prevalence of buccal ulcerations in largemouth bass, Micropterus salmoides (Centrarchidae) from Michigan inland lakes associated with Myzobdella lugubris Leidy 1851 (Annelida: Hirudinea). Parasite 2011; 18:79-84. [PMID: 21395209 PMCID: PMC3671407 DOI: 10.1051/parasite/2011181079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Widespread mouth ulcerations were observed in largemouth bass collected from eight inland lakes in the Lower Peninsula of Michigan during the summer months of 2002 and 2003. These ulcerations were associated with, and most likely caused by, leech parasitism. Through the use of morphological dichotomous keys, it was determined that all leeches collected are of one species: Myzobdella lugubris. Among the eight lakes examined, Lake Orion and Devils Lake had the highest prevalence of leech parasitism (34% and 29%, respectively) and mouth ulcerations (53% and 68%, respectively). Statistical analyses demonstrated that leech and ulcer prevalence varied significantly from one lake to the other. Additionally, it was determined that the relationship between the prevalence of ulcers and the prevalence of leech attachment is significant, indicating that leech parasitism is most likely the cause of ulceration. The ulcers exhibited deep hemorrhagic centers and raised irregular edges. Affected areas lost their epithelial lining and submucosa, with masses of bacteria colonizing the damaged tissues. Since largemouth bass is a popular global sportfish and critical to the food web of inland lakes, there are concerns that the presence of leeches, damaged buccal mucosa, and general unsightliness may negatively affect this important sportfishery.
Collapse
Affiliation(s)
- M Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA.
| | | | | | | |
Collapse
|
35
|
Georgiades K, Merhej V, El Karkouri K, Raoult D, Pontarotti P. Gene gain and loss events in Rickettsia and Orientia species. Biol Direct 2011; 6:6. [PMID: 21303508 PMCID: PMC3055210 DOI: 10.1186/1745-6150-6-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 02/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome degradation is an ongoing process in all members of the Rickettsiales order, which makes these bacterial species an excellent model for studying reductive evolution through interspecies variation in genome size and gene content. In this study, we evaluated the degree to which gene loss shaped the content of some Rickettsiales genomes. We shed light on the role played by horizontal gene transfers in the genome evolution of Rickettsiales. RESULTS Our phylogenomic tree, based on whole-genome content, presented a topology distinct from that of the whole core gene concatenated phylogenetic tree, suggesting that the gene repertoires involved have different evolutionary histories. Indeed, we present evidence for 3 possible horizontal gene transfer events from various organisms to Orientia and 6 to Rickettsia spp., while we also identified 3 possible horizontal gene transfer events from Rickettsia and Orientia to other bacteria. We found 17 putative genes in Rickettsia spp. that are probably the result of de novo gene creation; 2 of these genes appear to be functional. On the basis of these results, we were able to reconstruct the gene repertoires of "proto-Rickettsiales" and "proto-Rickettsiaceae", which correspond to the ancestors of Rickettsiales and Rickettsiaceae, respectively. Finally, we found that 2,135 genes were lost during the evolution of the Rickettsiaceae to an intracellular lifestyle. CONCLUSIONS Our phylogenetic analysis allowed us to track the gene gain and loss events occurring in bacterial genomes during their evolution from a free-living to an intracellular lifestyle. We have shown that the primary mechanism of evolution and specialization in strictly intracellular bacteria is gene loss. Despite the intracellular habitat, we found several horizontal gene transfers between Rickettsiales species and various prokaryotic, viral and eukaryotic species. OPEN PEER REVIEW Reviewed by Arcady Mushegian, Eugene V. Koonin and Patrick Forterre. For the full reviews please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, URMITE, CNRS-IRD UMR 6236 IFR48 Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
36
|
Merhej V, Raoult D. Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 2010; 86:379-405. [DOI: 10.1111/j.1469-185x.2010.00151.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Küchler SM, Kehl S, Dettner K. Characterization and localization of Rickettsia sp. in water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol Ecol 2009; 68:201-11. [PMID: 19573201 DOI: 10.1111/j.1574-6941.2009.00665.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the present study, Rickettsia sp. was detected in four water beetles of the genus Deronectes (Dytiscidae) for the first time. Rickettsiae were found in 100% of examined specimens of Deronectes platynotus (45/45), 39.4% of Deronectes aubei (28/71), 40% of Deronectes delarouzei (2/5) and 33.3% of Deronectes semirufus (1/3). Analysis of 16S rRNA gene sequences revealed a phylogenetic relationship with rickettsial isolates of Limonia chorea (Diptera), tentatively classified as members of the basal ancestral group. Phylogenetic analysis of the gltA (citrate synthase) gene sequences showed that Deronectes symbionts were closest to bacterial symbionts from spiders. Ultrastructural examinations revealed typical morphological features and intracellular arrangements of rickettsiae. The distribution, transmission and localization of Rickettsia sp. in D. platynotus were studied using a diagnostic PCR assay and FISH. Eggs from infected females of D. platynotus were all Rickettsia-positive, indicative of a vertical transmission.
Collapse
Affiliation(s)
- Stefan Martin Küchler
- Department of Animal Ecology II, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany.
| | | | | |
Collapse
|
38
|
Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM. Evolution and diversity of Rickettsia bacteria. BMC Biol 2009; 7:6. [PMID: 19187530 PMCID: PMC2662801 DOI: 10.1186/1741-7007-7-6] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 02/02/2009] [Indexed: 02/04/2023] Open
Abstract
Background Rickettsia are intracellular symbionts of eukaryotes that are best known for infecting and causing serious diseases in humans and other mammals. All known vertebrate-associated Rickettsia are vectored by arthropods as part of their life-cycle, and many other Rickettsia are found exclusively in arthropods with no known secondary host. However, little is known about the biology of these latter strains. Here, we have identified 20 new strains of Rickettsia from arthropods, and constructed a multi-gene phylogeny of the entire genus which includes these new strains. Results We show that Rickettsia are primarily arthropod-associated bacteria, and identify several novel groups within the genus. Rickettsia do not co-speciate with their hosts but host shifts most often occur between related arthropods. Rickettsia have evolved adaptations including transmission through vertebrates and killing males in some arthropod hosts. We uncovered one case of horizontal gene transfer among Rickettsia, where a strain is a chimera from two distantly related groups, but multi-gene analysis indicates that different parts of the genome tend to share the same phylogeny. Conclusion Approximately 150 million years ago, Rickettsia split into two main clades, one of which primarily infects arthropods, and the other infects a diverse range of protists, other eukaryotes and arthropods. There was then a rapid radiation about 50 million years ago, which coincided with the evolution of life history adaptations in a few branches of the phylogeny. Even though Rickettsia are thought to be primarily transmitted vertically, host associations are short lived with frequent switching to new host lineages. Recombination throughout the genus is generally uncommon, although there is evidence of horizontal gene transfer. A better understanding of the evolution of Rickettsia will help in the future to elucidate the mechanisms of pathogenicity, transmission and virulence.
Collapse
Affiliation(s)
- Lucy A Weinert
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | | | | | | | | |
Collapse
|
39
|
Reeves WK, Kato CY, Gilchriest T. Pathogen screening and bionomics of Lutzomyia apache (Diptera: Psychodidae) in Wyoming, USA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2008; 24:444-447. [PMID: 18939699 DOI: 10.2987/5745.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phlebotomine sand flies are vectors of bacteria, parasites, and viruses. Lutzomyia apache, a North American sand fly, was incriminated as a vector of vesicular stomatitis viruses (VSV) due to overlapping ranges of the sand fly and recent outbreaks of VSV. We report on the discovery of 2 populations of L. apache in Wyoming from Albany and Fremont counties. We attempted to isolate VSV and phleboviruses from sand flies from Albany County and screened select flies by polymerase chain reaction for Bartonella and blood meals. We did not isolate viruses or detect DNA from vertebrate hosts or Bartonella. Flies were also tested for insect pathogens and other microbes. We detected a Rickettsia sp. in all flies that were examined and a parasitic protozoon, Ascogregarina sp., from the midgut of a larva. Eustigmaeus lirella, a stigmaeid mite, parasitized 2 field-caught females.
Collapse
Affiliation(s)
- Will K Reeves
- Agricultural Research Service, Arthropod-Born Animal Diseases Research Laboratory, College of Agriculture, Department 3354, 1000 E University Avenue, Laramie, WY 82071 , USA
| | | | | |
Collapse
|
40
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2007; 2:e266. [PMID: 17342200 PMCID: PMC1800911 DOI: 10.1371/journal.pone.0000266] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/08/2007] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.
Collapse
Affiliation(s)
- Joseph J. Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda S. Beier
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Ammerman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua M. Shallom
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anjan Purkayastha
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bruno S. Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Abstract
The best-known members of the bacterial genus Rickettsia are associates of blood-feeding arthropods that are pathogenic when transmitted to vertebrates. These species include the agents of acute human disease such as typhus and Rocky Mountain spotted fever. However, many other Rickettsia have been uncovered in recent surveys of bacteria associated with arthropods and other invertebrates; the hosts of these bacteria have no relationship with vertebrates. It is therefore perhaps more appropriate to consider Rickettsia as symbionts that are transmitted vertically in invertebrates, and secondarily as pathogens of vertebrates. In this review, we highlight the emerging diversity of Rickettsia species that are not associated with vertebrate pathogenicity. Phylogenetic analysis suggests multiple transitions between symbionts that are transmitted strictly vertically and those that exhibit mixed (horizontal and vertical) transmission. Rickettsia may thus be an excellent model system in which to study the evolution of transmission pathways. We also focus on the emergence of Rickettsia as a diverse reproductive manipulator of arthropods, similar to the closely related Wolbachia, including strains associated with male-killing, parthenogenesis, and effects on fertility. We emphasize some outstanding questions and potential research directions, and suggest ways in which the study of non-pathogenic Rickettsia can advance our understanding of their disease-causing relatives.
Collapse
Affiliation(s)
- Steve J Perlman
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
| | | | | |
Collapse
|
43
|
Frati F, Negri I, Fanciulli PP, Pellecchia M, Dallai R. Ultrastructural and molecular identification of a new Rickettsia endosymbiont in the springtail Onychiurus sinensis (Hexapoda, Collembola). J Invertebr Pathol 2006; 93:150-6. [PMID: 16934288 DOI: 10.1016/j.jip.2006.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
In this paper we provide microscopic and molecular evidence for the presence of an endosymbiontic bacterium in male and female gonads of the soil arthropod Onychiurus sinensis. The sequence of the gene encoding for the 16S rRNA shows that the bacterium is a member of the genus Rickettsia, and some anomalies presumably associated with the presence of these microorganisms have been detected. Although the Rickettsia found in O. sinensis has the smallest genetic divergence with Rickettsia bellii, the phylogenetic analysis fails to find support for a sister-group relationship between these two species, rather suggesting that most Rickettsia species/strains isolated in various arthropods have rapidly evolved and diversified in what appears to be a sudden burst of evolution.
Collapse
Affiliation(s)
- Francesco Frati
- Dipartimento di Biologia Evolutiva, Università di Siena, Italy.
| | | | | | | | | |
Collapse
|
44
|
Graf J, Kikuchi Y, Rio RVM. Leeches and their microbiota: naturally simple symbiosis models. Trends Microbiol 2006; 14:365-71. [PMID: 16843660 DOI: 10.1016/j.tim.2006.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/09/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Strictly blood-feeding leeches and their limited microbiota provide natural and powerful model systems to examine symbiosis. Blood is devoid of essential nutrients and it is thought that symbiotic bacteria synthesize these for the host. In this review, three distinct leech-microbe associations are described: (i) the mycetome, which is the large symbiont-containing organ associated with the esophagus; (ii) the nephridia and bladders that form the excretory system; and (iii) the digestive tract, where two bacterial species dominate the microbiota. The current knowledge and features of leech biology that promote the investigation of interspecific interactions (host-microbe and microbe-microbe) and their evolution are highlighted.
Collapse
Affiliation(s)
- Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125, USA.
| | | | | |
Collapse
|
45
|
Worthen PL, Gode CJ, Graf J. Culture-independent characterization of the digestive-tract microbiota of the medicinal leech reveals a tripartite symbiosis. Appl Environ Microbiol 2006; 72:4775-81. [PMID: 16820471 PMCID: PMC1489327 DOI: 10.1128/aem.00356-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 05/06/2006] [Indexed: 01/21/2023] Open
Abstract
Culture-based studies of the microbial community within the gut of the medicinal leech have typically been focused on various Aeromonas species, which were believed to be the sole symbiont of the leech digestive tract. In this study, analysis of 16S rRNA gene clone libraries confirmed the presence of Aeromonas veronii and revealed a second symbiont, clone PW3, a novel member of the Rikenellaceae, within the crop, a large compartment where ingested blood is stored prior to digestion. The diversity of the bacterial community in the leech intestinum was determined, and additional symbionts were detected, including members of the alpha-, gamma-, and delta-Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. The relative abundances of the clones suggested that A. veronii and the novel clone, PW3, also dominate the intestinum community, while other clones, representing transient organisms, were typically present in low numbers. The identities of these transients varied greatly between individual leeches. Neither time after feeding nor feeding on defibrinated blood caused a change in identity of the dominant members of the microbial communities. Terminal restriction fragment length polymorphism analysis was used to verify that the results from the clone libraries were representative of a larger data set. The presence of a two-member bacterial community in the crop provides a unique opportunity to investigate both symbiont-symbiont and symbiont-host interactions in a natural model of digestive-tract associations.
Collapse
Affiliation(s)
- Paul L Worthen
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd., Unit 3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
46
|
Perkins SL, Budinoff RB, Siddall ME. New gammaproteobacteria associated with blood-feeding leeches and a broad phylogenetic analysis of leech endosymbionts. Appl Environ Microbiol 2005; 71:5219-24. [PMID: 16151107 PMCID: PMC1214607 DOI: 10.1128/aem.71.9.5219-5224.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many monophagous animals have coevolutionary relationships with bacteria that provide unavailable nutrients to the host. Frequently, these microbial partners are vertically inherited and reside in specialized structures or tissues. Here we report three new lineages of bacterial symbionts of blood-feeding leeches, one from the giant Amazonian leech, Haementeria ghilianii, and two others from Placobdelloides species. These hosts each possess a different mycetome or esophageal organ morphology where the bacterial cells are located. DNA sequencing of the bacterial 16S rRNA genes and fluorescent in situ hybridization placed these symbionts in two separate clades in the class Gammaproteobacteria. We also conducted a broad phylogenetic analysis of the herein-reported DNA sequences as well as others from bacterial symbionts reported elsewhere in the literature, including alphaproteobacterial symbionts from the leech genus Placobdella as well as Aeromonas veronii from the medicinal leech, Hirudo medicinalis, and a Rickettsia sp. detected in Hemiclepsis marginata. Combined, these results indicate that blood-feeding leeches have forged bacterial partnerships at least five times during their evolutionary history.
Collapse
Affiliation(s)
- Susan L Perkins
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA.
| | | | | |
Collapse
|
47
|
Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 2005; 71:4069-75. [PMID: 16000822 PMCID: PMC1168972 DOI: 10.1128/aem.71.7.4069-4075.2005] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 02/02/2005] [Indexed: 11/20/2022] Open
Abstract
In natural populations of the pea aphid Acyrthosiphon pisum, a facultative bacterial symbiont of the genus Rickettsia has been detected at considerable infection frequencies worldwide. We investigated the effects of the Rickettsia symbiont on the host aphid and also on the coexisting essential symbiont Buchnera. In situ hybridization revealed that the Rickettsia symbiont was specifically localized in two types of host cells specialized for endosymbiosis: secondary mycetocytes and sheath cells. Electron microscopy identified bacterial rods, about 2 mum long and 0.5 mum thick, in sheath cells of Rickettsia-infected aphids. Virus-like particles were sometimes observed in association with the bacterial cells. By an antibiotic treatment, we generated Rickettsia-infected and Rickettsia-eliminated aphid strains with an identical genetic background. Comparison of these strains revealed that Rickettsia infection negatively affected some components of the host fitness. Quantitative PCR analysis of the bacterial population dynamics identified a remarkable interaction between the coexisting symbionts: Buchnera population was significantly suppressed in the presence of Rickettsia, particularly at the young adult stage, when the aphid most actively reproduces. On the basis of these results, we discussed the possible mechanisms that enable the prevalence of Rickettsia infection in natural host populations in spite of the negative fitness effects observed in the laboratory.
Collapse
Affiliation(s)
- Makiko Sakurai
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | | | | | | | | |
Collapse
|
48
|
Vannini C, Petroni G, Verni F, Rosati G. A bacterium belonging to the Rickettsiaceae family inhabits the cytoplasm of the marine ciliate Diophrys appendiculata (Ciliophora, Hypotrichia). MICROBIAL ECOLOGY 2005; 49:434-42. [PMID: 16003470 DOI: 10.1007/s00248-004-0055-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 05/28/2004] [Indexed: 05/03/2023]
Abstract
Bacteria of the family Rickettsiaceae (order Rickettsiales, alpha-Proteobacteria) are mainly known to be endosymbionts of arthropods with the capability to infect also vertebrate cells. Recently, they have also been found as leech endocytobionts. In the present paper, we report the first finding of a bacterium belonging to the family Rickettsiaceae in a natural population of a marine ciliate protozoan, namely Diophrys appendiculata, collected in the Baltic Sea. Bacteria were unambiguously identified through morphological characterization and the "full-cycle rRNA approach" (i.e., 16S rRNA gene characterization and use of specifically designed oligonucleotide probes for in situ detection). Symbionts are rod-shaped bacteria that grow freely in the cytoplasm of the host cell. They present two different morphotypes, similar in size, but different in cytoplasmic density. These are typical morphological features of members of the family Rickettsiaceae. 16S rRNA gene sequence showed that Diophrys symbionts share a high similarity value (>92%) with bacteria belonging to the genus Rickettsia. Phylogenetic analysis revealed that these new endosymbionts are clearly included in the clade of the family Rickettsiaceae, but they occupy an independent phylogenetic position with respect to members of the genus Rickettsia. This is the first report of a member of this family from a host protozoan and from a marine habitat. This result shows that this bacterial group is more diversified and widespread than supposed so far, and that its ecological relevance could until now have been underestimated. In light of these considerations, the two 16S rRNA oligonucleotide probes here presented, specific for members of the Rickettsiaceae, can represent useful tools for further researches on the presence and the spread of these microorganisms in the natural environment.
Collapse
Affiliation(s)
- C Vannini
- Dipartimento di Etologia Ecologia Evoluzione, Università di Pisa, Italy
| | | | | | | |
Collapse
|
49
|
Kikuchi Y, Fukatsu T. Rickettsia infection in natural leech populations. MICROBIAL ECOLOGY 2005; 49:265-71. [PMID: 15965725 DOI: 10.1007/s00248-004-0140-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 01/23/2004] [Indexed: 05/03/2023]
Abstract
Field-collected specimens of glossiphoniid leeches, Torix tagoi, Torix tukubana, Hemiclepsis marginata, and Hemiclepsis japonica, were surveyed for Rickettsia infection by using a diagnostic PCR assay. Rickettsia was detected in 96% (69/72) of T. tagoi, 83% (24/29) of T. tukubana, 29% (33/113) of H. marginata, and 0% (0/30) of H. japonica. The frequencies of Rickettsia infection were stably maintained in different seasons. In H. marginata and T. tukubana, distant local populations exhibited remarkably different frequencies of Rickettsia infection. Eggs carried by infected females of T. tagoi and H. marginata were all Rickettsia-positive, indicating nearly 100% vertical transmission. Analysis of 16S rDNA sequences revealed that phylogenetic relationship of the leech-associated Rickettsia reflected the specific and populational divisions of the host leeches. However, circumstantial lines of evidence strongly suggested that horizontal transmission of Rickettsia must have occurred in the ancestors of these leeches. In T. tagoi and T. tukubana, infected individuals were remarkably larger in size than uninfected individuals, wheras in H. marginata, infected and uninfected individuals were almost comparable in size. This study first provides information on ecological aspects of leech-bone endocellular bacteria of the genus Rickettsia. On the basis of these data, we discuss possible mechanisms whereby Rickettsia infection is maintained in natural populations of these leeches in the freshwater ecosystem.
Collapse
Affiliation(s)
- Y Kikuchi
- Natural History Laboratory, Faculty of Science, Ibaraki University, Mito 310-8512, Japan.
| | | |
Collapse
|
50
|
Dyková I, Veverková M, Fiala I, Macháčková B, Pecková H. Nuclearia pattersoni sp. n. (Filosea), a new species of amphizoic amoeba isolated from gills of roach (Rutilus rutilus), and its rickettsial endosymbiont. Folia Parasitol (Praha) 2003. [DOI: 10.14411/fp.2003.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|