1
|
Sunithakumari VS, Menon RR, Suresh GG, Krishnan R, Rameshkumar N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics 2024; 25:424. [PMID: 38684959 PMCID: PMC11059613 DOI: 10.1186/s12864-024-10332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.
Collapse
Affiliation(s)
- V S Sunithakumari
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul R Menon
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gayathri G Suresh
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramya Krishnan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Athmic Biotech Solutions Pvt. Ltd. R&D Lab, Thiruvananthapuram, Kerala, India
| | - N Rameshkumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Ryback B, Vorholt JA. Coenzyme biosynthesis in response to precursor availability reveals incorporation of β-alanine from pantothenate in prototrophic bacteria. J Biol Chem 2023; 299:104919. [PMID: 37315792 PMCID: PMC10393543 DOI: 10.1016/j.jbc.2023.104919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Coenzymes are important for all classes of enzymatic reactions and essential for cellular metabolism. Most coenzymes are synthesized from dedicated precursors, also referred to as vitamins, which prototrophic bacteria can either produce themselves from simpler substrates or take up from the environment. The extent to which prototrophs use supplied vitamins and whether externally available vitamins affect the size of intracellular coenzyme pools and control endogenous vitamin synthesis is currently largely unknown. Here, we studied coenzyme pool sizes and vitamin incorporation into coenzymes during growth on different carbon sources and vitamin supplementation regimes using metabolomics approaches. We found that the model bacterium Escherichia coli incorporated pyridoxal, niacin, and pantothenate into pyridoxal 5'-phosphate, NAD, and coenzyme A (CoA), respectively. In contrast, riboflavin was not taken up and was produced exclusively endogenously. Coenzyme pools were mostly homeostatic and not affected by externally supplied precursors. Remarkably, we found that pantothenate is not incorporated into CoA as such but is first degraded to pantoate and β-alanine and then rebuilt. This pattern was conserved in various bacterial isolates, suggesting a preference for β-alanine over pantothenate utilization in CoA synthesis. Finally, we found that the endogenous synthesis of coenzyme precursors remains active when vitamins are supplied, which is consistent with described expression data of genes for enzymes involved in coenzyme biosynthesis under these conditions. Continued production of endogenous coenzymes may ensure rapid synthesis of the mature coenzyme under changing environmental conditions, protect against coenzyme limitation, and explain vitamin availability in naturally oligotrophic environments.
Collapse
|
3
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
4
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
5
|
B Vitamins and Their Roles in Gut Health. Microorganisms 2022; 10:microorganisms10061168. [PMID: 35744686 PMCID: PMC9227236 DOI: 10.3390/microorganisms10061168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
B vitamins act as coenzymes in a myriad of cellular reactions. These include energy production, methyl donor generation, neurotransmitter synthesis, and immune functions. Due to the ubiquitous roles of these vitamins, their deficiencies significantly affect the host’s metabolism. Recently, novel roles of B vitamins in the homeostasis of gut microbial ecology and intestinal health continue to be unravelled. This review focuses on the functional roles and biosynthesis of B vitamins and how these vitamins influence the growth and proliferation of the gut microbiota. We have identified the gut bacteria that can produce vitamins, and their biosynthetic mechanisms are presented. The effects of B vitamin deficiencies on intestinal morphology, inflammation, and its effects on intestinal disorders are also discussed.
Collapse
|
6
|
Chu Y, Gong J, Wu P, Liu Y, Du Y, Ma L, Fu D, Zhu H, Qu G, Zhu B. Deciphering Precise Gene Transcriptional Expression Using gwINTACT in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:852206. [PMID: 35498641 PMCID: PMC9048029 DOI: 10.3389/fpls.2022.852206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Functional gene transcription mainly occurs in the nucleus and has a significant role in plant physiology. The isolation of nuclei tagged in specific cell type (INTACT) technique provides an efficient and stable nucleus purification method to investigate the dynamic changes of nuclear gene transcriptional expression. However, the application of traditional INTACT in plants is still limited to seedlings or root cells because of severe chloroplast pollution. In this study, we proposed a newly designed and simplified INTACT based on mas-enhanced GFP (eGFP)-SlWIP2 (gwINTACT) for nuclear purification in tomato (Solanum lycopersicum) leaves, flowers, and fruits for the first time. The yield of the nucleus purified using gwINTACT from transgenic tomato leaves was doubled compared with using a traditional INTACT procedure, accompanied by more than 95% removal of chloroplasts. Relative gene expression of ethylene-related genes with ethylene treatment was reevaluated in gwINTACT leaves to reveal more different results from the traditional gene expression assay based on total RNA. Therefore, establishing the gwINTACT system in this study facilitates the precise deciphering of the transcriptional status in various tomato tissues, which lays the foundation for the further experimental study of nucleus-related molecular regulation on fruit ripening, such as ChIP-seq and ATAC-seq.
Collapse
|
7
|
Biochemical and structural characterization of the BioZ enzyme engaged in bacterial biotin synthesis pathway. Nat Commun 2021; 12:2056. [PMID: 33824341 PMCID: PMC8024396 DOI: 10.1038/s41467-021-22360-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2021] [Indexed: 01/07/2023] Open
Abstract
Biotin is an essential micro-nutrient across the three domains of life. The paradigm earlier step of biotin synthesis denotes "BioC-BioH" pathway in Escherichia coli. Here we report that BioZ bypasses the canonical route to begin biotin synthesis. In addition to its origin of Rhizobiales, protein phylogeny infers that BioZ is domesticated to gain an atypical role of β-ketoacyl-ACP synthase III. Genetic and biochemical characterization demonstrates that BioZ catalyzes the condensation of glutaryl-CoA (or ACP) with malonyl-ACP to give 5'-keto-pimeloyl ACP. This intermediate proceeds via type II fatty acid synthesis (FAS II) pathway, to initiate the formation of pimeloyl-ACP, a precursor of biotin synthesis. To further explore molecular basis of BioZ activity, we determine the crystal structure of Agrobacterium tumefaciens BioZ at 1.99 Å, of which the catalytic triad and the substrate-loading tunnel are functionally defined. In particular, we localize that three residues (S84, R147, and S287) at the distant bottom of the tunnel might neutralize the charge of free C-carboxyl group of the primer glutaryl-CoA. Taken together, this study provides molecular insights into the BioZ biotin synthesis pathway.
Collapse
|
8
|
Fagorzi C, Bacci G, Huang R, Cangioli L, Checcucci A, Fini M, Perrin E, Natali C, diCenzo GC, Mengoni A. Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021. [PMID: 33436514 DOI: 10.1101/2020.06.15.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Rui Huang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Lisa Cangioli
- Department of Biology, University of Florence, Florence, Italy
| | - Alice Checcucci
- Department of Biology, University of Florence, Florence, Italy
| | - Margherita Fini
- Department of Biology, University of Florence, Florence, Italy
| | - Elena Perrin
- Department of Biology, University of Florence, Florence, Italy
| | - Chiara Natali
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Nonadditive Transcriptomic Signatures of Genotype-by-Genotype Interactions during the Initiation of Plant-Rhizobium Symbiosis. mSystems 2021; 6:6/1/e00974-20. [PMID: 33436514 PMCID: PMC7901481 DOI: 10.1128/msystems.00974-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.
Collapse
|
10
|
Zeng Q, Yang Q, Jia J, Bi H. A Moraxella Virulence Factor Catalyzes an Essential Esterase Reaction of Biotin Biosynthesis. Front Microbiol 2020; 11:148. [PMID: 32117167 PMCID: PMC7026016 DOI: 10.3389/fmicb.2020.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Pimeloyl-acyl carrier protein (ACP) methyl ester esterase catalyzes the last biosynthetic step of the pimelate moiety of biotin, a key intermediate in biotin biosynthesis. The paradigm pimeloyl-ACP methyl ester esterase is the BioH protein of Escherichia coli that hydrolyses the ester bond of pimeloyl-ACP methyl ester. Biotin synthesis in E. coli also requires the function of the malonyl-ACP methyltransferase gene (bioC) to employ a methylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. However, bioinformatics analyses of the extant bacterial genomes showed that bioH is absent in many bioC-containing bacteria. The genome of the Gram-negative bacterium, Moraxella catarrhalis lacks a gene encoding a homolog of any of the six known pimeloyl-ACP methyl ester esterase isozymes suggesting that this organism encodes a novel pimeloyl-ACP methyl ester esterase isoform. We report that this is the case. The gene encoding the new isoform, called btsA, was isolated by complementation of an E. coli bioH deletion strain. The requirement of BtsA for the biotin biosynthesis in M. catarrhalis was confirmed by a biotin auxotrophic phenotype caused by deletion of btsA in vivo and a reconstituted in vitro desthiobiotin synthesis system. Purified BtsA was shown to cleave the physiological substrate pimeloyl-ACP methyl ester to pimeloyl-ACP by use of a Ser117-His254-Asp287 catalytic triad. The lack of sequence alignment with other isozymes together with phylogenetic analyses revealed BtsA as a new class of pimeloyl-ACP methyl ester esterase. The involvement of BtsA in M. catarrhalis virulence was confirmed by the defect of bacterial invasion to lung epithelial cells and survival within macrophages in the ΔbtsA strains. Identification of the new esterase gene btsA exclusive in Moraxella species that links biotin biosynthesis to bacterial virulence, can reveal a new valuable target for development of drugs against M. catarrhalis.
Collapse
Affiliation(s)
- Qi Zeng
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yang
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Finkenwirth F, Eitinger T. ECF-type ABC transporters for uptake of vitamins and transition metal ions into prokaryotic cells. Res Microbiol 2019; 170:358-365. [PMID: 31283960 DOI: 10.1016/j.resmic.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022]
Abstract
Energy-coupling factor (ECF) transporters mediate the uptake of micronutrients in prokaryotes. They consist of two ATP-binding-cassette family ATPases, a transmembrane coupling protein (T component) and a substrate-binding membrane protein (S component). ECF transporters for Co2+ and Ni2+ ions have one or two additional proteins with extracytoplasmic regions but poorly understood function. Homologs of T components with a predicted localization in plastids are widespread in plants but their physiological role is unclear. S components in eukaryotes are very rare and restricted to biotin-specific variants. Apart from a potential contribution to the export of flavins to serve the assembly of extracytoplasmic electron transfer chains, ECF transporters function as importers.
Collapse
Affiliation(s)
- Friedrich Finkenwirth
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
| |
Collapse
|
13
|
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr 2019; 6:48. [PMID: 31058161 PMCID: PMC6478888 DOI: 10.3389/fnut.2019.00048] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Functional Replacement of the BioC and BioH Proteins of Escherichia coli Biotin Precursor Biosynthesis by Ehrlichia chaffeensis Novel Proteins. Curr Microbiol 2019; 76:626-636. [PMID: 30915508 DOI: 10.1007/s00284-019-01669-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023]
Abstract
The biosynthesis of the pimelate moiety of biotin in Escherichia coli requires two specialized proteins, BioC and BioH. However, the enzymes that have BioC- or BioH-like activities show remarkable sequence diversity among biotin-producing bacteria. Here, we report that the intracellular rickettsial pathogen Ehrlichia chaffeensis encodes two novel proteins, BioT and BioU, which functionally replace the E. coli BioC and BioH proteins, respectively. The desthiobiotin assays demonstrated that these two proteins make pimeloyl-acyl carrier protein (ACP) from the substrate malonyl-ACP with the aid of the FAS II pathway, through the expected pimeloyl-ACP methyl ester intermediate. BioT and BioU homologues seem restricted to the species of Ehrlichia and its close relative, Anaplasma. Taken together, the synthesis of the biotin precursor in E. chaffeensis appears to be catalyzed by two novel BioC- and BioH-like proteins.
Collapse
|
15
|
Ruangsomboon S, Sornchai P, Prachom N. Enhanced hydrocarbon production and improved biodiesel qualities of Botryococcus braunii KMITL 5 by vitamins thiamine, biotin and cobalamin supplementation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Salas ME, Lozano MJ, López JL, Draghi WO, Serrania J, Torres Tejerizo GA, Albicoro FJ, Nilsson JF, Pistorio M, Del Papa MF, Parisi G, Becker A, Lagares A. Specificity traits consistent with legume-rhizobia coevolution displayed by Ensifer meliloti rhizosphere colonization. Environ Microbiol 2017; 19:3423-3438. [PMID: 28618121 DOI: 10.1111/1462-2920.13820] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 11/29/2022]
Abstract
Rhizobia are α- and ß-proteobacteria that associate with legumes in symbiosis to fix atmospheric nitrogen. The chemical communication between roots and rhizobia begins in the rhizosphere. Using signature-tagged-Tn5 mutagenesis (STM) we performed a genome-wide screening for Ensifer meliloti genes that participate in colonizing the rhizospheres of alfalfa and other legumes. The analysis of ca. 6,000 mutants indicated that genes relevant for rhizosphere colonization account for nearly 2% of the rhizobial genome and that most (ca. 80%) are chromosomally located, pointing to the relevance and ancestral origin of the bacterial ability to colonize plant roots. The identified genes were related to metabolic functions, transcription, signal transduction, and motility/chemotaxis among other categories; with several ORFs of yet-unknown function. Most remarkably, we identified a subset of genes that impacted more severely the colonization of the roots of alfalfa than of pea. Further analyses using other plant species revealed that such early differential phenotype could be extended to other members of the Trifoliae tribe (Trigonella, Trifolium), but not the Fabeae and Phaseoleae tribes. The results suggest that consolidation of E. meliloti into its current symbiotic state should have occurred in a rhizobacterium that had already been adapted to rhizospheres of the Trifoliae tribe.
Collapse
Affiliation(s)
- María Eugenia Salas
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauricio Javier Lozano
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - José Luis López
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Javier Serrania
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps University, Marburg, Germany
| | - Gonzalo Arturo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Francisco Javier Albicoro
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juliet Fernanda Nilsson
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps University, Marburg, Germany
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular-CONICET CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
17
|
Kim HI, Kim JH, Park YJ. Transcriptome and Gene Ontology (GO) Enrichment Analysis Reveals Genes Involved in Biotin Metabolism That Affect L-Lysine Production in Corynebacterium glutamicum. Int J Mol Sci 2016; 17:353. [PMID: 27005618 PMCID: PMC4813214 DOI: 10.3390/ijms17030353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 02/04/2023] Open
Abstract
Corynebacterium glutamicum is widely used for amino acid production. In the present study, 543 genes showed a significant change in their mRNA expression levels in L-lysine-producing C. glutamicum ATCC21300 than that in the wild-type C. glutamicum ATCC13032. Among these 543 differentially expressed genes (DEGs), 28 genes were up- or downregulated. In addition, 454 DEGs were functionally enriched and categorized based on BLAST sequence homologies and gene ontology (GO) annotations using the Blast2GO software. Interestingly, NCgl0071 (bioB, encoding biotin synthase) was expressed at levels ~20-fold higher in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain. Five other genes involved in biotin metabolism or transport--NCgl2515 (bioA, encoding adenosylmethionine-8-amino-7-oxononanoate aminotransferase), NCgl2516 (bioD, encoding dithiobiotin synthetase), NCgl1883, NCgl1884, and NCgl1885--were also expressed at significantly higher levels in the L-lysine-producing ATCC21300 strain than that in the wild-type ATCC13032 strain, which we determined using both next-generation RNA sequencing and quantitative real-time PCR analysis. When we disrupted the bioB gene in C. glutamicum ATCC21300, L-lysine production decreased by approximately 76%, and the three genes involved in biotin transport (NCgl1883, NCgl1884, and NCgl1885) were significantly downregulated. These results will be helpful to improve our understanding of C. glutamicum for industrial amino acid production.
Collapse
Affiliation(s)
- Hong-Il Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju 27478, Korea.
| | - Jong-Hyeon Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju 27478, Korea.
| | - Young-Jin Park
- Department of Biomedical Chemistry, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
18
|
Comparative transcriptome analysis of four prymnesiophyte algae. PLoS One 2014; 9:e97801. [PMID: 24926657 PMCID: PMC4057078 DOI: 10.1371/journal.pone.0097801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/23/2014] [Indexed: 11/25/2022] Open
Abstract
Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists.
Collapse
|
19
|
Fisher DJ, Fernández RE, Adams NE, Maurelli AT. Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY) and a host-cell transporter (SMVT). PLoS One 2012; 7:e46052. [PMID: 23029384 PMCID: PMC3459881 DOI: 10.1371/journal.pone.0046052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/27/2012] [Indexed: 11/28/2022] Open
Abstract
Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the host cell into the bacterial cytoplasm.
Collapse
Affiliation(s)
- Derek J. Fisher
- Department of Microbiology, Southern Illinois University, Carbondale, Illinois, United States of America
| | - Reinaldo E. Fernández
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Nancy E. Adams
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Anthony T. Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The bacterial ABC (ATP-binding cassette) importers mediate nutrient uptake and some are essential for survival in environments where nutrients are limited, such as in the human body. Although ABC importers exhibit remarkable versatility in the substrates that they can transport, they appear to share a similar multisubunit architecture and mechanism of energization by ATP hydrolysis. This chapter will provide both basic understanding and up-to-date information on the structure, mechanism and regulation of this important family of proteins.
Collapse
|
21
|
Schneider J, Peters-Wendisch P, Stansen KC, Götker S, Maximow S, Krämer R, Wendisch VF. Characterization of the biotin uptake system encoded by the biotin-inducible bioYMN operon of Corynebacterium glutamicum. BMC Microbiol 2012; 12:6. [PMID: 22243621 PMCID: PMC3398298 DOI: 10.1186/1471-2180-12-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/29/2022] Open
Abstract
Background The amino acid-producing Gram-positive Corynebacterium glutamicum is auxotrophic for biotin although biotin ring assembly starting from the precursor pimeloyl-CoA is still functional. It possesses AccBC, the α-subunit of the acyl-carboxylases involved in fatty acid and mycolic acid synthesis, and pyruvate carboxylase as the only biotin-containing proteins. Comparative genome analyses suggested that the putative transport system BioYMN encoded by cg2147, cg2148 and cg2149 might be involved in biotin uptake by C. glutamicum. Results By comparison of global gene expression patterns of cells grown with limiting or excess supply of biotin or with dethiobiotin as supplement replacing biotin revealed that expression of genes coding for enzymes of biotin ring assembly and for the putative uptake system was regulated according to biotin availability. RT-PCR and 5'-RACE experiments demonstrated that the genes bioY, bioM, and bioN are transcribed from one promoter as a single transcript. Biochemical analyses revealed that BioYMN catalyzes the effective uptake of biotin with a concentration of 60 nM biotin supporting a half-maximal transport rate. Maximal biotin uptake rates were at least five fold higher in biotin-limited cells as compared to cells grown with excess biotin. Overexpression of bioYMN led to an at least 50 fold higher biotin uptake rate as compared to the empty vector control. Overproduction of BioYMN alleviated biotin limitation and interfered with triggering L-glutamate production by biotin limitation. Conclusions The operon bioYMN from C. glutamicum was shown to be induced by biotin limitation. Transport assays with radio-labeled biotin revealed that BioYMN functions as a biotin uptake system. Overexpression of bioYMN affected L-glutamate production triggered by biotin limitation.
Collapse
Affiliation(s)
- Jens Schneider
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Neubauer O, Reiffler C, Behrendt L, Eitinger T. Interactions among the A and T units of an ECF-type biotin transporter analyzed by site-specific crosslinking. PLoS One 2011; 6:e29087. [PMID: 22216173 PMCID: PMC3246461 DOI: 10.1371/journal.pone.0029087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/18/2011] [Indexed: 12/18/2022] Open
Abstract
Energy-coupling factor (ECF) transporters are a huge group of micronutrient importers in prokaryotes. They are composed of a substrate-specific transmembrane protein (S component) and a module consisting of a moderately conserved transmembrane protein (T component) and two ABC ATPase domains (A components). Modules of A and T units may be dedicated to a specific S component or shared by many different S units in an organism. The mode of subunit interactions in ECF transporters is largely unknown. BioMNY, the focus of the present study, is a biotin transporter with a dedicated AT module. It consists of the S unit BioY, the A unit BioM and the T unit BioN. Like all T units, BioN contains two three-amino-acid signatures with a central Arg residue in a cytoplasmic helical region. Our previous work had demonstrated a central role of the two motifs in T units for stability and function of BioMNY and other ECF transporters. Here we show by site-specific crosslinking of pairs of mono-cysteine variants that the Ala-Arg-Ser and Ala-Arg-Gly signatures in BioN are coupling sites to the BioM ATPases. Analysis of 64 BioN-BioM pairs uncovered interactions of both signatures predominantly with a segment of ∼13 amino acid residues C-terminal of the Q loop of BioM. Our results further demonstrate that portions of all BioN variants with single Cys residues in the two signatures are crosslinked to homodimers. This finding may point to a dimeric architecture of the T unit in BioMNY complexes.
Collapse
Affiliation(s)
- Olivia Neubauer
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
23
|
An ABC-type cobalt transport system is essential for growth of Sinorhizobium meliloti at trace metal concentrations. J Bacteriol 2011; 193:4405-16. [PMID: 21725018 DOI: 10.1128/jb.05045-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We report expression and mutant phenotypes for a gene cluster in Sinorhizobium meliloti, designated cbtJKL, that has been shown to encode an ABC-type cobalt transport system. Transcription of cbtJKL initiated 384 nucleotides upstream from the cbtJ translation start codon, and the resulting 5' region contained a putative B(12)riboswitch. Expression of the cbtJKL genes appeared to be controlled by (cobalt-loaded) cobalamin interacting at the B(12)riboswitch, since (i) a putative B(12)riboswitch was located within this large upstream region, (ii) cbtJ transcription was repressed upon addition of cobalt or vitamin B(12), and (iii) deletions in the B(12)riboswitch resulted in constitutive cbtJKL transcription. Insertion mutants in cbtJKL failed to grow in LB medium, and growth was restored through the addition of cobalt but not other metals. This growth phenotype appeared to be due to the chelation of cobalt present in LB, and cbtJKL mutants also failed to grow in minimal medium containing the chelating agent EDTA unless the medium was supplemented with additional or excess cobalt. In uptake experiments, (57)Co(2+)accumulation was high in wild-type cells expressing the cbtJKL genes, whereas wild-type cells in which cbtJKL expression was repressed showed reduced accumulation. In cbtJKL mutant cells, (57)Co(2+)accumulation was reduced relative to that of the wild type, and presumably, this residual cobalt transport occurred via an alternate ion uptake system(s) that is not specific to cobalt. In symbiosis, the alternate system(s) appeared to mediate cobalt transport into bacteroid cells, as low cbtJKL expression was detected in bacteroids and cbtJKL mutants formed N(2)-fixing nodules on alfalfa.
Collapse
|
24
|
Wang B, Jiang L, Wang J, Ma J, Liu M, Yu H. A tandem and fully enzymatic procedure for the green resolution of chiral alcohols: acylation and deacylation in non-aqueous media. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Deswal D, Khasa YP, Kuhad RC. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. BIORESOURCE TECHNOLOGY 2011; 102:6065-6072. [PMID: 21470856 DOI: 10.1016/j.biortech.2011.03.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
Culture conditions for enhanced cellulase production from a newly isolated brown rot fungus, Fomitopsis sp. RCK2010 were optimized under solid state fermentation. An initial pH of 5.5 and moisture ratio of 1:3.5 (solid:liquid) were found to be optimal for maximum enzyme production. Of the different carbon sources tested wheat bran gave the maximum production of CMCase (71.526 IU/g), FPase (3.268 IU/g), and β-glucosidase (50.696 IU/g). Among the nitrogen sources, urea caused maximum production of CMCase (81.832 IU/g), where as casein and soyabean meal gave the highest FPase (4.682 IU/g) and β-glucosidase (69.083 IU/g) production, respectively. Among amino acids tested glutamic acid gave the highest production for CMCase (84.127I U/g); however 4-hydroxy-l-proline stimulated maximum FPase production (6.762 IU/g). Saccharification of pretreated rice straw and wheat straw by crude enzyme extract from Fomitopsis sp. RCK2010 resulted in release of 157.160 and 214.044 mg/g of reducing sugar, respectively.
Collapse
Affiliation(s)
- Deepa Deswal
- Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | | | | |
Collapse
|
26
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Escherichia coli BioH: a highly enantioselective and organic solvent tolerant esterase for kinetic resolution of sec-alcohols. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
29
|
Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 938] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
|
30
|
A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1578-89. [PMID: 18662807 DOI: 10.1016/j.bbapap.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/07/2008] [Accepted: 06/23/2008] [Indexed: 11/23/2022]
Abstract
A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.
Collapse
|
31
|
|
32
|
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A. Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:219-31. [PMID: 18184066 DOI: 10.1094/mpmi-21-2-0219] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sinorhizobium meliloti enters an endosymbiosis with alfalfa plants through the formation of nitrogen-fixing nodules. In order to identify S. meliloti genes required for symbiosis and competitiveness, a method of signature-tagged mutagenesis was used. Two sets, each consisting of 378 signature-tagged mutants with a known transposon insertion site, were used in an experiment in planta. As a result, 67 mutants showing attenuated symbiotic phenotypes were identified, including most of the exo, fix, and nif mutants in the sets. For 38 mutants in genes previously not described to be involved in competitiveness or symbiosis in S. meliloti, attenuated competitiveness phenotypes were tested individually. A large part of these phenotypes was confirmed. Moreover, additional symbiotic defects were observed for mutants in several novel genes such as infection deficiency phenotypes (ilvI and ilvD2 mutants) or delayed nodulation (pyrE, metA, thiC, thiO, and thiD mutants).
Collapse
Affiliation(s)
- Nataliya Pobigaylo
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
33
|
Hebbeln P, Rodionov DA, Alfandega A, Eitinger T. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module. Proc Natl Acad Sci U S A 2007; 104:2909-14. [PMID: 17301237 PMCID: PMC1815280 DOI: 10.1073/pnas.0609905104] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only one-third of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the alpha-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY-mediated biotin uptake was severely impaired by replacement of the Walker A lysine residue in BioM, demonstrating dependency of high-affinity transport on a functional ATPase. Biochemical assays revealed that BioM, BioN, and BioY proteins form stable complexes in membranes of the heterologous host. Expression of truncated bio transport operons, each with one gene deleted, resulted in stable BioMN complexes but revealed only low amounts of BioMY and BioNY aggregates in the absence of the respective third partner. The results substantiate our earlier suggestion of a mechanistically novel group of membrane transporters.
Collapse
Affiliation(s)
- Peter Hebbeln
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany; and
| | - Dmitry A. Rodionov
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany; and
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 101447, Russia
| | - Anja Alfandega
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany; and
| | - Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Affiliation(s)
- Martin T Croft
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| | | | | |
Collapse
|
35
|
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988-1008. [PMID: 17898894 DOI: 10.1039/b703105j] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The elucidation of the pathways to the water-soluble vitamins and cofactors has provided many biochemical and chemical challenges. This is a reflection both of their complex chemical nature, and the fact that they are often made in small amounts, making detection of the enzyme activities and intermediates difficult. Here we present an orthogonal review of how these challenges have been overcome using a combination of methods, which are often ingenious. We make particular reference to some recent developments in the study of biotin, pantothenate, folate, pyridoxol, cobalamin, thiamine, riboflavin and molybdopterin biosynthesis.
Collapse
Affiliation(s)
- Michael E Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
36
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
37
|
Rodionov DA, Gelfand MS. Computational identification of BioR, a transcriptional regulator of biotin metabolism in Alphaproteobacteria, and of its binding signal. FEMS Microbiol Lett 2006; 255:102-7. [PMID: 16436068 DOI: 10.1111/j.1574-6968.2005.00070.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Comparative genomic analysis was applied to identify the biotin transcriptional regulator, BioR, in most Alphaproteobacteria, and to identify its recognition signal TTATMKATAA. BioR belongs to the GntR family of transcriptional repressors. The functional assignment is supported by three lines of evidence: (1) bioR is positionally clustered with various bio genes, both for biotin biosynthesis and transport; (2) in most cases, candidate BioR-binding sites (BIOR boxes) are observed upstream of the bioR genes, suggesting autoregulation; (3) the phyletic distribution of the BIOR boxes coincides exactly with the phyletic distribution of the bioR genes, as the genomes lacking BIOR boxes do not have orthologs of bioR. Thus, in Alphaproteobacteria, BioR seems to have assumed the role of the biotin regulator that in most other bacteria is fulfilled by the dual function biotin-protein ligase BirA having the DNA-binding helix-turn-helix domain.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems RAS, Moscow, Russia.
| | | |
Collapse
|
38
|
Chain PSG, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM, Aguero F, Land ML, Ugalde RA, Garcia E. Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun 2006; 73:8353-61. [PMID: 16299333 PMCID: PMC1307078 DOI: 10.1128/iai.73.12.8353-8361.2005] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite their high DNA identity and a proposal to group classical Brucella species as biovars of Brucella melitensis, the commonly recognized Brucella species can be distinguished by distinct biochemical and fatty acid characters, as well as by a marked host range (e.g., Brucella suis for swine, B. melitensis for sheep and goats, and Brucella abortus for cattle). Here we present the genome of B. abortus 2308, the virulent prototype biovar 1 strain, and its comparison to the two other human pathogenic Brucella species and to B. abortus field isolate 9-941. The global distribution of pseudogenes, deletions, and insertions supports previous indications that B. abortus and B. melitensis share a common ancestor that diverged from B. suis. With the exception of a dozen genes, the genetic complements of both B. abortus strains are identical, whereas the three species differ in gene content and pseudogenes. The pattern of species-specific gene inactivations affecting transcriptional regulators and outer membrane proteins suggests that these inactivations may play an important role in the establishment of host specificity and may have been a primary driver of speciation in the genus Brucella. Despite being nonmotile, the brucellae contain flagellum gene clusters and display species-specific flagellar gene inactivations, which lead to the putative generation of different versions of flagellum-derived structures and may contribute to differences in host specificity and virulence. Metabolic changes such as the lack of complete metabolic pathways for the synthesis of numerous compounds (e.g., glycogen, biotin, NAD, and choline) are consistent with adaptation of brucellae to an intracellular life-style.
Collapse
Affiliation(s)
- Patrick S G Chain
- Biosciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guillén-Navarro K, Araíza G, García-de los Santos A, Mora Y, Dunn MF. TheRhizobium etli bioMNYoperon is involved in biotin transport. FEMS Microbiol Lett 2005; 250:209-19. [PMID: 16099603 DOI: 10.1016/j.femsle.2005.07.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/05/2005] [Accepted: 07/11/2005] [Indexed: 11/18/2022] Open
Abstract
Because Rhizobium etli CE3 is normally dependent on an external source of biotin and lacks orthodox biotin biosynthesis genes, we undertook an analysis of biotin uptake in this organism. By complementation of a Sinorhizobium meliloti bioM mutant we isolated an R. etli chromosomal region encoding homologs of the S. meliloti bioMNB genes, whose products have been implicated in intracellular biotin retention in that organism. Disruption of the R. etli bioM resulted in a mutant which took up biotin at a lower rate and accumulated significantly less biotin than the wild type. As in S. meliloti, the R. etli bioMN gene-products resemble the ATPase and permease components, respectively, of an ABC-type transporter. The bioB gene product is in fact similar to members of the BioY family, which has been postulated to function in biotin transport, and we refer to this gene as bioY. An R. etli bioY mutant exhibited lower biotin uptake than the wild-type, providing the first experimental evidence for a role of BioY in biotin transport. We show that the bioMNY operon is transcriptionally repressed by biotin. An analysis of the competitiveness of the wild-type strain versus the bioM mutant showed that the mutant had a diminished capacity to form nodules on bean plants.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Programa de Ingeniería Metabólica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A. P. 565-A, Cuernavaca, Morelos, Mexico
| | | | | | | | | |
Collapse
|
40
|
Guillén-Navarro K, Encarnación S, Dunn MF. Biotin biosynthesis, transport and utilization in rhizobia. FEMS Microbiol Lett 2005; 246:159-65. [PMID: 15899401 DOI: 10.1016/j.femsle.2005.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022] Open
Abstract
Biotin, a B-group vitamin, performs an essential metabolic function in all organisms. Rhizobia are alpha-proteobacteria with the remarkable ability to form a nitrogen-fixing symbiosis in combination with a compatible legume host, a process in which the importance of biotin biosynthesis and/or transport has been demonstrated for some rhizobia-legume combinations. Rhizobia have also been used to delimit the biosynthesis, metabolic effects and, more recently, transport of biotin. Molecular genetic analysis shows that an orthodox biotin biosynthesis pathway occurs in some rhizobia while others appear to synthesize the vitamin using alternative pathways. In addition to its well established function as a prosthetic group for biotin-dependent carboxylases, we are beginning to delineate a role for biotin as a metabolic regulator in rhizobia.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Programa de Ingeniería Metabólica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
41
|
Sharma KK, Kapoor M, Kuhad RC. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02. Lett Appl Microbiol 2005; 41:24-31. [PMID: 15960748 DOI: 10.1111/j.1472-765x.2005.01721.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The effect of in vivo enzymatic digestion (IVED), in vitro xylanase digestion (IVXD), metabolic analogues, surfactants and polyethylene glycol (PEG) on laccase production from Ganoderma sp. kk-02 was studied. METHODS AND RESULTS An acidic laccase producing Ganoderma sp. kk-02 produced 16.0 U ml(-1) and 365.0 U g(-1) of laccase, when grown under submerged (SmF) and solid state (SSF) fermentation conditions, respectively. Modification of the substrate (wheat bran) molecular architecture by IVED and IVXD increased subsequent laccase production from Ganoderma sp. kk-02 by 1.31-fold (21.0 U ml(-1)) (SmF); 2.21-fold (810.0 U g(-1)) (SSF) and 1.10-fold (18.0 U ml(-1)) (SmF); 1.78-fold (650.0 U g(-1)) (SSF) when compared with untreated wheat bran. Further enhancement in laccase yield under SmF and SSF was obtained when IVED treated wheat bran was used in conjunction with amino acids [DL-tryptophan, 2.66-fold (56.0 U ml(-1)) SmF; 2.86-fold (2324.0 U g(-1)) SSF], vitamins [biotin, 1.71-fold (36.0 U ml(-1)) SmF; 3.06-fold (2483.0 U g(-1)) SSF], surfactants [Tween-40, 1.85-fold (39.0 U ml(-1)) SmF; 2.25-fold (1828.0 U g(-1)) SSF], and PEG [PEG 6000, 1.93-fold (40.0 U ml(-1)) SmF; 1.58-fold (1284.0 U g(-1)) SSF]. CONCLUSIONS The IVED of substrate (wheat bran) facilitated hyper laccase production in presence of additives from Ganoderma sp. kk-02. SIGNIFICANCE AND IMPACT OF THE STUDY The study highlights a new methodology viz. IVED for concomitant and economic production of diverse enzymes using the same substrate. The hyper laccase levels obtained could improve the economic competitiveness of environmentally benign processes applied in varied industries. The work also provides an insight into the regulation of complex metabolic pathways governing the expression of extra cellular proteins from white-rot fungi.
Collapse
Affiliation(s)
- K K Sharma
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
42
|
Marchesini MI, Ugalde JE, Czibener C, Comerci DJ, Ugalde RA. N-terminal-capturing screening system for the isolation of Brucella abortus genes encoding surface exposed and secreted proteins. Microb Pathog 2004; 37:95-105. [PMID: 15312849 DOI: 10.1016/j.micpath.2004.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 06/10/2004] [Indexed: 12/15/2022]
Abstract
Secreted as well as surface exposed proteins are assumed to play major roles in bacterial virulence. In this report we describe the construction of an N-terminal protein-capturing system and its use for the isolation of Brucella abortus S2308 genes coding for putative surface exposed or secreted proteins. For this purpose, a cloning vector that generates gene fusions to a ribosome binding site and start codon deficient Chloramphenicol Acetyl Transferase (CAT) reporter gene was constructed and the resulting library introduced into B. abortus S2308 and virB mutant strains. Secreted translational fusions were identified by determining CAT activity in culture supernatants. Secretion was confirmed by Western Blot using a polyclonal anti-CAT antibody. A total of 864 clones were screened and 10 genes encoding putative secreted/surface exposed proteins were identified. Seven are Brucella proteins with an assigned function, whereas three are hypothetical proteins. The number of amino acid residues that promotes CAT secretion varies from 5 to 386 and no conserved motifs were detected. Secretion in a virB mutant background of some of the isolated fusion proteins was also determined. Interestingly, some hybrid proteins seemed to require a full VirB system for their secretion.
Collapse
Affiliation(s)
- María Inés Marchesini
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín (IIB-UNSAM), Consejo Nacional de Investigaciones Científicas, Provincia de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
43
|
Sukdeo N, Charles TC. Application of crossover-PCR-mediated deletion-insertion mutagenesis to analysis of the bdhA-xdhA2-xdhB2 mixed-function operon of Sinorhizobium meliloti. Arch Microbiol 2003; 179:301-4. [PMID: 12632261 DOI: 10.1007/s00203-003-0532-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 02/05/2003] [Accepted: 02/17/2003] [Indexed: 11/29/2022]
Abstract
The bdhA-xdhA2-xdhB2 mixed-function operon was used to demonstrate the application of crossover PCR to the construction of in-frame, non-polar deletion-insertion mutations in Sinorhizobium meliloti. Replacement of a 474-bp internal portion of the 774-bp coding sequence of bdhA with a 21-bp in-frame synthetic sequence resulted in loss of the bdhA-encoded d-3-hydroxybutyrate dehydrogenase activity. Such mutants retained the xanthine oxidase activity encoded by xdhA2-xdhB2, thus illustrating the non-polar nature of the mutation. This method of constructing unmarked, in-frame deletions should be generally applicable to functional genomics studies in S. meliloti and other alpha-Proteobacteria.
Collapse
Affiliation(s)
- Nicole Sukdeo
- Department of Biology, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, ON, Canada
| | | |
Collapse
|
44
|
Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 2003; 61:21-31. [PMID: 12658511 DOI: 10.1007/s00253-002-1186-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/31/2002] [Accepted: 10/31/2002] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany.
| | | |
Collapse
|
45
|
Heinz EB, Streit WR. Biotin limitation in Sinorhizobium meliloti strain 1021 alters transcription and translation. Appl Environ Microbiol 2003; 69:1206-13. [PMID: 12571048 PMCID: PMC143622 DOI: 10.1128/aem.69.2.1206-1213.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most Sinorhizobium meliloti strains lack several key genes involved in microbial biotin biosynthesis, and it is assumed that this may be a special adaptation which allows the microbe to down-regulate metabolic activities in the absence of a host plant. To further explore this hypothesis, we employed two different strategies. (i) Searches of the S. meliloti genome database in combination with the construction of nine different gusA reporter fusions identified three genes involved in a biotin starvation response in this microbe. A gene coding for a protein-methyl carboxyl transferase (pcm) exhibited 13.6-fold-higher transcription under biotin-limiting conditions than cells grown in the presence of 40 nM biotin. Consistent with this observation, biotin-limiting conditions resulted in a significantly decreased survival of pcm mutant cells compared to parental cells or cells grown in the presence of 40 nM biotin. Further studies indicated that the autoinducer synthase gene, sinI, was transcribed at a 4.5-fold-higher level in early stationary phase in biotin-starved cells than in biotin-supplemented cells. Lastly, we observed that open reading frame smc02283, which codes for a putative copper resistance protein (CopC), was 21-fold down-regulated in response to biotin starvation. (ii) In a second approach, proteome analysis identified 10 proteins which were significantly down-regulated under the biotin-limiting conditions. Among the proteins identified by using matrix-assisted laser desorption ionization-time of flight mass spectrometry were the pi subunit of the RNA polymerase and the 50S ribosomal protein L7/L12 (L8) subunit, indicating that biotin-limiting conditions generally affect transcription and translation in S. meliloti.
Collapse
Affiliation(s)
- Elke B Heinz
- Institut für Mikrobiologie und Genetik der Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|