1
|
Selvam D, D'silva A, Panchapakesan A, Gohil Y, Singh J, Hanna LE, Ranga U. The expression of HIV-1 tat in Lactococcus lactis. Protein Expr Purif 2024; 217:106443. [PMID: 38360084 DOI: 10.1016/j.pep.2024.106443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Efficient expression of functional proteins in heterologous hosts has become the pivotal focus of modern biotechnology and biomedical research. To this end, multiple alternatives to E. coli are being explored for recombinant protein expression. L. lactis, being a gram-positive organism, circumvents the need for an endotoxin removal step during protein purification. We report here the optimisation of the expression of HIV-1 Tat, a notoriously difficult protein, in Lactococcus lactis system. We evaluated five different promoters in two different Lactococcus lactis strains and examined the effect of pH, glucose, and induction time on the yield and purity of Tat. Finally, the recombinant Tat was functionally competent in transactivating the HIV-1 promoter in HLM-1 reporter cells. Our work provides a scaffold for future work on the expression of toxic proteins in Lactococcus lactis.
Collapse
Affiliation(s)
- Deepak Selvam
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India; National Institute for Research in Tuberculosis, Chennai, India
| | - Anish D'silva
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Arun Panchapakesan
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Yuvrajsinh Gohil
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Jayendra Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | - Udaykumar Ranga
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
2
|
Lin MH, Liu CC, Lu CW, Shu JC. Staphylococcus aureus foldase PrsA contributes to the folding and secretion of protein A. BMC Microbiol 2024; 24:108. [PMID: 38566014 PMCID: PMC10986000 DOI: 10.1186/s12866-024-03268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Staphylococcus aureus secretes a variety of proteins including virulence factors that cause diseases. PrsA, encoded by many Gram-positive bacteria, is a membrane-anchored lipoprotein that functions as a foldase to assist in post-translocational folding and helps maintain the stability of secreted proteins. Our earlier proteomic studies found that PrsA is required for the secretion of protein A, an immunoglobulin-binding protein that contributes to host immune evasion. This study aims to investigate how PrsA influences protein A secretion. RESULTS We found that in comparison with the parental strain HG001, the prsA-deletion mutant HG001ΔprsA secreted less protein A. Deleting prsA also decreased the stability of exported protein A. Pulldown assays indicated that PrsA interacts with protein A in vivo. The domains in PrsA that interact with protein A are mapped to both the N- and C-terminal regions (NC domains). Additionally, the NC domains are essential for promoting PrsA dimerization. Furthermore, an immunoglobulin-binding assay revealed that, compared to the parental strain HG001, fewer immunoglobulins bound to the surface of the mutant strain HG001ΔprsA. CONCLUSIONS This study demonstrates that PrsA is critical for the folding and secretion of protein A. The information derived from this study provides a better understanding of virulent protein export pathways that are crucial to the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Mei-Hui Lin
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| | - Chao-Chin Liu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan
| | - Chiao-Wen Lu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan
| | - Jwu-Ching Shu
- Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, 333, Taiwan.
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Tao-Yuan, 333, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao- Yuan, 333, Taiwan.
| |
Collapse
|
3
|
Wu ZY, Campeau A, Liu CH, Gonzalez DJ, Yamaguchi M, Kawabata S, Lu CH, Lai CY, Chiu HC, Chang YC. Unique virulence role of post-translocational chaperone PrsA in shaping Streptococcus pyogenes secretome. Virulence 2021; 12:2633-2647. [PMID: 34592883 PMCID: PMC8489961 DOI: 10.1080/21505594.2021.1982501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a strict human pathogen causing a broad spectrum of diseases and a variety of autoimmune sequelae. The pathogenesis of GAS infection mostly relies on the production of an extensive network of cell wall-associated and secreted virulence proteins, such as adhesins, toxins, and exoenzymes. PrsA, the only extracellular parvulin-type peptidyl-prolyl isomerase expressed ubiquitously in Gram-positive bacteria, has been suggested to assist the folding and maturation of newly exported proteins to acquire their native conformation and activity. Two PrsA proteins, PrsA1 and PrsA2, have been identified in GAS, but the respective contribution of each PrsA in GAS pathogenesis remains largely unknown. By combining comparative proteomic and phenotypic analysis approaches, we demonstrate that both PrsA isoforms are required to maintain GAS proteome homeostasis and virulence-associated traits in a unique and overlapping manner. The inactivation of both PrsA in GAS caused remarkable impairment in biofilm formation, host adherence, infection-induced cytotoxicity, and in vivo virulence in a murine soft tissue infection model. The concordance of proteomic and phenotypic data clearly features the essential role of PrsA in GAS full virulence.
Collapse
Affiliation(s)
- Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Anaamika Campeau
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Chao-Hsien Liu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - David J. Gonzalez
- Department of Pharmacology and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Chieh-Hsien Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chian-Yu Lai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Recombinant protein secretion by Bacillus subtilis and Lactococcus lactis: pathways, applications, and innovation potential. Essays Biochem 2021; 65:187-195. [PMID: 33955475 PMCID: PMC8314018 DOI: 10.1042/ebc20200171] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 01/01/2023]
Abstract
Secreted recombinant proteins are of great significance for industry, healthcare and a sustainable bio-based economy. Consequently, there is an ever-increasing need for efficient production platforms to deliver such proteins in high amounts and high quality. Gram-positive bacteria, particularly bacilli such as Bacillus subtilis, are favored for the production of secreted industrial enzymes. Nevertheless, recombinant protein production in the B. subtilis cell factory can be very challenging due to bottlenecks in the general (Sec) secretion pathway as well as this bacterium’s intrinsic capability to secrete a cocktail of highly potent proteases. This has placed another Gram-positive bacterium, Lactococcus lactis, in the focus of attention as an alternative, non-proteolytic, cell factory for secreted proteins. Here we review our current understanding of the secretion pathways exploited in B. subtilis and L. lactis to deliver proteins from their site of synthesis, the cytoplasm, into the fermentation broth. An advantage of this cell factory comparison is that it identifies opportunities for protein secretion pathway engineering to remove or bypass current production bottlenecks. Noteworthy new developments in cell factory engineering are the mini-Bacillus concept, highlighting potential advantages of massive genome minimization, and the application of thus far untapped ‘non-classical’ protein secretion routes. Altogether, it is foreseen that engineered lactococci will find future applications in the production of high-quality proteins at the relatively small pilot scale, while engineered bacilli will remain a favored choice for protein production in bulk.
Collapse
|
5
|
Deletion of a Peptidylprolyl Isomerase Gene Results in the Inability of Caldicellulosiruptor bescii To Grow on Crystalline Cellulose without Affecting Protein Glycosylation or Growth on Soluble Substrates. Appl Environ Microbiol 2020; 86:AEM.00909-20. [PMID: 32769195 DOI: 10.1128/aem.00909-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Caldicellulosiruptor bescii secretes a large number of complementary multifunctional enzymes with unique activities for biomass deconstruction. The most abundant enzymes in the C. bescii secretome are found in a unique gene cluster containing a glycosyl transferase (GT39) and a putative peptidyl prolyl cis-trans isomerase. Deletion of the glycosyl transferase in this cluster resulted in loss of detectable protein glycosylation in C. bescii, and its activity has been shown to be responsible for the glycosylation of the proline-threonine rich linkers found in many of the multifunctional cellulases. The presence of a putative peptidyl prolyl cis-trans isomerase within this gene cluster suggested that it might also play a role in cellulase modification. Here, we identify this gene as a putative prsA prolyl cis-trans isomerase. Deletion of prsA2 leads to the inability of C. bescii to grow on insoluble substrates such as Avicel, the model cellulose substrate, while exhibiting no differences in phenotype with the wild-type strain on soluble substrates. Finally, we provide evidence that the prsA2 gene is likely needed to increase solubility of multifunctional cellulases and that this unique gene cluster was likely acquired by members of the Caldicellulosiruptor genus with a group of genes to optimize the production and activity of multifunctional cellulases.IMPORTANCE Caldicellulosiruptor has the ability to digest complex plant biomass without pretreatment and have been engineered to convert biomass, a sustainable, carbon neutral substrate, to fuels. Their strategy for deconstructing plant cell walls relies on an interesting class of cellulases consisting of multiple catalytic modules connected by linker regions and carbohydrate binding modules. The best studied of these enzymes, CelA, has a unique deconstruction mechanism. CelA is located in a cluster of genes that likely allows for optimal expression, secretion, and activity. One of the genes in this cluster is a putative isomerase that modifies the CelA protein. In higher eukaryotes, these isomerases are essential for the proper folding of glycoproteins in the endoplasmic reticulum, but little is known about the role of isomerization in cellulase activity. We show that the stability and activity of CelA is dependent on the activity of this isomerase.
Collapse
|
6
|
Soluble Lactobacillus delbrueckii subsp. bulgaricus 92059 PrtB proteinase derivatives for production of bioactive peptide hydrolysates from casein. Appl Microbiol Biotechnol 2019; 103:2731-2743. [PMID: 30666364 DOI: 10.1007/s00253-018-09586-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
The proteinase-encoding prtB gene of Lactobacillus (Lb.) delbrueckii (d.) subsp. bulgaricus 92059 was cloned and sequenced. Two soluble, secreted, C-terminally His-tagged derivatives were constructed and expressed in Lactococcus lactis by means of the NICE® Expression System. In both obtained derivatives PrtBb and PrtB2, the C-terminal, cell wall-binding domain was deleted. In addition, in derivative PrtB2, the C-terminal part of the B domain was deleted and the signal sequence was replaced by a lactococcal export signal. The affinity-purified derivatives were both proteolytically active. Peptide hydrolysates produced from casein with each of the derivatives showed identical peptide composition, as determined by liquid chromatography-mass spectrometry. Comparison of the peptides generated to those generated with living Lb. d. subsp. bulgaricus 92059 cells (Kliche et al. Appl Microbiol Biotechnol 101:7621-7633, 2017) showed that β-casein was the casein fraction most susceptible to hydrolysis and that some significant differences were observed between the products obtained by either the derivatives or living Lb. d. subsp. bulgaricus 92059 cells. When tested for biological activity, the hydrolysate obtained with PrtBb showed 50% inhibition of angiotensin-converting enzyme at a concentration of 0.5 mg/ml and immunomodulation/anti-inflammation in an in vitro assay of TNF-α induced NFκB activation at concentrations of 5 and 2.5 mg/ml, respectively. The enzymatically obtained hydrolysate did not show any pro-inflammatory or cytotoxic activity.
Collapse
|
7
|
Ikolo F, Zhang M, Harrington DJ, Robinson C, Waller AS, Sutcliffe IC, Black GW. Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates. MOLECULAR BIOSYSTEMS 2016; 11:3279-86. [PMID: 26466087 DOI: 10.1039/c5mb00543d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens.
Collapse
Affiliation(s)
- Felicia Ikolo
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK. and Department of Biochemistry, School of Medicine, St. George's University, True Blue, St. George's, Grenada
| | - Meng Zhang
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Dean J Harrington
- Division of Biomedical Science, School of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Carl Robinson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Andrew S Waller
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health & Life Sciences, University of Northumbria at Newcastle, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
8
|
The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrob Agents Chemother 2015; 60:1656-66. [PMID: 26711778 DOI: 10.1128/aac.02333-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Expression of the methicillin-resistant S. aureus (MRSA) phenotype results from the expression of the extra penicillin-binding protein 2A (PBP2A), which is encoded by mecA and acquired horizontally on part of the SCCmec cassette. PBP2A can catalyze dd-transpeptidation of peptidoglycan (PG) because of its low affinity for β-lactam antibiotics and can functionally cooperate with the PBP2 transglycosylase in the biosynthesis of PG. Here, we focus upon the role of the membrane-bound PrsA foldase protein as a regulator of β-lactam resistance expression. Deletion of prsA altered oxacillin resistance in three different SCCmec backgrounds and, more importantly, caused a decrease in PBP2A membrane amounts without affecting mecA mRNA levels. The N- and C-terminal domains of PrsA were found to be critical features for PBP2A protein membrane levels and oxacillin resistance. We propose that PrsA has a role in posttranscriptional maturation of PBP2A, possibly in the export and/or folding of newly synthesized PBP2A. This additional level of control in the expression of the mecA-dependent MRSA phenotype constitutes an opportunity to expand the strategies to design anti-infective agents.
Collapse
|
9
|
Identification of Conserved and Species-Specific Functions of the Listeria monocytogenes PrsA2 Secretion Chaperone. Infect Immun 2015. [PMID: 26216425 DOI: 10.1128/iai.00504-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen that relies on the regulated secretion and activity of a variety of proteins that sustain life within diverse environments. PrsA2 has recently been identified as a secreted peptidyl-prolyl cis/trans isomerase and chaperone that is dispensable for bacterial growth in broth culture but essential for L. monocytogenes virulence. Following host infection, PrsA2 contributes to the proper folding and activity of secreted proteins that are required for bacterial replication within the host cytosol and for bacterial spread to adjacent cells. PrsA2 is one member of a family of Gram-positive secretion chaperones that appear to play important roles in bacterial physiology; however, it is not known how these proteins recognize their substrate proteins or the degree to which their function is conserved across diverse Gram-positive species. We therefore examined PrsA proteins encoded by a variety of Gram-positive bacteria for functional complementation of L. monocytogenes mutants lacking prsA2. PrsA homologues encoded by Bacillus subtilis, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans, Staphylococcus aureus, and Lactococcus lactis were examined for functional complementation of a variety of L. monocytogenes PrsA2-associated phenotypes central to L. monocytogenes pathogenesis and bacterial cell physiology. Our results indicate that while selected aspects of PrsA2 function are broadly conserved among diverse Gram-positive bacteria, PrsA2 exhibits unique specificity for L. monocytogenes target proteins required for pathogenesis. The L. monocytogenes PrsA2 chaperone thus appears evolutionarily optimized for virulence factor secretion within the host cell cytosol while still maintaining aspects of activity relevant to more general features of Gram-positive protein translocation.
Collapse
|
10
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
11
|
Jakob RP, Koch JR, Burmann BM, Schmidpeter PAM, Hunkeler M, Hiller S, Schmid FX, Maier T. Dimeric Structure of the Bacterial Extracellular Foldase PrsA. J Biol Chem 2014; 290:3278-92. [PMID: 25525259 DOI: 10.1074/jbc.m114.622910] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Secretion of proteins into the membrane-cell wall space is essential for cell wall biosynthesis and pathogenicity in Gram-positive bacteria. Folding and maturation of many secreted proteins depend on a single extracellular foldase, the PrsA protein. PrsA is a 30-kDa protein, lipid anchored to the outer leaflet of the cell membrane. The crystal structure of Bacillus subtilis PrsA reveals a central catalytic parvulin-type prolyl isomerase domain, which is inserted into a larger composite NC domain formed by the N- and C-terminal regions. This domain architecture resembles, despite a lack of sequence conservation, both trigger factor, a ribosome-binding bacterial chaperone, and SurA, a periplasmic chaperone in Gram-negative bacteria. Two main structural differences are observed in that the N-terminal arm of PrsA is substantially shortened relative to the trigger factor and SurA and in that PrsA is found to dimerize in a unique fashion via its NC domain. Dimerization leads to a large, bowl-shaped crevice, which might be involved in vivo in protecting substrate proteins from aggregation. NMR experiments reveal a direct, dynamic interaction of both the parvulin and the NC domain with secretion propeptides, which have been implicated in substrate targeting to PrsA.
Collapse
Affiliation(s)
- Roman P Jakob
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Johanna R Koch
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Björn M Burmann
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Philipp A M Schmidpeter
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Moritz Hunkeler
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Sebastian Hiller
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| | - Franz X Schmid
- the Laboratorium für Biochemie and Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Timm Maier
- From the Biozentrum, Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland and
| |
Collapse
|
12
|
Carvalho F, Sousa S, Cabanes D. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 2014; 4:48. [PMID: 24809022 PMCID: PMC4010754 DOI: 10.3389/fcimb.2014.00048] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/02/2014] [Indexed: 02/04/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive pathogen responsible for the manifestation of human listeriosis, an opportunistic foodborne disease with an associated high mortality rate. The key to the pathogenesis of listeriosis is the capacity of this bacterium to trigger its internalization by non-phagocytic cells and to survive and even replicate within phagocytes. The arsenal of virulence proteins deployed by L. monocytogenes to successfully promote the invasion and infection of host cells has been progressively unveiled over the past decades. A large majority of them is located at the cell envelope, which provides an interface for the establishment of close interactions between these bacterial factors and their host targets. Along the multistep pathways carrying these virulence proteins from the inner side of the cytoplasmic membrane to their cell envelope destination, a multiplicity of auxiliary proteins must act on the immature polypeptides to ensure that they not only maturate into fully functional effectors but also are placed or guided to their correct position in the bacterial surface. As the major scaffold for surface proteins, the cell wall and its metabolism are critical elements in listerial virulence. Conversely, the crucial physical support and protection provided by this structure make it an ideal target for the host immune system. Therefore, mechanisms involving fine modifications of cell envelope components are activated by L. monocytogenes to render it less recognizable by the innate immunity sensors or more resistant to the activity of antimicrobial effectors. This review provides a state-of-the-art compilation of the mechanisms used by L. monocytogenes to organize its surface for virulence, with special focus on those proteins that work “behind the frontline”, either supporting virulence effectors or ensuring the survival of the bacterium within its host.
Collapse
Affiliation(s)
- Filipe Carvalho
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Unit of Infection and Immunity, Instituto de Biologia Molecular e Celular, University of Porto Porto, Portugal
| |
Collapse
|
13
|
Cahoon LA, Freitag NE. Listeria monocytogenes virulence factor secretion: don't leave the cell without a chaperone. Front Cell Infect Microbiol 2014; 4:13. [PMID: 24575392 PMCID: PMC3921577 DOI: 10.3389/fcimb.2014.00013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/25/2014] [Indexed: 11/13/2022] Open
Abstract
In Gram-positive bacteria, the secretion of proteins requires translocation of polypeptides across the bacterial membrane into the highly charged environment of the membrane-cell wall interface. Here, proteins must be folded and often further delivered across the matrix of the cell wall. While many aspects of protein secretion have been well studied in Gram-negative bacteria which possess both an inner and outer membrane, generally less attention has been given to the mechanics of protein secretion across the single cell membrane of Gram-positive bacteria. In this review, we focus on the role of a post-translocation secretion chaperone in Listeria monocytogenes known as PrsA2, and compare what is known regarding PrsA2 with PrsA homologs in other Gram-positive bacteria. PrsA2 is a member of a family of membrane-associated lipoproteins that contribute to the folding and stability of secreted proteins as they cross the bacterial membrane. PrsA2 contributes to the integrity of the L. monocytogenes cell wall as well as swimming motility and bacterial resistance to osmotic stress; however its most critical role may be its requirement for L. monocytogenes virulence and viability within host cells. A better understanding of the role of PrsA2 and PrsA-like homologs will provide insight into the dynamics of protein folding and stability in Gram-positive bacteria and may result in new strategies for optimizing protein secretion as well as inhibiting the production of virulence factors.
Collapse
Affiliation(s)
- Laty A Cahoon
- Department of Microbiology and Immunology, University of Illinois at Chicago Chicago, IL, USA
| | - Nancy E Freitag
- Department of Microbiology and Immunology, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
14
|
Volzing K, Borrero J, Sadowsky MJ, Kaznessis YN. Antimicrobial peptides targeting Gram-negative pathogens, produced and delivered by lactic acid bacteria. ACS Synth Biol 2013; 2:643-50. [PMID: 23808914 DOI: 10.1021/sb4000367] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present results of tests with recombinant Lactococcus lactis that produce and secrete heterologous antimicrobial peptides with activity against Gram-negative pathogenic Escherichia coli and Salmonella . In an initial screening, the activities of numerous candidate antimicrobial peptides, made by solid state synthesis, were assessed against several indicator pathogenic E. coli and Salmonella strains. Peptides A3APO and Alyteserin were selected as top performers based on high antimicrobial activity against the pathogens tested and on significantly lower antimicrobial activity against L. lactis . Expression cassettes containing the signal peptide of the protein Usp45 fused to the codon-optimized sequence of mature A3APO and Alyteserin were cloned under the control of a nisin-inducible promoter PnisA and transformed into L. lactis IL1403. The resulting recombinant strains were induced to express and secrete both peptides. A3APO- and Alyteserin-containing supernatants from these recombinant L. lactis inhibited the growth of pathogenic E. coli and Salmonella by up to 20-fold, while maintaining the host's viability. This system may serve as a model for the production and delivery of antimicrobial peptides by lactic acid bacteria to target Gram-negative pathogenic bacteria populations.
Collapse
Affiliation(s)
- Katherine Volzing
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Juan Borrero
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael J. Sadowsky
- Department of Soil,
Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108,
United States
| | - Yiannis N. Kaznessis
- Department of Chemical
Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108,
United States
| |
Collapse
|
15
|
Guo L, Wu T, Hu W, He X, Sharma S, Webster P, Gimzewski JK, Zhou X, Lux R, Shi W. Phenotypic characterization of the foldase homologue PrsA in Streptococcus mutans. Mol Oral Microbiol 2013; 28:154-65. [PMID: 23241367 PMCID: PMC3819222 DOI: 10.1111/omi.12014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 11/30/2022]
Abstract
Streptococcus mutans is generally considered to be the principal etiological agent for dental caries. Many of the proteins necessary for its colonization of the oral cavity and pathogenesis are exported to the cell surface or the extracellular matrix, a process that requires the assistance of the export machineries. Bioinformatic analysis revealed that the S. mutans genome contains a prsA gene, whose counterparts in other gram-positive bacteria, including Bacillus and Lactococcus, encode functions involved in protein post-export. In this study, we constructed a PrsA-deficient derivative of S. mutans and demonstrated that the prsA mutant displayed an altered cell wall/membrane protein profile as well as cell-surface-related phenotypes, including auto-aggregation, increased surface hydrophobicity and abnormal biofilm formation. Further analysis revealed that the disruption of the prsA gene resulted in reduced insoluble glucan production by cell surface localized glucosyltransferases, and mutacin as well as cell surface-display of a heterologous expressed GFP fusion to the cell surface protein SpaP. Our study suggested that PrsA in S. mutans encodes functions similar to those identified in Bacillus, and so is likely to be involved in protein post-export.
Collapse
Affiliation(s)
- Lihong Guo
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
| | - Tingxi Wu
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Hu
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
| | - Xuesong He
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
| | - Shivani Sharma
- California Nano Systems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095, U.S.A
| | - Paul Webster
- Ahmanson Advanced Electron Microscopy and Imaging Centre, House Research Institute, 2100 W 3 St, Los Angeles, CA 90057, U.S.A
| | - James K Gimzewski
- California Nano Systems Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095, U.S.A
| | - Xuedong Zhou
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, CA90095, U.S.A
| |
Collapse
|
16
|
Sharma A, Arya DK, Sagar V, Bergmann R, Chhatwal GS, Johri AK. Identification of potential universal vaccine candidates against group A Streptococcus by using high throughput in silico and proteomics approach. J Proteome Res 2012. [PMID: 23181284 DOI: 10.1021/pr3005265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Streptococcus pyogenes or group A Streptococcus (GAS) causes ~700 million human infections each year, resulting in over 500,000 deaths. The development of a commercial GAS vaccine is hampered due to high strain and serotype diversity in different geographical regions, and the generation of cross-reactive antibodies that may induce autoimmune disease. There is an urgent need to search for alternative vaccine candidates. High throughput multigenome data mining coupled with proteomics seems to be a promising approach to identify the universal vaccine candidates. In the present study, in silico analysis led to prediction of 147 proteins as universal vaccine candidates. Distribution pattern of these predicted candidates was explored in nonsequenced Indian GAS strains (n = 20) by using DNA array hybridization validating in silico analysis. High throughput analyses of surface proteins using 1D-SDS-PAGE coupled with ESI-LC-MS/MS was applied on highly (M49) and less (M1) invasive GAS strains of Indian origin. Comparative proteomics analysis revealed that highly invasive GAS M49 had metabolically more active membrane associated protein machinery than less invasive M1. Further, by overlapping proteomics data with in silico predicted vaccine candidate genes, 52 proteins were identified as probable universal vaccine candidates, which were expressed in these GAS serotypes. These proteins can further be investigated as universal vaccine candidates against GAS. Moreover, this robust approach may serve as a model that can be applied to identify the universal vaccine candidates in case of other pathogenic bacteria with high strain and genetic diversity.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.
Collapse
|
18
|
PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS One 2012; 7:e33516. [PMID: 22442694 PMCID: PMC3307742 DOI: 10.1371/journal.pone.0033516] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/10/2012] [Indexed: 12/05/2022] Open
Abstract
Background Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displayed a very moderate role in vivo, it was found, as a recombinant soluble form, to be endowed with folding activities in vitro.
Collapse
|
19
|
Alonzo F, Xayarath B, Whisstock JC, Freitag NE. Functional analysis of the Listeria monocytogenes secretion chaperone PrsA2 and its multiple contributions to bacterial virulence. Mol Microbiol 2011; 80:1530-48. [PMID: 21545417 DOI: 10.1111/j.1365-2958.2011.07665.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As an organism that has evolved to live in environments ranging from soil to the cytosol of mammalian cells, Listeria monocytogenes must regulate the secretion and activity of protein products that promote survival within these habitats. The post-translocation chaperone PrsA2 has been adapted to assist in the folding and activity of L. monocytogenes secreted proteins required for bacterial replication within host cells. Here we present the first structure/function investigation of the contributions of PrsA2 to protein secretion and activity as well as to bacterial virulence. Domain swap experiments with the closely related L. monocytogenes PrsA1 protein combined with targeted mutagenesis indicate distinct functional roles for the PrsA2 peptidyl-prolyl isomerase (PPIase) and the N- and C-terminal domains in pathogenesis. In contrast to other PrsA-like proteins described thus far in the literature, an absolute in vivo requirement for PrsA2 PPIase activity is evident in mouse infection models. This work illustrates the diversity of function associated with L. monocytogenes PrsA2 that serves to promote bacterial life within the infected host.
Collapse
Affiliation(s)
- Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
20
|
Hyyryläinen HL, Marciniak BC, Dahncke K, Pietiäinen M, Courtin P, Vitikainen M, Seppala R, Otto A, Becher D, Chapot-Chartier MP, Kuipers OP, Kontinen VP. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis. Mol Microbiol 2010; 77:108-27. [PMID: 20487272 DOI: 10.1111/j.1365-2958.2010.07188.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summary The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispensability. We could construct a viable prsA null mutant in the presence of a high concentration of magnesium. Various changes in cell morphology in the absence of PrsA suggested that PrsA is involved in the biosynthesis of the cylindrical lateral wall. Consistently, four penicillin-binding proteins (PBP2a, PBP2b, PBP3 and PBP4) were unstable in the absence of PrsA, while muropeptide analysis revealed a 2% decrease in the peptidoglycan cross-linkage index. Misfolded PBP2a was detected in PrsA-depleted cells, indicating that PrsA is required for the folding of this PBP either directly or indirectly. Furthermore, strongly increased uniform staining of cell wall with a fluorescent vancomycin was observed in the absence of PrsA. We also demonstrated that PrsA is a dimeric or oligomeric protein which is localized at distinct spots organized in a helical pattern along the cell membrane. These results suggest that PrsA is essential for normal growth most probably as PBP folding is dependent on this PPIase.
Collapse
Affiliation(s)
- Hanne-Leena Hyyryläinen
- Antimicrobial Resistance Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), P.O. Box 30, FI-00271 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cron LE, Bootsma HJ, Noske N, Burghout P, Hammerschmidt S, Hermans PWM. Surface-associated lipoprotein PpmA of Streptococcus pneumoniae is involved in colonization in a strain-specific manner. Microbiology (Reading) 2009; 155:2401-2410. [DOI: 10.1099/mic.0.026765-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae produces two surface-associated lipoproteins that share homology with two distinct families of peptidyl-prolyl isomerases (PPIases), the streptococcal lipoprotein rotamase A (SlrA) and the putative proteinase maturation protein A (PpmA). Previously, we have demonstrated that SlrA has PPIase activity, and that the enzyme plays a role in pneumococcal virulence. Here, we investigated the contribution of PpmA to pneumococcal pathogenesis. Pneumococcal mutants of D39 and TIGR4 lacking the gene encoding PpmA were less capable of persisting in the nasopharynx of mice, demonstrating the contribution of PpmA to pneumococcal colonization. This observation was partially confirmed in vitro, as the pneumococcal mutants NCTC10319ΔppmA and TIGR4ΔcpsΔppmA, but not D39ΔcpsΔppmA, were impaired in adherence to Detroit 562 pharyngeal cells. This suggests that the contribution of PpmA to pneumococcal colonization is not solely the result of its role in adherence to epithelial cells. Deficiency in PpmA did not result in reduced binding to various extracellular matrix and serum proteins. Similar to SlrA, we observed that PpmA was involved in immune evasion. Uptake of PpmA-deficient D39Δcps and NCTC10319 by human polymorphonuclear leukocytes was significantly enhanced compared to the isogenic wild-types. In addition, ingestion of D39ΔppmA, but not that of either NCTC10319ΔppmA or TIGR4ΔppmA, by murine macrophage cell line J774 was also enhanced, whereas intracellular killing remained unaffected. We conclude that PpmA contributes to the early stages of infection, i.e. colonization. The contribution of PpmA to virulence can be explained by its strain-specific role in adherence to epithelial cells and contribution to the evasion of phagocytosis.
Collapse
Affiliation(s)
- L. E. Cron
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - H. J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - N. Noske
- Department Genetics of Microorganisms, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - P. Burghout
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - S. Hammerschmidt
- Department Genetics of Microorganisms, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - P. W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
22
|
The posttranslocation chaperone PrsA2 contributes to multiple facets of Listeria monocytogenes pathogenesis. Infect Immun 2009; 77:2612-23. [PMID: 19451247 DOI: 10.1128/iai.00280-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Listeria monocytogenes is an intracellular bacterial pathogen whose virulence depends on the regulated expression of numerous secreted bacterial factors. As for other gram-positive bacteria, many proteins secreted by L. monocytogenes are translocated across the bacterial membrane in an unfolded state to the compartment existing between the membrane and the cell wall. This compartment presents a challenging environment for protein folding due to its high density of negative charge, high concentrations of cations, and low pH. We recently identified PrsA2 as a gene product required for L. monocytogenes virulence. PrsA2 was identified based on its increased secretion by strains containing a mutationally activated form of prfA, the key regulator of L. monocytogenes virulence gene expression. The prsA2 gene product is one of at least two predicted peptidyl-prolyl cis/trans-isomerases encoded by L. monocytogenes; these proteins function as posttranslocation protein chaperones and/or foldases. In this study, we demonstrate that PrsA2 plays a unique and important role in L. monocytogenes pathogenesis by promoting the activity and stability of at least two critical secreted virulence factors: listeriolysin O (LLO) and a broad-specificity phospholipase. Loss of PrsA2 activity severely attenuated virulence in mice and impaired bacterial cell-to-cell spread in host cells. In contrast, mutants lacking prsA1 resembled wild-type bacteria with respect to intracellular growth and cell-to-cell spread as well as virulence in mice. PrsA2 is thus distinct from PrsA1 in its unique requirement for the stability and full activity of L. monocytogenes-secreted factors that contribute to host infection.
Collapse
|
23
|
Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 2008; 14:48-58. [PMID: 17957110 DOI: 10.1159/000106082] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The use of Gram-positive bacteria for heterologous protein production proves to be a useful choice due to easy protein secretion and purification. The lactic acid bacterium Lactococcus lactis emerges as an attractive alternative to the Gram-positive model Bacillus subtilis. Here, we review recent work on the expression and secretion systems available for heterologous protein secretion in L. lactis, including promoters, signal peptides and mutant host strains known to overcome some bottlenecks of the process. Among the tools developed in our laboratory, inactivation of HtrA, the unique housekeeping protease at the cell surface, or complementation of the Sec machinery with B. subtilis SecDF accessory protein each result in the increase in heterologous protein yield. Furthermore, our lactococcal expression/secretion system, using both P(Zn)zitR, an expression cassette tightly controlled by environmental zinc, and a consensus signal peptide, SP(Exp4), allows efficient production and secretion of the staphylococcal nuclease, as evidenced by protein yields (protein amount/biomass) comparable to those obtained using NICE or P170 expression systems under similar laboratory conditions. Finally, the toolbox we are developing should contribute to enlarge the use of L. lactis as a protein cell factory.
Collapse
Affiliation(s)
- E Morello
- Unité des Bactéries Lactiques et pathogènes Opportunistes (UBLO), INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Hamilton A, Robinson C, Sutcliffe IC, Slater J, Maskell DJ, Davis-Poynter N, Smith K, Waller A, Harrington DJ. Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun 2006; 74:6907-19. [PMID: 17015455 PMCID: PMC1698103 DOI: 10.1128/iai.01116-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (DeltaprtM(138-213), with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Deltalgt(190-685)). Moreover, mucus production was significantly greater in both wild-type-infected and Deltalgt(190-685)-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Deltalgt(190-685) mutant did still exhibit signs of disease. In contrast, only the DeltaprtM(138-213) mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Deltalgt(190-685) mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.
Collapse
Affiliation(s)
- Andrea Hamilton
- University of Sunderland, Tyne and Wear SR1 3SD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Surface proteins are critical in determining the identifying characteristics of individual bacteria and their interaction with the environment. Because the structure of the cell surface is the major characteristic that distinguishes gram-positive from gram-negative bacteria, the processes used to transport and attach these proteins show significant differences between these bacterial classes. This review is intended to highlight these differences and to focus attention on areas that are ripe for further investigation.
Collapse
Affiliation(s)
- June R Scott
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
26
|
Lindholm A, Ellmén U, Tolonen-Martikainen M, Palva A. Heterologous protein secretion in Lactococcus lactis is enhanced by the Bacillus subtilis chaperone-like protein PrsA. Appl Microbiol Biotechnol 2006; 73:904-14. [PMID: 16944130 DOI: 10.1007/s00253-006-0551-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 06/18/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The Bacillus subtilis lipoprotein PrsA enhances the yield of several homologous and heterologous exported proteins in B. subtilis by being involved in the posttranslocational stage of the secretion process. In this work, we have studied the effect of B. subtilis PrsA on the secretion of Bacillus amyloliquefaciens alpha-amylase (AmyQ), a target protein for PrsA, and Bacillus licheniformis penicillinase (PenP) a nontarget protein for PrsA, in Lactococcus lactis. Two compatible plasmids were constructed and introduced into L. lactis strain NZ9000: one high copy plasmid, expressing the AmyQ gene (amyQ) or the PenP gene (penP), and one low copy plasmid, expressing the PrsA encoding gene (prsA). When amyQ and prsA were simultaneously expressed under the nisin-inducible promoter P( nisA ), Western blotting experiments revealed a 15- to 20-fold increase in the total yield of AmyQ and a sixfold increase in secreted AmyQ activity, compared to a control strain lacking prsA. When expressed under the same induction conditions, PrsA had no effect on the secretion or total yield of PenP. These results show that the secretion yield of some heterologous proteins can be significantly increased in L. lactis when coproduced with the B. subtilis PrsA protein.
Collapse
Affiliation(s)
- Agneta Lindholm
- Division of Microbiology and Epidemiology, Department of Basic Veterinary Sciences, University of Helsinki, Helsinki 00014, Finland
| | | | | | | |
Collapse
|
27
|
Hermans PWM, Adrian PV, Albert C, Estevão S, Hoogenboezem T, Luijendijk IHT, Kamphausen T, Hammerschmidt S. The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. J Biol Chem 2005; 281:968-76. [PMID: 16260779 DOI: 10.1074/jbc.m510014200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae expresses two surface-exposed lipoproteins, PpmA and SlrA, which share homology with distinct families of peptidyl-prolyl isomerases (PPIases). In this study, we demonstrated for the first time that the lipoprotein cyclophilin, SlrA, can catalyze the cis-trans isomerization of proline containing tetrapeptides and that SlrA contributes to pneumococcal colonization. The substrate specificity of SlrA is typical for prokaryotic and eukaryotic cyclophilins, with Suc-Ala-Ala-Pro-Phe-p-nitroanilide (pNA) being the most rapidly catalyzed substrate. In a mouse pneumonia model the slrA knock-out D39DeltaslrA did not cause significant differences in the survival times of mice compared with the isogenic wild-type strain. In contrast, a detailed analysis of bacterial outgrowth over time in the nasopharynx, airways, lungs, blood, and spleen showed a rapid elimination of slrA mutants from the upper airways but did not reveal significant differences in the lungs, blood, and spleen. These results suggested that SlrA is involved in colonization but does not contribute significantly to invasive pneumococcal disease. In cell culture infection experiments, the absence of SlrA impaired adherence to pneumococcal disease-specific epithelial and endothelial non-professional cell lines. Adherence of the slrA mutant could not be restored by exogenously added SlrA. Strikingly, deficiency in SlrA did not reduce binding activity to host target proteins, but resulted in enhanced uptake by professional phagocytes. In conclusion, SlrA is a functional, cyclophilin-type PPIase and contributes to pneumococcal virulence in the first stage of infection, namely, colonization of the upper airways, most likely by modulating the biological function of important virulence proteins.
Collapse
Affiliation(s)
- Peter W M Hermans
- Department of Pediatrics, University Medical Center St. Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP. Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem 2004; 279:19302-14. [PMID: 14976191 DOI: 10.1074/jbc.m400861200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PrsA protein of Bacillus subtilis is an essential membrane-bound lipoprotein that is assumed to assist post-translocational folding of exported proteins and stabilize them in the compartment between the cytoplasmic membrane and cell wall. This folding activity is consistent with the homology of a segment of PrsA with parvulin-type peptidyl-prolyl cis/trans isomerases (PPIase). In this study, molecular modeling showed that the parvulin-like region can adopt a parvulin-type fold with structurally conserved active site residues. PrsA exhibits PPIase activity in a manner dependent on the parvulin-like domain. We constructed deletion, peptide insertion, and amino acid substitution mutations and demonstrated that the parvulin-like domain as well as flanking N- and C-terminal domains are essential for in vivo PrsA function in protein secretion and growth. Surprisingly, none of the predicted active site residues of the parvulin-like domain was essential for growth and protein secretion, although several active site mutations reduced or abolished the PPIase activity or the ability of PrsA to catalyze proline-limited protein folding in vitro. Our results indicate that PrsA is a PPIase, but the essential role in vivo seems to depend on some non-PPIase activity of both the parvulin-like and flanking domains.
Collapse
Affiliation(s)
- Marika Vitikainen
- Vaccine Development Laboratory, National Public Health Institute, Mannerheimintie 166, FIN-00300 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Germond JE, Delley M, Gilbert C, Atlan D. Determination of the domain of the Lactobacillus delbrueckii subsp. bulgaricus cell surface proteinase PrtB involved in attachment to the cell wall after heterologous expression of the prtB gene in Lactococcus lactis. Appl Environ Microbiol 2003; 69:3377-84. [PMID: 12788739 PMCID: PMC161544 DOI: 10.1128/aem.69.6.3377-3384.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Belonging to the subtilase family, the cell surface proteinase (CSP) PrtB of Lactobacillus delbrueckii subsp. bulgaricus differs from other CSPs synthesized by lactic acid bacteria. Expression of the prtB gene under its own promoter was shown to complement the proteinase-deficient strain MG1363 (PrtP(-) PrtM(-)) of Lactococcus lactis subsp. cremoris. Surprisingly, the maturation process of PrtB, unlike that of lactococcal CSP PrtPs, does not require a specific PrtM-like chaperone. The carboxy end of PrtB was previously shown to be different from the consensus anchoring region of other CSPs and exhibits an imperfect duplication of 59 amino acids with a high lysine content. By using a deletion strategy, the removal of the last 99 amino acids, including the degenerated anchoring signal (LPKKT), was found to be sufficient to release a part of the truncated PrtB into the culture medium and led to an increase in PrtB activity. This truncated PrtB is still active and enables L. lactis MG1363 to grow in milk supplemented with glucose. By contrast, deletion of the last 806 amino acids of PrtB led to the secretion of an inactive proteinase. Thus, the utmost carboxy end of PrtB is involved in attachment to the bacterial cell wall. Proteinase PrtB constitutes a powerful tool for cell surface display of heterologous proteins like antigens.
Collapse
|
30
|
Collins YF, McSweeney PL, Wilkinson MG. Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 2003. [DOI: 10.1016/s0958-6946(03)00109-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 2002; 84:1073-87. [PMID: 12595135 DOI: 10.1016/s0300-9084(02)00029-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.
Collapse
Affiliation(s)
- Pierre Renault
- Génétique microbienne, Inra, domaine de Vilvert, 78352 Jouy-en-Josas, France.
| |
Collapse
|