1
|
Corrales D, Alcántara C, Zúñiga M, Monedero V. Ppx1 putative exopolyphosphatase is essential for polyphosphate accumulation in Lacticaseibacillus paracasei. Appl Environ Microbiol 2024; 90:e0229023. [PMID: 38619267 PMCID: PMC11107151 DOI: 10.1128/aem.02290-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.
Collapse
Affiliation(s)
- Daniela Corrales
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Cristina Alcántara
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna, Spain
| |
Collapse
|
2
|
Corrales D, Alcántara C, Clemente MJ, Vélez D, Devesa V, Monedero V, Zúñiga M. Phosphate Uptake and Its Relation to Arsenic Toxicity in Lactobacilli. Int J Mol Sci 2024; 25:5017. [PMID: 38732236 PMCID: PMC11084836 DOI: 10.3390/ijms25095017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.
Collapse
Affiliation(s)
- Daniela Corrales
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain; (D.C.); (C.A.)
| | - Cristina Alcántara
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain; (D.C.); (C.A.)
| | - María Jesús Clemente
- Next-Generation Approaches for Integrative Food Toxicology Group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Catedràtic Agustín Escardino 7, 46980 Paterna, Spain; (M.J.C.); (D.V.); (V.D.)
| | - Dinoraz Vélez
- Next-Generation Approaches for Integrative Food Toxicology Group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Catedràtic Agustín Escardino 7, 46980 Paterna, Spain; (M.J.C.); (D.V.); (V.D.)
| | - Vicenta Devesa
- Next-Generation Approaches for Integrative Food Toxicology Group, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Catedràtic Agustín Escardino 7, 46980 Paterna, Spain; (M.J.C.); (D.V.); (V.D.)
| | - Vicente Monedero
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain; (D.C.); (C.A.)
| | - Manuel Zúñiga
- Lactic Acid Bacteria and Probiotics Laboratory, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Av. Agustín Escardino 7, 46980 Paterna, Spain; (D.C.); (C.A.)
| |
Collapse
|
3
|
Ryu HB, Kang MJ, Choi KM, Yang IK, Hong SJ, Lee CG. Inhibition of Polyphosphate Degradation in Synechocystis sp. PCC6803 through Inactivation of the phoU Gene. J Microbiol Biotechnol 2024; 34:407-414. [PMID: 38247220 PMCID: PMC10940749 DOI: 10.4014/jmb.2311.11046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (ΔphoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.
Collapse
Affiliation(s)
- Han-bin Ryu
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Mi-Jin Kang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyung-Min Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Il-Kyu Yang
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Seong-Joo Hong
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Baek S, Lee EJ. PhoU: a multifaceted regulator in microbial signaling and homeostasis. Curr Opin Microbiol 2024; 77:102401. [PMID: 37988810 DOI: 10.1016/j.mib.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Inorganic phosphate (Pi) is a fundamental molecule crucial for numerous biological processes, such as ATP synthesis and phospholipid formation. To prevent cellular toxicity, Pi transport is often linked to counterion transport within the bacterium. This review discusses the multifaceted functions of the PhoU protein in bacterial regulation, focusing on its role in coordinating Pi transport with counterions, controlling polyphosphate accumulation, and regulating secondary metabolite biosynthesis and DNA repair. We also explore recent findings that challenge the conventional view of PhoU simply as a negative regulator in phosphate signaling, suggesting its broader impact on bacterial physiology and stress response. Understanding the diverse functions of PhoU provides new insight into bacterial biology and offers potential therapeutic implications.
Collapse
Affiliation(s)
- Seungwoo Baek
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Jin Lee
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
5
|
Alcántara C, Perez M, Huedo P, Altadill T, Espadaler-Mazo J, Arqués JL, Zúñiga M, Monedero V. Study of the biosynthesis and functionality of polyphosphate in Bifidobacterium longum KABP042. Sci Rep 2023; 13:11076. [PMID: 37422465 PMCID: PMC10329679 DOI: 10.1038/s41598-023-38082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Polyphosphate (poly-P) biosynthesis in bacteria has been linked to many physiological processes and has been characterized as an interesting functional molecule involved in intestinal homeostasis. We determined the capacity for poly-P production of 18 probiotic strains mainly belonging to Bifidobacterium and former Lactobacillus genera, showing that poly-P synthesis varied widely between strains and is dependent on the availability of phosphate and the growth phase. Bifidobacteria were especially capable of poly-P synthesis and poly-P kinase (ppk) genes were identified in their genomes together with a repertoire of genes involved in phosphate transport and metabolism. In Bifidobacterium longum KABP042, the strain we found with highest poly-P production, variations in ppk expression were linked to growth conditions and presence of phosphate in the medium. Moreover, the strain produced poly-P in presence of breast milk and lacto-N-tetraose increased the amount of poly-P synthesized. Compared to KABP042 supernatants low in poly-P, exposure of Caco-2 cells to KABP042 supernatants rich in poly-P resulted in decreased epithelial permeability and increased barrier resistance, induction of epithelial protecting factors such as HSP27 and enhanced expression of tight junction protein genes. These results highlight the role of bifidobacteria-derived poly-P as a strain-dependent functional factor acting on epithelial integrity.
Collapse
Affiliation(s)
- Cristina Alcántara
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Marta Perez
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Tatiana Altadill
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Manuel Zúñiga
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain
| | - Vicente Monedero
- Laboratorio de Bacterias Lácticas y Probióticos, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), 46980, Paterna, Valencia, Spain.
| |
Collapse
|
6
|
Li B, Li J, Gao J, Guo Z, Li J. Long-term tracking robust removal of Microcystis-dominated bloom and microcystin-pollution risk by luteolin continuous-release microsphere at different nitrogen levels-Mechanisms from proteomics and gene expression. CHEMOSPHERE 2023:139365. [PMID: 37392791 DOI: 10.1016/j.chemosphere.2023.139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Luteolin continuous-release microsphere (CRM) has promising algicidal effect against Microcystis, but how nitrogen (N) level impacted CRM effects on Microcystis growth and microcystins (MCs) pollution was never tracked along long term. This study revealed that luteolin CRM exerted long-term and robust inhibitory effects on Microcystis growth and MC-pollution by sharply decreasing extracellular and total MCs content at each N level, with growth inhibition ratio of 88.18-96.03%, 92.91-97.17% and 91.36-95.55% at 0.5, 5 and 50 mg/L N, respectively, during day 8-30. Further analyses revealed that CRM-stress inhibited transferase, GTPase and ATPase activities, ATP binding, metal ion binding, fatty acid biosynthesis, transmembrane transport and disrupted redox homeostasis to pose equally robust algicidal effect at each N level. At lower N level, CRM-stress tended to induce cellular metabolic mode towards stronger energy supply/acquisition but weaker energy production/consumption, while triggered a shift towards stronger energy production/storage but weaker energy acquisition/consumption as N level elevated, thus disturbing metabolic balance and strongly inhibiting Microcystis growth at each N level. Long-term robust algicidal effect of CRM against other common cyanobacteria besides Microcystis was evident in natural water. This study shed novel insights into inhibitory effects and mechanisms of luteolin CRM on Microcystis growth and MC-pollution in different N-level waters.
Collapse
Affiliation(s)
- Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Jiaqian Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| |
Collapse
|
7
|
Sattrapai N, Chaiprom U, Lindow SE, Chatnaparat T. A Phosphate Uptake System Is Required for Xanthomonas citri pv. glycines Virulence in Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:261-272. [PMID: 36574016 DOI: 10.1094/mpmi-11-22-0241-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genes encoding the phosphate uptake system in Xanthomonas citri pv. glycines 12-2 were previously found to be upregulated when in soybean leaves. This study thus explored the role of the phosphate uptake system on its virulence to soybean. While phoB and pstSCAB mutants were greatly impaired in both inciting disease symptoms and growth in soybean, the virulence and growth in soybean of a phoU mutant was not reduced when compared with the wild-type strain. The expression of phoB and pstSCAB was highly induced in phosphate-deficient media. In addition, the expression of phoB, assessed with a fusion to a promoterless ice nucleation reporter gene, was greatly increased in soybean leaves, confirming that the soybean apoplast is a phosphorus-limited habitat for X. citri pv. glycines. Global gene expression profiles of phoB and phoU mutants of X. citri pv. glycines conducted under phosphate-limitation conditions in vitro, using RNA-seq, revealed that PhoB positively regulated genes involved in signal transduction, the xcs cluster type II secretion system, cell motility, and chemotaxis, while negatively regulating cell wall and membrane biogenesis, DNA replication and recombination and repair, and several genes with unknown function. PhoU also positively regulated the same genes involved in cell motility and chemotaxis. The severity of bacterial pustule disease was decreased in soybean plants grown under high phosphate fertilization conditions, demonstrating that high phosphate availability in soybean plants can affect infection by X. citri pv. glycines by modulation of the expression of phosphate uptake systems. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Nutthakan Sattrapai
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| | - Usawadee Chaiprom
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University, Bangkok, Thailand
| |
Collapse
|
8
|
Ojima Y, Naoi K, Akiyoshi R, Azuma M. Quantitative analysis of phosphate accumulation in PHO regulatory system-mutant strains of Saccharomyces cerevisiae. Arch Microbiol 2023; 205:138. [PMID: 36961589 DOI: 10.1007/s00203-023-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
PHO-mutant strains of Saccharomyces cerevisiae, NOF-1 and NBD82-1, which constitutively express PHO81 and PHO4, respectively, have been reported to accumulate phosphate in high-phosphate conditions. However, detailed analysis, including a quantitative evaluation of the accumulated phosphate, has not been performed for these mutants. In this study, NOF-1 and NBD82-1 mutant and double mutant strains were cultured in a high-phosphate medium to quantitatively analyze the amount, accumulation form, and physiological use of the accumulated phosphate in the cells. In control strains (BY4741 and NBW7), the percentage of phosphorus in total dry weight of cell was approximately 2%TDW; for the NBD82-1 mutant and double mutant strains, it was approximately 6%TDW; and for strain NOF-1, it was 8.5%TDW. When cells of the mutant strains were stained with 4',6-diamidino-2-phenylindole (DAPI), they showed a fluorescence peak at 540 nm, suggesting that phosphate accumulated as polyphosphoric acid (polyP). Quantitative evaluation revealed that for strain NOF-1, the percentage of phosphorus exiting as polyP in total dry weight of cell was approximately 5.0%TDW, equivalent to 60% of the total phosphorus in the cells. We also demonstrated that the mutant strains could grow well in phosphate-free medium, suggesting that phosphate accumulated in the cells was used as a phosphorus source. This is the first report concerning the quantitative analysis of phosphate accumulation and utilization of PHO regulatory system-mutant strains of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yoshihiro Ojima
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
| | - Kyohei Naoi
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Riho Akiyoshi
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| | - Masayuki Azuma
- Department of Chemistry and Bioengineering, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan
| |
Collapse
|
9
|
An G, Li J, Lu H, Guo Z. Nitrogen-dependent luteolin effect on Microcystis growth and microcystin-pollution risk - Novel mechanism insights unveiled by comparative proteomics and gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119848. [PMID: 35948113 DOI: 10.1016/j.envpol.2022.119848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phytogenic allelochemical luteolin has potential to mitigate Microcystis-dominated cyanobacterial blooms (MCBs), but its algicidal effect against toxigenic Microcystis may be impacted by natural factors, especially nitrogen (N) level in waters. This study innovatively explored N-dependent effect of luteolin on Microcystis growth and its microcystins (MCs) production/release, and elucidated underlying mechanisms from proteomics and gene expression views. Generally, at each N level, rising luteolin dose progressively inhibited Microcystis growth by inhibiting proteins syntheses and genes expression involving light-capturing, photosynthetic electron transfer, Calvin cycle and phosphorus (P) acquisition, according to comparative proteomics and gene expression. At higher luteolin dose and lower N level, Microcystis cell tended to increase microcystins (MCs) production and conservation ability, with the highest increase degree observed at 12 mg/L luteolin and 0.5 mg/L N on day 10, reaching 1.96 and 2.68 folds of luteolin-free control, respectively, but decrease MC-release as extracellular MCs content (EMC), with inhibition ratio of 72.86%, 73.57%, 74.45% and 40.58%, 45.28%, 60.00% at rising N level under 12 mg/L luteolin stress on day 10 and 16, respectively. These enabled cellular defensive response of Microcystis to stronger stress and N limitation. Under luteolin stress, higher N level more strongly up-regulated numerous processes (e.g., oxidoreductase activity, ATP binding and transmembrane transport, oxidative phosphorylation, tricarboxylic acid cycle, fatty acid biosynthesis, glycolysis/gluconeogenesis, pyruvate, amino acids metabolism, metal ion-binding, P acquisition) as compensative protective responses to progressively down-regulated photosynthetic and ribosomal processes at higher N level, thus causing faster Microcystis growth than lower N level. This study provided novel insights for N-dependent effect and mechanisms of luteolin on MCBs mitigation and MCs risk control, and guided algicidal application of luteolin in different eutrophic-degree waters.
Collapse
Affiliation(s)
- Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Haifeng Lu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Huber P, Roda-Garcia JJ, Bartosiewicz M, Belykh OI, Tikhonova IV, Torcello-Requena A, De Prado PM, Puxty RJ, Millard AD, Camacho A, Rodriguez-Valera F, Scanlan DJ. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol 2022; 20:175. [PMID: 35941649 PMCID: PMC9361551 DOI: 10.1186/s12915-022-01379-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are the major prokaryotic primary producers occupying a range of aquatic habitats worldwide that differ in levels of salinity, making them a group of interest to study one of the major unresolved conundrums in aquatic microbiology which is what distinguishes a marine microbe from a freshwater one? We address this question using ecogenomics of a group of picocyanobacteria (cluster 5) that have recently evolved to inhabit geographically disparate salinity niches. Our analysis is made possible by the sequencing of 58 new genomes from freshwater representatives of this group that are presented here, representing a 6-fold increase in the available genomic data. RESULTS Overall, freshwater strains had larger genomes (≈2.9 Mb) and %GC content (≈64%) compared to brackish (2.69 Mb and 64%) and marine (2.5 Mb and 58.5%) isolates. Genomic novelties/differences across the salinity divide highlighted acidic proteomes and specific salt adaptation pathways in marine isolates (e.g., osmolytes/compatible solutes - glycine betaine/ggp/gpg/gmg clusters and glycerolipids glpK/glpA), while freshwater strains possessed distinct ion/potassium channels, permeases (aquaporin Z), fatty acid desaturases, and more neutral/basic proteomes. Sulfur, nitrogen, phosphorus, carbon (photosynthesis), or stress tolerance metabolism while showing distinct genomic footprints between habitats, e.g., different types of transporters, did not obviously translate into major functionality differences between environments. Brackish microbes show a mixture of marine (salt adaptation pathways) and freshwater features, highlighting their transitional nature. CONCLUSIONS The plethora of freshwater isolates provided here, in terms of trophic status preference and genetic diversity, exemplifies their ability to colonize ecologically diverse waters across the globe. Moreover, a trend towards larger and more flexible/adaptive genomes in freshwater picocyanobacteria may hint at a wider number of ecological niches in this environment compared to the relatively homogeneous marine system.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | | | - Paula Huber
- Instituto Tecnológico de Chascomús (INTECH), UNSAM-CONICET, Av. Intendente Marino Km 8,200, (7130) Chascomús, Buenos Aires, Argentina.,Instituto Nacional de Limnología (INALI), CONICET-UNL, Ciudad Universitaria - Paraje el Pozo s/n, (3000), Santa Fé, Argentina
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain
| | - Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Olga I Belykh
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | - Irina V Tikhonova
- Limnological Institute, Russian Academy of Sciences, P.O. Box 278, 664033, Irkutsk, Russia
| | | | | | - Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel, Hernández, San Juan de Alicante, Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
11
|
Bowlin MQ, Long AR, Huffines JT, Gray MJ. The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001185. [PMID: 35482529 PMCID: PMC10233264 DOI: 10.1099/mic.0.001185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 12/22/2022]
Abstract
Inorganic polyphosphate (polyP) is synthesized by bacteria under stressful environmental conditions and acts by a variety of mechanisms to promote cell survival. While the kinase that synthesizes polyP (PPK, encoded by the ppk gene) is well known, ppk transcription is not activated by environmental stress and little is understood about how environmental stress signals lead to polyP accumulation. Previous work has shown that the transcriptional regulators DksA, RpoN (σ54) and RpoE (σ24) positively regulate polyP production, but not ppk transcription, in Escherichia coli. In this work, we examine the role of the alternative sigma factor RpoN and nitrogen starvation stress response pathways in controlling polyP synthesis. We show that the RpoN enhancer binding proteins GlnG and GlrR impact polyP production, and uncover a new role for the nitrogen phosphotransferase regulator PtsN (EIIANtr) as a positive regulator of polyP production, acting upstream of DksA, downstream of RpoN and apparently independently of RpoE. However, neither these regulatory proteins nor common nitrogen metabolites appear to act directly on PPK, and the precise mechanism(s) by which polyP production is modulated after stress remain(s) unclear. Unexpectedly, we also found that the genes that impact polyP production vary depending on the composition of the rich media in which the cells were grown before exposure to polyP-inducing stress. These results constitute progress towards deciphering the regulatory networks driving polyP production under stress, and highlight the remarkable complexity of this regulation and its connections to a broad range of stress-sensing pathways.
Collapse
Affiliation(s)
- Marvin Q. Bowlin
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abagail Renee Long
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua T. Huffines
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Jeffrey Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Coordination of Phosphate and Magnesium Metabolism in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:135-150. [PMID: 35288878 DOI: 10.1007/978-3-030-91623-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The majority of cellular phosphate (PO4-3; Pi) exists as nucleoside triphosphates, mainly adenosine triphosphate (ATP), and ribosomal RNA (rRNA). ATP and rRNA are also the largest cytoplasmic reservoirs of magnesium (Mg2+), the most abundant divalent cation in living cells. The co-occurrence of these ionic species in the cytoplasm is not coincidental. Decades of work in the Pi and Mg2+ starvation responses of two model enteric bacteria, Escherichia coli and Salmonella enterica, have led to the realization that the metabolisms of Pi and Mg2+ are interconnected. Bacteria must acquire these nutrients in a coordinated manner to achieve balanced growth and avoid loss of viability. In this chapter, we will review how bacteria sense and respond to fluctuations in environmental and intracellular Pi and Mg2+ levels. We will also discuss how these two compounds are functionally linked, and how cells elicit physiological responses to maintain their homeostasis.
Collapse
|
13
|
Sulaiman JE, Long L, Qian PY, Lam H. Proteomics and Transcriptomics Uncover Key Processes for Elasnin Tolerance in Methicillin-Resistant Staphylococcus aureus. mSystems 2022; 7:e0139321. [PMID: 35076266 PMCID: PMC8788329 DOI: 10.1128/msystems.01393-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023] Open
Abstract
Elasnin is a new antibiofilm compound that was recently reported to have excellent activity against methicillin-resistant Staphylococcus aureus (MRSA) biofilms. In this study, we established that elasnin also has antibacterial activity against growing S. aureus planktonic cells. To explore elasnin's potential as an antibiotic, we applied adaptive laboratory evolution (ALE) and produced evolved strains with elevated elasnin tolerance. Interestingly, they were more sensitive toward daptomycin and lysostaphin. Whole-genome sequencing revealed that all of the evolved strains possessed a single point mutation in a putative phosphate transport regulator. Subsequently, they exhibited increased intracellular phosphate (Pi) and polyphosphate levels. Inhibition of the phosphate transport regulator gene changed the phenotype of the wild type to one resembling those observed in the evolved strains. Proteomics and transcriptomics analyses showed that elasnin treatment resulted in the downregulation of many proteins related to cell division and cell wall synthesis, which is important for the survival of growing exponential-phase cells. Other downregulated processes and factors were fatty acid metabolism, glycolysis, the two-component system, RNA degradation, and ribosomal proteins. Most importantly, transport proteins and proteins involved in oxidative phosphorylation and the phosphotransferase system were more upregulated in the evolved strain than in the ancestral strain, indicating that they are important for elasnin tolerance. Overall, this study showed that elasnin has antibacterial activity against growing S. aureus cells and revealed the altered processes due to elasnin treatment and those associated with its tolerance. IMPORTANCE Besides the excellent antibiofilm properties of elasnin, we discovered that it can also kill growing methicillin-resistant Staphylococcus aureus (MRSA) planktonic cells. We subjected MRSA cells to an in vitro evolution experiment, and the resulting evolved strains exhibited increased elasnin tolerance, reduced growth rate, loss of pigmentation, and an increased proportion of small-colony formation, and they became more sensitive toward daptomycin and lysostaphin. Through multiomics analysis, we uncovered the affected processes in growing S. aureus planktonic cells following elasnin treatment, including the downregulation of cell wall synthesis, cell division, and some genes/proteins for the two-component system. These findings suggest that elasnin suppressed processes important for the cells' survival and adaptation to environmental stresses, making it an ideal drug adjuvant candidate. Overall, our study provides new insights into the mechanism of elasnin in S. aureus planktonic cells and pointed out the potential application of elasnin in clinics.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Lexin Long
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, People’s Republic of China
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|
14
|
Luo Y, Lei H, Wang R, Zhao H, Zhang G, Song C. A Novel In Vivo Functional Screening Method for the Candidate Polyphosphate Accumulating Organisms Isolation. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Phosphorus (P) is essential for life. As the fifth-most-abundant element in living cells, P is required for the synthesis of an array of biological molecules including (d)NTPs, nucleic acids, and membranes. Organisms typically acquire environmental P as inorganic phosphate (Pi). While essential for growth and viability, excess intracellular Pi is toxic for both bacteria and eukaryotes. Using the bacterium Salmonella enterica serovar Typhimurium as a model, we establish that Pi cytotoxicity is manifested following its assimilation into adenosine triphosphate (ATP), which acts as a chelating agent for Mg2+ and other cations. Our findings identify physiological processes disrupted by excessive Pi and how bacteria tune P assimilation to cytoplasmic Mg2+ levels. Phosphorus (P) is an essential component of core biological molecules. In bacteria, P is acquired mainly as inorganic orthophosphate (Pi) and assimilated into adenosine triphosphate (ATP) in the cytoplasm. Although P is essential, excess cytosolic Pi hinders growth. We now report that bacteria limit Pi uptake to avoid disruption of Mg2+-dependent processes that result, in part, from Mg2+ chelation by ATP. We establish that the MgtC protein inhibits uptake of the ATP precursor Pi when Salmonella enterica serovar Typhimurium experiences cytoplasmic Mg2+ starvation. This response prevents ATP accumulation and overproduction of ribosomal RNA that together ultimately hinder bacterial growth and result in loss of viability. Even when cytoplasmic Mg2+ is not limiting, excessive Pi uptake increases ATP synthesis, depletes free cytoplasmic Mg2+, inhibits protein synthesis, and hinders growth. Our results provide a framework to understand the molecular basis for Pi toxicity. Furthermore, they suggest a regulatory logic that governs P assimilation based on its intimate connection to cytoplasmic Mg2+ homeostasis.
Collapse
|
16
|
Shikura N, Darbon E, Esnault C, Deniset-Besseau A, Xu D, Lejeune C, Jacquet E, Nhiri N, Sago L, Cornu D, Werten S, Martel C, Virolle MJ. The Phosin PptA Plays a Negative Role in the Regulation of Antibiotic Production in Streptomyces lividans. Antibiotics (Basel) 2021; 10:325. [PMID: 33804592 PMCID: PMC8003754 DOI: 10.3390/antibiotics10030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
In Streptomyces, antibiotic biosynthesis is triggered in phosphate limitation that is usually correlated with energetic stress. Polyphosphates constitute an important reservoir of phosphate and energy and a better understanding of their role in the regulation of antibiotic biosynthesis is of crucial importance. We previously characterized a gene, SLI_4384/ppk, encoding a polyphosphate kinase, whose disruption greatly enhanced the weak antibiotic production of Streptomyces lividans. In the condition of energetic stress, Ppk utilizes polyP as phosphate and energy donor, to generate ATP from ADP. In this paper, we established that ppk is co-transcribed with its two downstream genes, SLI_4383, encoding a phosin called PptA possessing a CHAD domain constituting a polyphosphate binding module and SLI_4382 encoding a nudix hydrolase. The expression of the ppk/pptA/SLI_4382 operon was shown to be under the positive control of the two-component system PhoR/PhoP and thus mainly expressed in condition of phosphate limitation. However, pptA and SLI_4382 can also be transcribed alone from their own promoter. The deletion of pptA resulted into earlier and stronger actinorhodin production and lower lipid content than the disruption of ppk, whereas the deletion of SLI_4382 had no obvious phenotypical consequences. The disruption of ppk was shown to have a polar effect on the expression of pptA, suggesting that the phenotype of the ppk mutant might be linked, at least in part, to the weak expression of pptA in this strain. Interestingly, the expression of phoR/phoP and that of the genes of the pho regulon involved in phosphate supply or saving were strongly up-regulated in pptA and ppk mutants, revealing that both mutants suffer from phosphate stress. Considering the presence of a polyphosphate binding module in PptA, but absence of similarities between PptA and known exo-polyphosphatases, we proposed that PptA constitutes an accessory factor for exopolyphosphatases or general phosphatases involved in the degradation of polyphosphates into phosphate.
Collapse
Affiliation(s)
- Noriyasu Shikura
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Emmanuelle Darbon
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Catherine Esnault
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Ariane Deniset-Besseau
- Laboratoire de Chimie Physique (LCP), CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France;
| | - Delin Xu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (E.J.); (N.N.)
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (E.J.); (N.N.)
| | - Laila Sago
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Sebastiaan Werten
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria;
| | - Cécile Martel
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (N.S.); (E.D.); (C.E.); (D.X.); (C.L.); (L.S.); (D.C.); (C.M.)
| |
Collapse
|
17
|
Inorganic Polyphosphate in Host and Microbe Biology. Trends Microbiol 2021; 29:1013-1023. [PMID: 33632603 DOI: 10.1016/j.tim.2021.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Inorganic polyphosphate (polyP) is produced by both bacteria and their eukaryotic hosts, and it appears to play multiple important roles in the interactions between those organisms. However, the detailed mechanisms of how polyP synthesis is regulated in bacteria, and how it influences both bacterial and host biology, remain largely unexplored. In this review, we examine recent developments in the understanding of how bacteria regulate the synthesis of polyP, what roles polyP plays in controlling virulence in pathogenic bacteria, and the effects of polyP on the mammalian immune system, as well as progress on developing drugs that may be able to target bacterial polyP synthesis as novel means of treating infectious disease.
Collapse
|
18
|
Molecular Mechanisms of Phosphate Sensing, Transport and Signalling in Streptomyces and Related Actinobacteria. Int J Mol Sci 2021; 22:ijms22031129. [PMID: 33498785 PMCID: PMC7866108 DOI: 10.3390/ijms22031129] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorous, in the form of phosphate, is a key element in the nutrition of all living beings. In nature, it is present in the form of phosphate salts, organophosphates, and phosphonates. Bacteria transport inorganic phosphate by the high affinity phosphate transport system PstSCAB, and the low affinity PitH transporters. The PstSCAB system consists of four components. PstS is the phosphate binding protein and discriminates between arsenate and phosphate. In the Streptomyces species, the PstS protein, attached to the outer side of the cell membrane, is glycosylated and released as a soluble protein that lacks its phosphate binding ability. Transport of phosphate by the PstSCAB system is drastically regulated by the inorganic phosphate concentration and mediated by binding of phosphorylated PhoP to the promoter of the PstSCAB operon. In Mycobacterium smegmatis, an additional high affinity transport system, PhnCDE, is also under PhoP regulation. Additionally, Streptomyces have a duplicated low affinity phosphate transport system encoded by the pitH1–pitH2 genes. In this system phosphate is transported as a metal-phosphate complex in simport with protons. Expression of pitH2, but not that of pitH1 in Streptomyces coelicolor, is regulated by PhoP. Interestingly, in many Streptomyces species, three gene clusters pitH1–pstSCAB–ppk (for a polyphosphate kinase), are linked in a supercluster formed by nine genes related to phosphate metabolism. Glycerol-3-phosphate may be transported by the actinobacteria Corynebacterium glutamicum that contains a ugp gene cluster for glycerol-3-P uptake, but the ugp cluster is not present in Streptomyces genomes. Sugar phosphates and nucleotides are used as phosphate source by the Streptomyces species, but there is no evidence of the uhp gene involved in the transport of sugar phosphates. Sugar phosphates and nucleotides are dephosphorylated by extracellular phosphatases and nucleotidases. An isolated uhpT gene for a hexose phosphate antiporter is present in several pathogenic corynebacteria, such as Corynebacterium diphtheriae, but not in non-pathogenic ones. Phosphonates are molecules that contains phosphate linked covalently to a carbon atom through a very stable C–P bond. Their utilization requires the phnCDE genes for phosphonates/phosphate transport and genes for degradation, including those for the subunits of the C–P lyase. Strains of the Arthrobacter and Streptomyces genera were reported to degrade simple phosphonates, but bioinformatic analysis reveals that whole sets of genes for putative phosphonate degradation are present only in three Arthrobacter species and a few Streptomyces species. Genes encoding the C–P lyase subunits occur in several Streptomyces species associated with plant roots or with mangroves, but not in the laboratory model Streptomyces species; however, the phnCDE genes that encode phosphonates/phosphate transport systems are frequent in Streptomyces species, suggesting that these genes, in the absence of C–P lyase genes, might be used as surrogate phosphate transporters. In summary, Streptomyces and related actinobacteria seem to be less versatile in phosphate transport systems than Enterobacteria.
Collapse
|
19
|
Li H, Barber M, Lu J, Goel R. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake. WATER RESEARCH 2020; 185:116292. [PMID: 33086464 PMCID: PMC7737503 DOI: 10.1016/j.watres.2020.116292] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 05/06/2023]
Abstract
The current study reports the community succession of different toxin and non-toxin producing cyanobacteria at different stages of cyanobacterial harmful algal blooms (CyanoHABs) and their connectivity with nitrogen and phosphorus cycles in a freshwater lake using an ecogenomics framework. Comprehensive high throughput DNA sequencing, water quality parameter measurements, and functional gene expressions over temporal and spatial scales were employed. Among the cyanobacterial community, the lake was initially dominated by Cyanobium during the months of May, June, and early July, and later primarily by Aphanizomenon and Dolichospermum depicting functional redundancy. Finally, Planktothrix appeared in late August and then the dominance switched to Planktothrix in September. Microcystis aeruginosa and Microcystis panniformis; two species responsible for cyanotoxin production, were also present in August and September, but in significantly smaller relative abundance. MC-LR (0.06-1.32 µg/L) and MC-RR (0.01-0.26 µg/L) were two major types of cyanotoxins detected. The presence of MC-LR and MC-RR were significantly correlated with the Microcystis-related genes (16SMic/mcyA/mcyG) and their expressions (r = 0.33 to 0.8, p < 0.05). The metabolic analyses further linked the presence of different cyanobacterial groups with distinct functions. The nitrogen metabolisms detected a relatively higher abundance of nitrite/nitrate reductase in early summer, indicating significant denitrification activity and the activation of N-fixation in the blooms dominated by Aphanizomenon/Dolichospermum (community richness) during nutrient-limited conditions. The phosphorus and carbohydrate metabolisms detected a trend to initiate a nutrient starvation alert and store nutrients from early summer, while utilizing the stored polyphosphate and carbohydrate (PPX and F6PPK) during the extreme ortho-P scarcity period, mostly in August or September. Specifically, the abundance of Aphanizomenon and Dolichospermum was positively correlated with the nitrogen-fixing nif gene and (p < 0.001) and the PPX enzyme for the stored polyphosphate utilization (r = 0.77, p < 0.001). Interestingly, the lake experienced a longer N-fixing period (2-3 months) before non-fixing cyanobacteria (Planktothrix) dominated the entire lake in late summer. The Provo Bay site, which is known to be nutrient-rich historically, had early episodes of filamentous cyanobacteria blooms compared to the rest of the lake.
Collapse
Affiliation(s)
- Hanyan Li
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA
| | - Mike Barber
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Ramesh Goel
- Civil & Environmental Engineering, University of Utah, 110 S. Central Campus Drive, 2000 MCE, Salt Lake City, UT 84121, USA.
| |
Collapse
|
20
|
Multicopy Suppressor Analysis of Strains Lacking Cytoplasmic Peptidyl-Prolyl cis/trans Isomerases Identifies Three New PPIase Activities in Escherichia coli That Includes the DksA Transcription Factor. Int J Mol Sci 2020; 21:ijms21165843. [PMID: 32823955 PMCID: PMC7461557 DOI: 10.3390/ijms21165843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with a role in catalyzing rate-limiting step of protein folding, removal of genes encoding cytoplasmic protein folding catalysts belonging to the family of peptidyl-prolyl cis/trans isomerases (PPIs) in Escherichia coli confers conditional lethality. To address the molecular basis of the essentiality of PPIs, a multicopy suppressor approach revealed that overexpression of genes encoding chaperones (DnaK/J and GroL/S), transcriptional factors (DksA and SrrA), replication proteins Hda/DiaA, asparatokinase MetL, Cmk and acid resistance regulator (AriR) overcome some defects of Δ6ppi strains. Interestingly, viability of Δ6ppi bacteria requires the presence of transcriptional factors DksA, SrrA, Cmk or Hda. DksA, MetL and Cmk are for the first time shown to exhibit PPIase activity in chymotrypsin-coupled and RNase T1 refolding assays and their overexpression also restores growth of a Δ(dnaK/J/tig) strain, revealing their mechanism of suppression. Mutagenesis of DksA identified that D74, F82 and L84 amino acid residues are critical for its PPIase activity and their replacement abrogated multicopy suppression ability. Mutational studies revealed that DksA-mediated suppression of either Δ6ppi or ΔdnaK/J is abolished if GroL/S and RpoE are limiting, or in the absence of either major porin regulatory sensory kinase EnvZ or RNase H, transporter TatC or LepA GTPase or Pi-signaling regulator PhoU.
Collapse
|
21
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
22
|
Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic Polyphosphate Accumulation in Escherichia coli. J Bacteriol 2020; 202:JB.00133-20. [PMID: 32341074 DOI: 10.1128/jb.00133-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium Escherichia coli has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of dksA overexpression rescuing growth of a dnaK mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of E. coli IMPORTANCE Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in Escherichia coli and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
Collapse
|
23
|
Shang Y, Wang X, Chen Z, Lyu Z, Lin Z, Zheng J, Wu Y, Deng Q, Yu Z, Zhang Y, Qu D. Staphylococcus aureus PhoU Homologs Regulate Persister Formation and Virulence. Front Microbiol 2020; 11:865. [PMID: 32670206 PMCID: PMC7326077 DOI: 10.3389/fmicb.2020.00865] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
PhoU homologs are one of the determinant factors in the regulation of persister formation and phosphate metabolism in many bacterial species; however, the functions of PhoU homologs exhibit species-specific characteristics. The pathogenesis of Staphylococcus aureus is closely correlated with persister formation and virulence factors. The functions of two PhoU homologs, PhoU1 and PhoU2, in S. aureus are unclear yet. In this study, single- and double-deletion mutants of phoU1 and phoU2 were generated in strain USA500 2395. The ΔphoU1 or ΔphoU2 mutants displayed a change in persister formation and virulence compared to the parent strain; the persisters to vancomycin and levofloxacin were decreased at least 1,000-fold, and the number of intracellular bacteria surviving in the A549 cells for 24 h decreased to 82 or 85%. The α-hemolysin expression and activity were increased in the ΔphoU2 mutants. Transcriptome analysis revealed that 573 or 285 genes were differentially expressed by at least 2.0-fold in the ΔphoU1 or ΔphoU2 mutant vs. the wild type. Genes involved in carbon and pyruvate metabolism were up-regulated, and virulence genes and virulence regulatory genes were down-regulated, including type VII secretion system, serine protease, leukocidin, global regulator (sarA, rot), and the two-component signal transduction system (saeS). Correspondingly, the deletion of the phoU1 or phoU2 resulted in increased levels of intracellular pyruvate and ATP. Deletion of the phoU2, but not the phoU1, resulted in the up-regulation of inorganic phosphate transport genes and increased levels of intracellular inorganic polyphosphate. In conclusion, both PhoU1 and PhoU2 in S. aureus regulate virulence by the down-regulation of multiple virulence factors (type VII secretion system, serine protease, and leucocidin) and the persister generation by hyperactive carbon metabolism accompanied by increasing intracellular ATP. The results in S. aureus are different from what we have previously found in Staphylococcus epidermis, where only PhoU2 regulates biofilm and persister formation. The different functions of PhoU homologs between the two species of Staphylococcus warrant further investigation.
Collapse
Affiliation(s)
- Yongpeng Shang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofei Wang
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhihui Lyu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of MOE and MOH, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Disruption of Phosphate Homeostasis Sensitizes Staphylococcus aureus to Nutritional Immunity. Infect Immun 2020; 88:IAI.00102-20. [PMID: 32205403 DOI: 10.1128/iai.00102-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
To control infection, mammals actively withhold essential nutrients, including the transition metal manganese, by a process termed nutritional immunity. A critical component of this host response is the manganese-chelating protein calprotectin. While many bacterial mechanisms for overcoming nutritional immunity have been identified, the intersection between metal starvation and other essential inorganic nutrients has not been investigated. Here, we report that overexpression of an operon encoding a highly conserved inorganic phosphate importer, PstSCAB, increases the sensitivity of Staphylococcus aureus to calprotectin-mediated manganese sequestration. Further analysis revealed that overexpression of pstSCAB does not disrupt manganese acquisition or result in overaccumulation of phosphate by S. aureus However, it does reduce the ability of S. aureus to grow in phosphate-replete defined medium. Overexpression of pstSCAB does not aberrantly activate the phosphate-responsive two-component system PhoPR, nor was this two-component system required for sensitivity to manganese starvation. In a mouse model of systemic staphylococcal disease, a pstSCAB-overexpressing strain is significantly attenuated compared to wild-type S. aureus This defect is partially reversed in a calprotectin-deficient mouse, in which manganese is more readily available. Given that expression of pstSCAB is regulated by PhoPR, these findings suggest that overactivation of PhoPR would diminish the ability of S. aureus to resist nutritional immunity and cause infection. As PhoPR is also necessary for bacterial virulence, these findings imply that phosphate homeostasis represents a critical regulatory node whose activity must be precisely controlled in order for S. aureus and other pathogens to cause infection.
Collapse
|
25
|
Pope MA, Hodge JA, Nixon PJ. An Improved Natural Transformation Protocol for the Cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2020; 11:372. [PMID: 32351517 PMCID: PMC7174562 DOI: 10.3389/fpls.2020.00372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
The naturally transformable cyanobacterium Synechocystis sp. PCC 6803 is a widely used chassis strain for the photosynthetic production of chemicals. However, Synechocystis possesses multiple genome copies per cell which means that segregating mutations across all genome copies can be time-consuming. Here we use flow cytometry in combination with DNA staining to investigate the effect of phosphate deprivation on the genome copy number of the glucose-tolerant GT-P sub-strain of Synechocystis 6803. Like the PCC 6803 wild type strain, the ploidy of GT-P cells grown in BG-11 medium is growth phase dependent with an average genome copy number of 6.05 ± 0.27 in early growth (OD740 = 0.1) decreasing to 2.49 ± 0.11 in late stationary phase (OD740 = 7). We show that a 10-fold reduction in the initial phosphate concentration of the BG-11 growth medium reduces the average genome copy number of GT-P cells from 4.51 ± 0.20 to 2.94 ± 0.13 and increases the proportion of monoploid cells from 0 to 6% after 7 days of growth. In addition, we also show that the DnaA protein, which unusually for bacteria is not required for DNA replication in Synechocystis, plays a role in restoring polyploidy upon subsequent phosphate supplementation. Based on these observations, we have developed an alternative natural transformation protocol involving phosphate depletion that decreases the time required to obtain fully segregated mutants.
Collapse
|
26
|
Valev D, Kurkela J, Tyystjärvi E, Tyystjärvi T. Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light. Curr Microbiol 2020; 77:1590-1599. [PMID: 32266454 PMCID: PMC7334282 DOI: 10.1007/s00284-020-01973-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 03/27/2020] [Indexed: 11/25/2022]
Abstract
It is shown that a freshly inoculated culture of the model cyanobacterium Synechocystis sp. PCC 6803 consumed almost all phosphate and 50% of nitrate within 6 days from the nutrient-rich BG-11 growth medium, indicating potential of cyanobacteria to purify wastewaters. Synechocystis sp. PCC 6803 control strain also collected nutrients efficiently from a landfill leachate wastewater KA2 (5.9-6.9 mM ammonium and 0.073-0.077 mM phosphate). Wastewaters might induce oxidative stress to microalgae, which prompted us to test growth of sigma factor inactivation strains, as ΔsigBCE and ΔsigCDE strains show superior growth in chemically induced oxidative stress. All cyanobacterial strains, including a stress-sensitive strain ΔsigBCDE, grew well in KA2 for four days, indicating that KA2 did not cause immediate oxidative stress. Completely arrested growth and bleaching of ΔsigBCDE cells after one week in KA2 wastewater point to the importance of group 2 sigma factor-mediated changes in gene expression during wastewater treatment. The growth of ΔsigBCD was arrested early in un-buffered and Hepes buffered (pH 7.5) KA2. In ΔsigBCD, all phosphate transporter genes are upregulated in standard conditions, and ΔsigBCD cells showed growth defects in low-phosphate BG-11 medium. ΔsigBCD cells removed phosphate slower from KA2 than the control strain, but phosphate supplementation of KA2 did not improve growth of ΔsigBCD. The ΔsigBCE strain showed superior growth in a laboratory-scale bioreactor in bright light and removed phosphate even slightly more efficiently than the control strain if KA2 was Hepes buffered although ΔsigBCE grew slowly in un-buffered KA2 and in low-phosphate BG-11 medium. The results indicate that engineering expression of regulatory group 2 sigma factor(s) might be useful for practical applications.
Collapse
Affiliation(s)
- Dimitar Valev
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
27
|
Krynická V, Georg J, Jackson PJ, Dickman MJ, Hunter CN, Futschik ME, Hess WR, Komenda J. Depletion of the FtsH1/3 Proteolytic Complex Suppresses the Nutrient Stress Response in the Cyanobacterium Synechocystis sp strain PCC 6803. THE PLANT CELL 2019; 31:2912-2928. [PMID: 31615847 PMCID: PMC6925008 DOI: 10.1105/tpc.19.00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/03/2019] [Accepted: 10/13/2019] [Indexed: 05/04/2023]
Abstract
The membrane-embedded FtsH proteases found in bacteria, chloroplasts, and mitochondria are involved in diverse cellular processes including protein quality control and regulation. The genome of the model cyanobacterium Synechocystis sp PCC 6803 encodes four FtsH homologs designated FtsH1 to FtsH4. The FtsH3 homolog is present in two hetero-oligomeric complexes: FtsH2/3, which is responsible for photosystem II quality control, and the essential FtsH1/3 complex, which helps maintain Fe homeostasis by regulating the level of the transcription factor Fur. To gain a more comprehensive insight into the physiological roles of FtsH hetero-complexes, we performed genome-wide expression profiling and global proteomic analyses of Synechocystis mutants conditionally depleted of FtsH3 or FtsH1 grown under various nutrient conditions. We show that the lack of FtsH1/3 leads to a drastic reduction in the transcriptional response to nutrient stress of not only Fur but also the Pho, NdhR, and NtcA regulons. In addition, this effect is accompanied by the accumulation of the respective transcription factors. Thus, the FtsH1/3 complex is of critical importance for acclimation to iron, phosphate, carbon, and nitrogen starvation in Synechocystis.plantcell;31/12/2912/FX1F1fx1.
Collapse
Affiliation(s)
- Vendula Krynická
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czech Republic
| | - Jens Georg
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Matthias E Futschik
- School of Biomedical Sciences, Institute of Translational and Stratified Medicine (ITSMed), Faculty of Medicine and Dentistry, University of Plymouth, Plymouth PL6 8BU, United Kingdom
- Systems Biology and Bioinformatics Laboratory (SysBioLab), Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrße 19, D-79104 Freiburg, Germany
| | - Josef Komenda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, 379 81, Czech Republic
| |
Collapse
|
28
|
Mukherjee C, Chowdhury R, Begam MM, Ganguli S, Basak R, Chaudhuri B, Ray K. Effect of Varying Nitrate Concentrations on Denitrifying Phosphorus Uptake by DPAOs With a Molecular Insight Into Pho Regulon Gene Expression. Front Microbiol 2019; 10:2586. [PMID: 31787959 PMCID: PMC6856094 DOI: 10.3389/fmicb.2019.02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022] Open
Abstract
Bacterial Pho regulon is a key regulator component in biological phosphorus-uptake. Poly-phosphate accumulating bacteria used in enhanced biological phosphorus removal (EBPR) system encounter negative regulation of the Pho regulon, resulting in reduced phosphorus-uptake from phosphorus-replete waste effluents. This study demonstrates possible trends of overcoming the PhoU negative regulation, resulting in excessive PO4 3--P uptake at varying concentrations of NO3 --N through denitrifying phosphorus removal process. We investigated the Pho regulon gene expression pattern and kinetic studies of P-removal by denitrifying phosphate accumulating organisms (DPAOs) which are able to remove both PO4 3--P and NO3 --N in single anoxic stage with the utilization of external carbon sources, without the use of stored polyhydroxyalkanoate (PHA) and without any anaerobic-aerobic or anaerobic-anoxic switches. Our study establishes that a minimum addition of 100 ppm NO3 --N leads to the withdrawal of the negative regulation of Pho regulon and results in ∼100% P-removal with concomitant escalated poly-phosphate accumulation by our established DPAO isolates and their artificially made consortium, isolated from sludge sample of PO4 3- -rich parboiled rice mill effluent, in a settling tank within 12 h of treatment. The same results were obtained when a phosphate rich effluent (stillage from distillery) mixed with a nitrate rich effluent (from explosive industry) was treated together in a single phase anoxic batch reactor, eliminating the need for alternating anaerobic/aerobic or anaerobic/anoxic switches for removing both the pollutants simultaneously. The highest poly-phosphate accumulation was observed to be more than 17% of cell dry weight. Our studies unequivocally establish that nitrate induction of Pho regulon is parallely associated with the repression of PhoU gene transcription, which is the negative regulator of Pho regulon. Based on earlier observations where similar nitrate mediated transcriptional repression was cited, we hypothesize the possible involvement of NarL/NarP transcriptional regulator proteins in PhoU repression. At present, we propose this denitrifying phosphorus removal endeavor as an innovative methodology to overcome the negative regulation of Pho regulon for accelerated unhindered phosphorus remediation from phosphate rich wastewater in India and the developing world where the stringency of EBPR and other reactors prevent their use due to financial reasons.
Collapse
Affiliation(s)
- Chandan Mukherjee
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Rajojit Chowdhury
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Mst. Momtaj Begam
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Sayak Ganguli
- Theoretical and Computational Biology Division, AIIST and The Biome, Kolkata, India
| | - Ritabrata Basak
- Department of Biochemistry, Ballygunge Science College, University of Calcutta, Kolkata, India
| | | | - Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| |
Collapse
|
29
|
Perin G, Yunus IS, Valton M, Alobwede E, Jones PR. Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Liu Y, Orsi RH, Gaballa A, Wiedmann M, Boor KJ, Guariglia-Oropeza V. Systematic review of the Listeria monocytogenes σB regulon supports a role in stress response, virulence and metabolism. Future Microbiol 2019; 14:801-828. [DOI: 10.2217/fmb-2019-0072] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Among the alternative sigma factors of Listeria monocytogenes, σB controls the largest regulon. The aim of this study was to perform a comprehensive review of σB-regulated genes, and the functions they confer. Materials & methods: A systematic search of PubMed and Web of Knowledge was carried out to identify members of the σB regulon based on experimental evidence of σB-dependent transcription and presence of a consensus σB-dependent promoter. Results: The literature review identified σB-dependent transcription units encompassing 304 genes encoding different functions including stress response and virulence. Conclusion: Our review supports the well-known roles of σB in virulence and stress response and provides new insight into novel roles for σB in metabolism and overall resilience of L. monocytogenes.
Collapse
Affiliation(s)
- Yichang Liu
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Ahmed Gaballa
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Kathryn J Boor
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
31
|
Rudat AK, Pokhrel A, Green TJ, Gray MJ. Mutations in Escherichia coli Polyphosphate Kinase That Lead to Dramatically Increased In Vivo Polyphosphate Levels. J Bacteriol 2018; 200:e00697-17. [PMID: 29311274 PMCID: PMC5826030 DOI: 10.1128/jb.00697-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a wide variety of stresses, and production of polyP is essential for stress response and survival in many important pathogens and bacteria used in biotechnological processes. However, surprisingly little is known about the molecular mechanisms that control polyP synthesis. We have therefore developed a novel genetic screen that specifically links growth of Escherichia coli to polyP synthesis, allowing us to isolate mutations leading to enhanced polyP production. Using this system, we have identified mutations in the polyP-synthesizing enzyme polyP kinase (PPK) that lead to dramatic increases in in vivo polyP synthesis but do not substantially affect the rate of polyP synthesis by PPK in vitro These mutations are distant from the PPK active site and found in interfaces between monomers of the PPK tetramer. We have also shown that high levels of polyP lead to intracellular magnesium starvation. Our results provide new insights into the control of bacterial polyP accumulation and suggest a simple, novel strategy for engineering bacteria with increased polyP contents.IMPORTANCE PolyP is an ancient, universally conserved biomolecule and is important for stress response, energy metabolism, and virulence in a remarkably broad range of microorganisms. PolyP accumulation by bacteria is also important in biotechnology applications. For example, it is critical to enhanced biological phosphate removal (EBPR) from wastewater. Understanding how bacteria control polyP synthesis is therefore of broad importance in both the fields of bacterial pathogenesis and biological engineering. Using Escherichia coli as a model organism, we have identified the first known mutations in polyP kinase that lead to increases in cellular polyP content.
Collapse
Affiliation(s)
- Amanda K Rudat
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Arya Pokhrel
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Wang X, Wang X, Hui K, Wei W, Zhang W, Miao A, Xiao L, Yang L. Highly Effective Polyphosphate Synthesis, Phosphate Removal, and Concentration Using Engineered Environmental Bacteria Based on a Simple Solo Medium-Copy Plasmid Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:214-222. [PMID: 29190088 DOI: 10.1021/acs.est.7b04532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial polyphosphate (polyP) production is vital to the removal of phosphate from wastewater. However, to date, engineered polyP synthesis using genetically accessible environmental bacteria remains a challenge. This study develops a simple solo medium-copy plasmid-based polyphosphate kinase (PPK1) overexpression strategy for achieving maximum intracellular polyphosphate accumulation by environmental bacteria. The polyP content of the subsequently engineered Citrobacter freundii (CPP) could reach as high as 12.7% of its dry weight. The biomass yield of CPP was also guaranteed because of negligible metabolic burden effects resulting from the medium plasmid copy number. Consequently, substantial removal of phosphate (Pi) from the ambient environment was achieved simultaneously. Because of the need for exogenous Pi for in vivo ATP regeneration, CPP could thoroughly remove Pi from synthetic municipal wastewater when it was applied for the "one-step" removal of Pi with a bench-scale sequence batch membrane reactor. Almost all the phosphorus except for that assimilated by CPP for cellular growth could be recovered in the form of more concentrated Pi. Overall, engineering environmental bacteria to overexpress PPK1 via a solo medium-copy plasmid strategy may represent a valuable general option for not only biotechnological research based on sufficient intracellular polyP production but also removal of Pi from wastewater and Pi enrichment.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| | - Xiaomeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| | - Kaimin Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University , Nanjing 210046, P. R. China
| | - Wei Wei
- Institute of Chemistry and BioMedical Science, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University , Nanjing 210046, P. R. China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| | - Aijun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| | - Lin Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210046, P. R. China
| |
Collapse
|
33
|
Acquisition of the Phosphate Transporter NptA Enhances Staphylococcus aureus Pathogenesis by Improving Phosphate Uptake in Divergent Environments. Infect Immun 2017; 86:IAI.00631-17. [PMID: 29084897 DOI: 10.1128/iai.00631-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/28/2022] Open
Abstract
During infection, pathogens must obtain all inorganic nutrients, such as phosphate, from the host. Despite the essentiality of phosphate for all forms of life, how Staphylococcus aureus obtains this nutrient during infection is unknown. Differing from Escherichia coli, the paradigm for bacterial phosphate acquisition, which has two inorganic phosphate (Pi) importers, genomic analysis suggested that S. aureus possesses three distinct Pi transporters: PstSCAB, PitA, and NptA. While pitA and nptA are expressed in phosphate-replete media, expression of all three transporters is induced by phosphate limitation. The loss of a single transporter did not affect S. aureus However, disruption of any two systems significantly reduced Pi accumulation and growth in divergent environments. These findings indicate that PstSCAB, PitA, and NptA have overlapping but nonredundant functions, thus expanding the environments in which S. aureus can successfully obtain Pi Consistent with this idea, in a systemic mouse model of disease, loss of any one transporter did not decrease staphylococcal virulence. However, loss of NptA in conjunction with either PstSCAB or PitA significantly reduced the ability of S. aureus to cause infection. These observations suggest that Pi acquisition via NptA is particularly important for the pathogenesis of S. aureus While our analysis suggests that NptA homologs are widely distributed among bacteria, closely related less pathogenic staphylococcal species do not possess this importer. Altogether, these observations indicate that Pi uptake by S. aureus differs from established models and that acquisition of a third transporter enhances the ability of the bacterium to cause infection.
Collapse
|
34
|
Brokaw AM, Eide BJ, Muradian M, Boster JM, Tischler AD. Mycobacterium smegmatis PhoU Proteins Have Overlapping Functions in Phosphate Signaling and Are Essential. Front Microbiol 2017; 8:2523. [PMID: 29326670 PMCID: PMC5741670 DOI: 10.3389/fmicb.2017.02523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Many bacteria regulate gene expression in response to phosphate availability using a two-component signal transduction system, the activity of which is controlled by interaction with the Pst phosphate specific transporter and a cytoplasmic protein PhoU. Mycobacterium tuberculosis, the causative agent of tuberculosis, requires its phosphate sensing signal transduction system for virulence and antibiotic tolerance, but the molecular mechanisms of phosphate sensing remain poorly characterized. M. smegmatis serves as a model for studying mycobacterial pathogens including M. tuberculosis. M. smegmatis encodes two proteins with similarity to PhoU, but it was unknown if both proteins participated in signal transduction with the phosphate-responsive SenX3-RegX3 two-component system. We constructed phoU single and double deletion mutants and tested expression of genes in the RegX3 regulon. Only the ΔphoU1ΔphoU2 mutant exhibited constitutive activation of all the RegX3-regulated genes examined, suggesting that M. smegmatis PhoU1 and PhoU2 have overlapping functions in inhibiting activity of the SenX3-RegX3 two-component system when phosphate is readily available. The ΔphoU1ΔphoU2 mutant also exhibited decreased tolerance to several anti-tubercular drugs. However, a complex plasmid swapping strategy was required to generate the ΔphoU1ΔphoU2 mutant, suggesting that either phoU1 or phoU2 is essential for in vitro growth of M. smegmatis. Using whole-genome sequencing, we demonstrated that all five of the ΔphoU1ΔphoU2 mutants we isolated had independent suppressor mutations predicted to disrupt the function of the Pst phosphate transporter, suggesting that in the absence of the PhoU proteins phosphate uptake by the Pst system is toxic. Collectively, our data demonstrate that the two M. smegmatis PhoU orthologs have overlapping functions in both controlling SenX3-RegX3 activity in response to phosphate availability and regulating phosphate transport by the Pst system. Our results suggest that M. smegmatis can serve as a tractable model for further characterization of the molecular mechanism of phosphate sensing in mycobacteria and to screen for compounds that would interfere with signal transduction and thereby increase the efficacy of existing anti-tubercular antibiotics.
Collapse
Affiliation(s)
- Alyssa M Brokaw
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin J Eide
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Michael Muradian
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua M Boster
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Anna D Tischler
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
35
|
PhoU2 but Not PhoU1 as an Important Regulator of Biofilm Formation and Tolerance to Multiple Stresses by Participating in Various Fundamental Metabolic Processes in Staphylococcus epidermidis. J Bacteriol 2017; 199:JB.00219-17. [PMID: 28947672 PMCID: PMC5686610 DOI: 10.1128/jb.00219-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022] Open
Abstract
PhoU, a conserved protein that has been proposed to coordinate phosphate import, is a negative regulator of drug tolerance in most bacteria. In Staphylococcus epidermidis, the role of PhoU in biofilm formation and drug tolerance has not yet been investigated. Two PhoU homologs in the genome of S. epidermidis have been identified by the presence of the conserved motif E(D)XXXD of PhoU. We separately constructed ΔphoU1 and ΔphoU2 mutants of S. epidermidis strain 1457. The ΔphoU2 mutant displayed growth retardation, a weakened biofilm formation capacity, a higher sensitivity to H2O2, and reduced tolerance to multiple antibiotics. However, deletion of phoU1 had no effect on those. We compared the transcriptome profiles of the ΔphoU2 and ΔphoU1 mutants with that of the parent strain. In the ΔphoU2 mutant, expression of genes related to inorganic phosphate uptake was significantly upregulated (pst operon) and the levels of intracellular inorganic polyphosphate (polyP) were increased. In the ΔphoU2 mutant, expression of enzymes in the pentose phosphate pathway (PPP) was downregulated and less NADP (NADPH) was detected, consistent with the high sensitivity to H2O2 and the growth retardation of the ΔphoU2 mutant. The upregulated expression of ATP synthase was consistent with the high intracellular ATP content in the ΔphoU2 mutant, which may have been related to the lower drug tolerance of the ΔphoU2 mutant. This study demonstrates that PhoU2, but not PhoU1, in S. epidermidis regulates bacterial growth, biofilm formation, oxidative stress, and drug tolerance in association with alterations to inorganic phosphate metabolism, the pentose phosphate pathway, galactose metabolism, the tricarboxylic acid (TCA) or citric cycle, glycolysis and gluconeogenesis, and respiratory reactions. IMPORTANCE PhoU is widely conserved throughout the bacterial kingdom and plays an important role in response to stress and metabolic maintenance. In our study, two PhoU homologs were found in S. epidermidis. The function of phoU2, but not phoU1, in S. epidermidis is related to growth, drug tolerance, the oxidative stress response, polyP levels, and ATP accumulation. In addition, phoU2 regulates biofilm formation. Hence, phoU2 is a regulator of both drug tolerance and biofilm formation, which are two bacterial properties that present major challenges to the clinical treatment of infections. Analysis of differential gene expression revealed that phoU2 is involved in fundamental metabolic processes, such as the PPP pathway. These findings indicate that phoU2 is a crucial regulator in S. epidermidis.
Collapse
|
36
|
PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti. J Bacteriol 2017; 199:JB.00143-17. [PMID: 28416708 DOI: 10.1128/jb.00143-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence.
Collapse
|
37
|
Mycobacterium tuberculosis PhoY Proteins Promote Persister Formation by Mediating Pst/SenX3-RegX3 Phosphate Sensing. mBio 2017; 8:mBio.00494-17. [PMID: 28698272 PMCID: PMC5513712 DOI: 10.1128/mbio.00494-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Mycobacterium tuberculosis phosphate-specific transport (Pst) system controls gene expression in response to phosphate availability by inhibiting the activation of the SenX3-RegX3 two-component system under phosphate-rich conditions, but the mechanism of communication between these systems is unknown. In Escherichia coli, inhibition of the two-component system PhoR-PhoB under phosphate-rich conditions requires both the Pst system and PhoU, a putative adaptor protein. E. coli PhoU is also involved in the formation of persisters, a subpopulation of phenotypically antibiotic-tolerant bacteria. M. tuberculosis encodes two PhoU orthologs, PhoY1 and PhoY2. We generated phoY single- and double-deletion mutants and examined the expression of RegX3-regulated genes by quantitative reverse transcription-PCR (qRT-PCR). Gene expression was increased only in the ΔphoY1 ΔphoY2 double mutant and could be restored to the wild-type level by complementation with either phoY1 or phoY2 or by deletion of regX3 These data suggest that the PhoY proteins function redundantly to inhibit SenX3-RegX3 activation. We analyzed the frequencies of antibiotic-tolerant persister variants in the phoY mutants using several antibiotic combinations. Persister frequency was decreased at least 40-fold in the ΔphoY1 ΔphoY2 mutant compared to the frequency in the wild type, and this phenotype was RegX3 dependent. A ΔpstA1 mutant lacking a Pst system transmembrane component exhibited a similar RegX3-dependent decrease in persister frequency. In aerosol-infected mice, the ΔphoY1 ΔphoY2 and ΔpstA1 mutants were more susceptible to treatment with rifampin but not isoniazid. Our data demonstrate that disrupting phosphate sensing mediated by the PhoY proteins and the Pst system enhances the susceptibility of M. tuberculosis to antibiotics both in vitro and during infection.IMPORTANCE Persister variants, subpopulations of bacteria that are phenotypically antibiotic tolerant, contribute to the lengthy treatment times required to cure Mycobacterium tuberculosis infection, but the molecular mechanisms governing their formation and maintenance are poorly characterized. Here, we demonstrate that a phosphate-sensing signal transduction system, comprising the Pst phosphate transporter, the two-component system SenX3-RegX3, and functionally redundant PhoY proteins that mediate signaling between Pst and SenX3-RegX3, influences persister formation. Activation of RegX3 by deletion of the phoY genes or a Pst system component resulted in decreased persister formation in vitro Activated RegX3 also limited persister formation during growth under phosphate-limiting conditions. Importantly, increased susceptibility to the front-line drug rifampin was also observed in a mouse infection model. Thus, the M. tuberculosis phosphate-sensing signal transduction system contributes to antibiotic tolerance and is a potential target for the development of novel therapeutics that may shorten the duration of tuberculosis treatment.
Collapse
|
38
|
Peng YC, Lu C, Li G, Eichenbaum Z, Lu CD. Induction of the pho regulon and polyphosphate synthesis against spermine stress in Pseudomonas aeruginosa. Mol Microbiol 2017; 104:1037-1051. [PMID: 28370665 DOI: 10.1111/mmi.13678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 11/28/2022]
Abstract
Growth of Pseudomonas aeruginosa on spermine requires a functional γ-glutamylpolyamine synthetase PauA2. Not only subjected to growth inhibition by spermine, the pauA2 mutant became more sensitive to β-lactam antibiotics in human serum. To explore PauA2 as a potential target of drug development, suppressors of the pauA2 mutant, which alleviated toxicity, were isolated from selection plates containing spermine. These suppressors share common phenotypic changes including delayed growth rate, retarded swarming motility, and pyocyanin overproduction. Genome resequencing of a representative suppressor revealed a unique C599 T mutation at the phoU gene that results in Ser200 Leu substitution and a constitutive expression of the Pho regulon. Identical phenotypes were also observed in a ΔpauA2ΔphoU double knockout mutant and complemented by the wild-type phoU gene. Accumulation of polyphosphate granules and spermine resistance in the suppressor were reversed concomitantly when expressing exopolyphosphatase PPX from a recombinant plasmid, or by the introduction of deletion alleles in pstS pstC for phosphate uptake, phoB for Pho regulation, and ppk for polyphosphate synthesis. In conclusion, this study identifies polyphosphate accumulation due to an activated Pho regulon and phosphate uptake by the phoU mutation as a potential protection mechanism against spermine toxicity.
Collapse
Affiliation(s)
- Yu-Chih Peng
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - ChienYi Lu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Guoqing Li
- Department of Biomedical and Nutritional Sciences, UMass Lowell, Lowell, MA, 01854, USA
| | - Zehava Eichenbaum
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Chung-Dar Lu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.,Department of Biomedical and Nutritional Sciences, UMass Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
39
|
Shi M, Zhang X, Pei G, Chen L, Zhang W. Functional Diversity of Transcriptional Regulators in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2017; 8:280. [PMID: 28270809 PMCID: PMC5318462 DOI: 10.3389/fmicb.2017.00280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/09/2017] [Indexed: 11/16/2022] Open
Abstract
Functions of transcriptional regulators (TRs) are still poorly understood in the model cyanobacterium Synechocystis sp. PCC 6803. To address the issue, we constructed knockout mutants for 32 putative TR-encoding genes of Synechocystis, and comparatively analyzed their phenotypes under autotrophic growth condition and metabolic profiles using liquid chromatography-mass spectrometry-based metabolomics. The results showed that only four mutants of TR genes, sll1872 (lytR), slr0741 (phoU), slr0395 (ntcB), and slr1871 (pirR), showed differential growth patterns in BG11 medium when compared with the wild type; however, in spite of no growth difference observed for the remaining TR mutants, metabolomic profiling showed that they were different at the metabolite level, suggesting significant functional diversity of TRs in Synechocystis. In addition, an integrative metabolomic and gene families’ analysis of all TR mutants led to the identification of five pairs of TR genes that each shared close relationship in both gene families and metabolomic clustering trees, suggesting possible conserved functions of these TRs during evolution. Moreover, more than a dozen pairs of TR genes with different origin and evolution were found with similar metabolomic profiles, suggesting a possible functional convergence of the TRs during genome evolution. Finally, a protein–protein network analysis was performed to predict regulatory targets of TRs, allowing inference of possible regulatory gene targets for 4 out of five pairs of TRs. This study provided new insights into the regulatory functions and evolution of TR genes in Synechocystis.
Collapse
Affiliation(s)
- Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China; Key Laboratory of Systems Bioengineering - Ministry of Education, Tianjin UniversityTianjin, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and EngineeringTianjin, China; Center for Biosafety Research and Strategy, Tianjin UniversityTianjin, China
| |
Collapse
|
40
|
Liang M, Frank S, Lünsdorf H, Warren MJ, Prentice MB. Bacterial microcompartment-directed polyphosphate kinase promotes stable polyphosphate accumulation inE. coli. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mingzhi Liang
- Department of Microbiology; University College Cork; Cork Ireland
- School of Biosciences; University of Kent; Canterbury Kent UK
| | - Stefanie Frank
- Department of Biochemical Engineering; University College London; London UK
| | - Heinrich Lünsdorf
- Central Facility for Microscopy; Helmholtz Center of Infection Research; Braunschweig Germany
| | | | - Michael B. Prentice
- Department of Microbiology; University College Cork; Cork Ireland
- Department of Pathology; University College Cork; Cork Ireland
- APC Microbiome Institute; University College Cork; Cork Ireland
| |
Collapse
|
41
|
Varas M, Valdivieso C, Mauriaca C, Ortíz-Severín J, Paradela A, Poblete-Castro I, Cabrera R, Chávez FP. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses. Biochim Biophys Acta Gen Subj 2017; 1861:871-883. [PMID: 28069396 DOI: 10.1016/j.bbagen.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/26/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. METHODS By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. RESULTS Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. CONCLUSIONS We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. GENERAL SIGNIFICANCE Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens.
Collapse
Affiliation(s)
- Macarena Varas
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Chile.
| | - Camilo Valdivieso
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Chile; Department of Ecology, Faculty of Science, University of Chile, Chile.
| | - Cecilia Mauriaca
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Chile.
| | - Javiera Ortíz-Severín
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Chile.
| | | | - Ignacio Poblete-Castro
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Universidad Andrés Bello, Chile.
| | - Ricardo Cabrera
- Department of Biology, Faculty of Sciences, University of Chile, Chile.
| | - Francisco P Chávez
- Systems Microbiology Laboratory, Department of Biology, Faculty of Science, University of Chile, Chile.
| |
Collapse
|
42
|
Differential regulation of polyphosphate genes in Pseudomonas aeruginosa. Mol Genet Genomics 2016; 292:105-116. [PMID: 27744562 DOI: 10.1007/s00438-016-1259-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022]
Abstract
Phosphate homeostasis is tightly regulated in bacteria. Phosphate scarcity is overcome by inducing the expression of genes associated with the scavenging of phosphate and phosphate-containing molecules, while phosphate surplus is stored in the form of polyphosphate (polyP). Regulation of the genes involved in polyP metabolism was investigated. Knockout of the most distal gene of the pstSCAB-phoU operon that encodes a Pi-transport system results in large accumulation of polyphosphate (polyP). Here, we show that the phoU mutation differentially affects the transcription of ppk and ppx, that respectively, encode a polyP kinase and a polyP exopolyphosphatase, by increasing the former and reducing the latter, further contributing the accumulation of polyP. We also show that ppk forms an operon with the upstream gene hemB and that neither ppk nor ppx positively respond to Pi starvation. Furthermore, a putative PHO-box sequence in ppx regulatory region did not show a strong affinity for the PHO response regulator PhoB, while the promoter of hemB does not carry a PHO-box sequence. Altogether, the data indicate that the main genes involved in polyP metabolism, ppk and ppx, are differentially regulated in the absence of phoU, but neither gene belongs to the PHO regulon.
Collapse
|
43
|
Essential Genes Predicted in the Genome of Rubrivivax gelatinosus. J Bacteriol 2016; 198:2244-50. [PMID: 27274029 DOI: 10.1128/jb.00344-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rubrivivax gelatinosus is a betaproteobacterium with impressive metabolic diversity. It is capable of phototrophy, chemotrophy, two different mechanisms of sugar metabolism, fermentation, and H2 gas production. To identify core essential genes, R. gelatinosus was subjected to saturating transposon mutagenesis and high-throughput sequencing (TnSeq) analysis using nutrient-rich, aerobic conditions. Results revealed that virtually no primary metabolic genes are essential to the organism and that genomic redundancy only explains a portion of the nonessentiality, but some biosynthetic pathways are still essential under nutrient-rich conditions. Different essentialities of different portions of the Pho regulatory pathway suggest that overexpression of the regulon is toxic and hint at a larger connection between phosphate regulation and cellular health. Lastly, various essentialities of different tRNAs hint at a more complex situation than would be expected for such a core process. These results expand upon research regarding cross-organism gene essentiality and further enrich the study of purple nonsulfur bacteria. IMPORTANCE Microbial genomic data are increasing at a tremendous rate, but physiological characterization of those data lags far behind. One mechanism of high-throughput physiological characterization is TnSeq, which uses high-volume transposon mutagenesis and high-throughput sequencing to identify all of the essential genes in a given organism's genome. Here TnSeq was used to identify essential genes in the metabolically versatile betaproteobacterium Rubrivivax gelatinosus The results presented here add to the growing TnSeq field and also reveal important aspects of R. gelatinosus physiology, which are applicable to researchers working on metabolically flexible organisms.
Collapse
|
44
|
Zheng JJ, Sinha D, Wayne KJ, Winkler ME. Physiological Roles of the Dual Phosphate Transporter Systems in Low and High Phosphate Conditions and in Capsule Maintenance of Streptococcus pneumoniae D39. Front Cell Infect Microbiol 2016; 6:63. [PMID: 27379215 PMCID: PMC4913102 DOI: 10.3389/fcimb.2016.00063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022] Open
Abstract
Unlike most bacteria, Streptococcus pneumoniae (pneumococcus) has two evolutionarily distinct ABC transporters (Pst1 and Pst2) for inorganic phosphate (Pi) uptake. The genes encoding a two-component regulator (PnpRS) are located immediately upstream of the pst1 operon. Both the pst1 and pst2 operons encode putative PhoU-family regulators (PhoU1 and PhoU2) at their ends. This study addresses why S. pneumoniae contains dual Pi uptake systems and the regulation and contribution of the Pst1 and Pst2 systems in conditions of high (mM) Pi amount and low (μM) Pi amount. We show that in unencapsulated mutants, both pst1 and pst2 can be deleted, and Pi is taken up by a third Na+/Pi co-transporter, designated as NptA. In contrast, either pst1 or pst2 is unexpectedly required for the growth of capsule producing strains. We used a combination of mutational analysis, transcript level determinations by qRT-PCR and RNA-Seq, assays for cellular PnpR~P amounts by SDS-PAGE, and pulse-Pi uptake experiments to study the regulation of Pi uptake. In high Pi medium, PhoU2 serves as the master negative regulator of Pst2 transporter function and PnpR~P levels (post-transcriptionally). ΔphoU2 mutants have high PnpR~P levels and induction of the pst1 operon, poor growth, and sensitivity to antibiotics, possibly due to high Pi accumulation. In low Pi medium, Pst2 is still active, but PnpR~P amount and pst1 operon levels increase. Together, these results support a model in which pneumococcus maintains high Pi transport in high and low Pi conditions that is required for optimal capsule biosynthesis.
Collapse
Affiliation(s)
- Jiaqi J Zheng
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Dhriti Sinha
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Kyle J Wayne
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington Bloomington, IN, USA
| |
Collapse
|
45
|
Zerulla K, Ludt K, Soppa J. The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology (Reading) 2016; 162:730-739. [DOI: 10.1099/mic.0.000264] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Karolin Zerulla
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| | - Katharina Ludt
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University,Frankfurt,Germany
| |
Collapse
|
46
|
Saiki A, Ishida Y, Segawa S, Hirota R, Nakamura T, Kuroda A. A Lactobacillus mutant capable of accumulating long-chain polyphosphates that enhance intestinal barrier function. Biosci Biotechnol Biochem 2016; 80:955-61. [PMID: 26966939 DOI: 10.1080/09168451.2015.1135041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein-approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.
Collapse
Affiliation(s)
- Asako Saiki
- a Frontier Laboratories of Value Creation , Sapporo Breweries Ltd. , Yaizu , Japan
| | - Yasuaki Ishida
- b Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Hiroshima , Japan
| | - Shuichi Segawa
- a Frontier Laboratories of Value Creation , Sapporo Breweries Ltd. , Yaizu , Japan
| | - Ryuichi Hirota
- b Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Hiroshima , Japan
| | - Takeshi Nakamura
- a Frontier Laboratories of Value Creation , Sapporo Breweries Ltd. , Yaizu , Japan
| | - Akio Kuroda
- b Department of Molecular Biotechnology , Graduate School of Advanced Sciences of Matter, Hiroshima University , Hiroshima , Japan
| |
Collapse
|
47
|
Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus. J Bacteriol 2015; 198:187-200. [PMID: 26483520 DOI: 10.1128/jb.00658-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/09/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED An ability to sense and respond to changes in extracellular phosphate is critical for the survival of most bacteria. For Caulobacter crescentus, which typically lives in phosphate-limited environments, this process is especially crucial. Like many bacteria, Caulobacter responds to phosphate limitation through a conserved two-component signaling pathway called PhoR-PhoB, but the direct regulon of PhoB in this organism is unknown. Here we used chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) to map the global binding patterns of the phosphate-responsive transcriptional regulator PhoB under phosphate-limited and -replete conditions. Combined with genome-wide expression profiling, our work demonstrates that PhoB is induced to regulate nearly 50 genes under phosphate-starved conditions. The PhoB regulon is comprised primarily of genes known or predicted to help Caulobacter scavenge for and import inorganic phosphate, including 15 different membrane transporters. We also investigated the regulatory role of PhoU, a widely conserved protein proposed to coordinate phosphate import with expression of the PhoB regulon by directly modulating the histidine kinase PhoR. However, our studies show that it likely does not play such a role in Caulobacter, as PhoU depletion has no significant effect on PhoB-dependent gene expression. Instead, cells lacking PhoU exhibit striking accumulation of large polyphosphate granules, suggesting that PhoU participates in controlling intracellular phosphate metabolism. IMPORTANCE The transcription factor PhoB is widely conserved throughout the bacterial kingdom, where it helps organisms respond to phosphate limitation by driving the expression of a battery of genes. Most of what is known about PhoB and its target genes is derived from studies of Escherichia coli. Our work documents the PhoB regulon in Caulobacter crescentus, and comparison to the regulon in E. coli reveals significant differences, highlighting the evolutionary plasticity of transcriptional responses driven by highly conserved transcription factors. We also demonstrated that the conserved protein PhoU, which is implicated in bacterial persistence, does not regulate PhoB activity, as previously suggested. Instead, our results favor a model in which PhoU affects intracellular phosphate accumulation, possibly through the high-affinity phosphate transporter.
Collapse
|
48
|
A novel point mutation promotes growth phase-dependent daptomycin tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2015; 59:5366-76. [PMID: 26100694 DOI: 10.1128/aac.00643-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/11/2015] [Indexed: 12/30/2022] Open
Abstract
Recalcitrance of genetically susceptible bacteria to antibiotic killing is a hallmark of bacterial drug tolerance. This phenomenon is prevalent in biofilms, persisters, and also planktonic cells and is associated with chronic or relapsing infections with pathogens such as Staphylococcus aureus. Here we report the in vitro evolution of an S. aureus strain that exhibits a high degree of nonsusceptibility to daptomycin as a result of cyclic challenges with bactericidal concentrations of the drug. This phenotype was attributed to stationary growth phase-dependent drug tolerance and was clearly distinguished from resistance. The underlying genetic basis was revealed to be an adaptive point mutation in the putative inorganic phosphate (Pi) transporter gene pitA. Drug tolerance caused by this allele, termed pitA6, was abrogated when the upstream gene pitR was inactivated. Enhanced tolerance toward daptomycin, as well as the acyldepsipeptide antibiotic ADEP4 and various combinations of other drugs, was accompanied by elevated intracellular concentrations of Pi and polyphosphate, which may reversibly interfere with critical cellular functions. The evolved strain displayed increased rates of survival within human endothelial cells, demonstrating the correlation of intracellular persistence and drug tolerance. These findings will be useful for further investigations of S. aureus drug tolerance, toward the development of additional antipersister compounds and strategies.
Collapse
|
49
|
Gibson JL, Lombardo MJ, Aponyi I, Vera Cruz D, Ray MP, Rosenberg SM. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli. PLoS One 2015; 10:e0123315. [PMID: 25961709 PMCID: PMC4427277 DOI: 10.1371/journal.pone.0123315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.
Collapse
Affiliation(s)
- Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Diana Vera Cruz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie P. Ray
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
50
|
phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate. Appl Environ Microbiol 2015; 81:3006-15. [PMID: 25710363 DOI: 10.1128/aem.04168-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/13/2015] [Indexed: 12/28/2022] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer composed of several molecules of orthophosphate (Pi) linked by energy-rich phosphoanhydride bonds. In Pseudomonas aeruginosa, Pi is taken up by the ABC transporter Pst, encoded by an operon consisting of five genes. The first four genes encode proteins involved in the transport of Pi and the last gene of the operon, phoU, codes for a protein which exact function is unknown. We show here that the inactivation of phoU in P. aeruginosa enhanced Pi removal from the medium and polyP accumulation. The phoU mutant also accumulated high levels of the alarmone guanosine tetraphosphate (ppGpp), which in turn increased the buildup of polyP. In addition, phoU inactivation had several pleiotropic effects, such as reduced growth rate and yield and increased sensitivity to antibiotics and stresses. However, biofilm formation was not affected by the phoU mutation.
Collapse
|