1
|
Caratti A, Ferrero F, Tabacco E, Gerbaldo F, Liberto E, Borreani G, Cordero C. Translating 2D-Chromatographic Fingerprinting to Quantitative Volatilomics: Unrevealing Compositional Changes in Maize Silage Volatilome for Robust Marker Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23616-23630. [PMID: 39392930 DOI: 10.1021/acs.jafc.4c05877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
This study examines the complex volatilome of maize silage, both with and without commercial heterolactic strain inoculation, conserved for 100 days, using quantitative volatilomics. Chemical classes linked to microbial metabolism were analyzed across a concentration range from 10 μg g-1 to 1 ng g-1. A reference method using comprehensive two-dimensional gas chromatography (GC × GC) and time-of-flight mass spectrometry (TOF MS) with loop-type thermal modulation (TM) was translated to a differential-flow modulation (FM) platform with parallel MS and flame ionization detector (FID) detection. With translation, the original method's analyte elution order and resolution are preserved. The new method allowed for accurate quantification using multiple headspace solid-phase microextraction (MHS-SPME) and FID-predicted relative response factors (RRFs). Both methods showed comparable discriminatory power with FM GC × GC-MS/FID achieving satisfactory quantification accuracy without external calibration. Analysis of 98 volatiles provided insights into silage fermentation, supporting marker discovery and correlations with silage quality and stability.
Collapse
Affiliation(s)
- Andrea Caratti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Francesco Ferrero
- Department of Agriculture, Forest and Food Sciences (DISAFA), Università di Torino, Largo P. Braccini 2, Grugliasco (TO) 10095, Italy
| | - Ernesto Tabacco
- Department of Agriculture, Forest and Food Sciences (DISAFA), Università di Torino, Largo P. Braccini 2, Grugliasco (TO) 10095, Italy
| | - Fabio Gerbaldo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Giorgio Borreani
- Department of Agriculture, Forest and Food Sciences (DISAFA), Università di Torino, Largo P. Braccini 2, Grugliasco (TO) 10095, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| |
Collapse
|
2
|
Jung JS, Wong JWC, Soundharrajan I, Lee KW, Park HS, Kim D, Choi KC, Chang SW, Balasubramani R. Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage. CHEMOSPHERE 2024:142920. [PMID: 39053774 DOI: 10.1016/j.chemosphere.2024.142920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days. Alfalfa fermentation with L. brevis enhances acidification and fermentation characteristics primarily due to the dominance of lactic acid bacteria (LAB) L. brevis (>95%) compared to alfalfa fermented with epiphytic LAB. The inoculant L. brevis improved the anaerobic fermentation indexes resulting in a higher level of lactic acid in both high (10.0 ± 0.12 & 8.90 ± 0.31%DM) and low moisture (0.55 ± 0.08 & 0.39 ±0.0 %DM) in 75 and 150 days respectively, compared to control silage. In addition, the marginal amount of acetic acid (range from 0.23 ± 0.07 to 2.04 ± 0.27 %DM) and a reduced level of butyric acid (range between 0.03 ± 0.0 to 0.13± 02 %DM) was noted in silage treated with LAB than the control. The LAB count and abundance of Levilactobacillus were higher in alfalfa silage fermented with L. brevis. Microbial richness and diversity were reduced in alfalfa silage treated with L. brevis which prompted lactic acid production at a higher level even for a prolonged period of time. Therefore, this L. brevis is an effective inoculant for producing high-quality alfalfa silage since it improves fermentation indexes and provides reproducible ensiling properties.
Collapse
Affiliation(s)
- Jeong Sung Jung
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Department of Biology, Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea.
| |
Collapse
|
3
|
Grabner F M, Grabner H M, Schein H, Schrank A, Töglhofer M, Weidenholzer E, Rückert-Reed C, Busche T, Buchebner-Jance M. Lacticaseibacillus parahuelsenbergensis sp. nov., Lacticaseibacillus styriensis sp. nov. and Lacticaseibacillus zeae subsp. silagei subsp. nov., isolated from different grass and corn silage. Int J Syst Evol Microbiol 2024; 74:006441. [PMID: 38954457 PMCID: PMC11316572 DOI: 10.1099/ijsem.0.006441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Four rod-shaped, non-motile, non-spore-forming, facultative anaerobic, Gram-stain-positive lactic acid bacteria, designated as EB0058T, SCR0080, LD0937T and SCR0063T, were isolated from different corn and grass silage samples. The isolated strains were characterized using a polyphasic approach and EB0058T and SCR0080 were identified as Lacticaseibacillus zeae by 16S rRNA gene sequence analysis. Based on whole-genome sequence-based characterization, EB0058T and SCR0080 were separated into a distinct clade from Lacticaseibacillus zeae DSM 20178T, together with CECT9104 and UD2202, whose genomic sequences are available from NCBI GenBank. The average nucleotide identity (ANI) values within the new subgroup are 99.9 % and the digital DNA-DNA hybridization (dDDH) values are 99.3-99.9 %, respectively. In contrast, comparison of the new subgroup with publicly available genomic sequences of L. zeae strains, including the type strain DSM 20178T, revealed dDDH values of 70.2-72.5 % and ANI values of 96.2-96.6 %. Based on their chemotaxonomic, phenotypic and phylogenetic characteristics, EB0058T and SCR0080 represent a new subspecies of L. zeae. The name Lacticaseibacillus zeae subsp. silagei subsp. nov. is proposed with the type strain EB0058T (=DSM 116376T=NCIMB 15474T). According to the results of 16S rRNA gene sequencing, LD0937T and SCR0063T are members of the Lacticaseibacillus group. The dDDH value between the isolates LD0937T and SCR0063T was 67.6 %, which is below the species threshold of 70 %, clearly showing that these two isolates belong to different species. For both strains, whole genome-sequencing revealed that the closest relatives within the Lacticaseibacillus group were Lacticaseibacillus huelsenbergensis DSM 115425 (dDDH 66.5 and 65.9 %) and Lacticaseibacillus casei DSM 20011T (dDDH 64.1 and 64.9 %). Based on the genomic, chemotaxonomic and morphological data obtained in this study, two novel species, Lacticaseibacillus parahuelsenbergensis sp. nov. and Lacticaseibacillus styriensis sp. nov. are proposed and the type strains are LD0937T (=DSM 116105T=NCIMB 15471T) and SCR0063T (=DSM 116297T=NCIMB 15473T), respectively.
Collapse
Affiliation(s)
- Monika Grabner F
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Monika Grabner H
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Hermine Schein
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Andrea Schrank
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Manuela Töglhofer
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | | | | | - Tobias Busche
- Omics Core Facility NGS, Medical School OWL & CBTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
4
|
Cueva SF, Wasson DE, Martins LF, Räisänen SE, Silvestre T, Hristov AN. Lactational performance, ruminal fermentation, and enteric gas emission of dairy cows fed an amylase-enabled corn silage in diets with different starch concentrations. J Dairy Sci 2024; 107:4426-4448. [PMID: 38942561 DOI: 10.3168/jds.2023-23957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/05/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the effects of feeding an amylase-enabled corn silage (ACS) on the performance and enteric gas emissions in lactating dairy cows. Following a 2-wk covariate period, 48 mid-lactation Holstein cows were assigned to 1 of 3 treatments in a 10-wk randomized complete block design experiment. Treatments were diets containing the same proportion of corn silage (40% of dietary DM) as follows: (1) a conventional hybrid corn silage control (CON), (2) ACS replacing the control silage (ADR), and (3) the ADR diet replacing soybean hulls with ground corn grain to achieve the same dietary starch concentration as CON (ASR). Control corn silage and ACS were harvested on the same day and contained 40.3% and 37.1% DM and (% of DM): 37.2% and 41.0% NDF and 37.1% and 30.0% starch, respectively. Enteric gas emissions were measured using the GreenFeed system. Two cows were culled due to health-related issues during the covariate period. Ruminal fluid was collected from 24 cows (8 per treatment) using the orogastric ruminal sampling technique. When compared with CON, cows fed ADR had increased DMI during experimental wk 3, 4, and 9, but treatment did not affect milk or ECM milk yields (39.0 kg/d on average; SEM = 0.89). Compared with CON, feed efficiency (per unit of milk, but not ECM) tended to be lower for ADR, whereas milk true protein concentration (a tendency) and yield were lower for ASR. Milk urea N was decreased by both ADR and ASR diets relative to CON. Compared with CON, daily CH4 emission and emission intensity were increased by ADR but not ASR. Total protozoal count tended to be increased by both diets formulated with ACS when compared with control corn silage. Total-tract digestibility of dietary NDF was greater for ASR, and that of ADF was greater for both ADR and ASR versus CON. The molar proportion of acetate (a tendency) and acetate-to-propionate ratio were increased by ADR, but not ASR, when compared with CON. Replacement of CON with ACS (having lower starch concentration) in the diet of dairy cows increased DMI during the initial weeks of the experiment, maintained ECM, tended to decrease feed efficiency, and increased enteric CH4 emissions, likely due to increased intake of digestible fiber, compared with CON.
Collapse
Affiliation(s)
- S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; ETH Zürich, Department of Environmental Science, Institute of Agricultural Sciences, Zürich 8092, Switzerland
| | - T Silvestre
- Kemin Industries, Singapore 758200, Singapore
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
5
|
Yin H, Zhao M, Yang R, Sun J, Yu Z, Bai C, Xue Y. Effect of Regulation of Whole-Plant Corn Silage Inoculated with Lactobacillus buchneri or Bacillus licheniformis Regarding the Dynamics of Bacterial and Fungal Communities on Aerobic Stability. PLANTS (BASEL, SWITZERLAND) 2024; 13:1471. [PMID: 38891280 PMCID: PMC11174963 DOI: 10.3390/plants13111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Enhancing the aerobic stability of whole-plant corn silage is essential for producing high-quality silage. Our research assessed the effect of inoculation with Lactobacillus buchneri or Bacillus licheniformis and its modulation of the bacterial and fungal microbial community structure in an aerobic stage of whole-plant corn silage. Following treatment with a distilled sterile water control, Lactobacillus buchneri, and Bacillus licheniformis (2 × 105 cfu/g), whole-plant corn was ensiled for 60 days. Samples were taken on days 0, 3, and 7 of aerobic exposure, and the results showed that inoculation with Lactobacillus buchneri or Bacillus licheniformis improved the aerobic stability of silage when compared to the effect of the control (p < 0.05). Inoculation with Bacillus licheniformis attenuated the increase in pH value and the decrease in lactic acid in the aerobic stage (p < 0.05), reducing the filamentous fungal counts. On the other hand, inoculation with Lactobacillus buchneri or Bacillus licheniformis increased the diversity of the fungal communities (p < 0.05), complicating the correlation between bacteria or fungi, reducing the relative abundance of Acetobacter and Paenibacillus in bacterial communities, and inhibiting the tendency of Monascus to replace Issatchenkia in fungal communities, thus delaying the aerobic spoilage process. Due to the prevention of the development of aerobic spoilage microorganisms, the silage injected with Lactobacillus buchneri or Bacillus licheniformis exhibited improved aerobic stability.
Collapse
Affiliation(s)
- Hang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Meirong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Rui Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Juanjuan Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chunsheng Bai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010031, China
| |
Collapse
|
6
|
Wang Y, Ying G, Zhang Z, Tang Y, Zhang Y, Chen L. Bacillus velezensis promotes the proliferation of lactic acid bacteria and influences the fermentation quality of whole-plant corn silage. FRONTIERS IN PLANT SCIENCE 2024; 15:1285582. [PMID: 38425795 PMCID: PMC10902168 DOI: 10.3389/fpls.2024.1285582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
Objective This study aimed to investigate the promoting effect of a Bacillus velezensis (BV) strain on lactic acid bacteria (LAB) and determine its influence on the fermentation quality and aerobic stability of silage. Methods Flat colony counting method was used to evaluate the effect of BV on the growth of LAB. Freshly harvested whole-plant corn was inoculated separately with BV and L. plantarum (LP), along with an uninoculated control group (CK), and assessed at 1, 3, 5, 7, 15, and 30 days of ensiling. Results The results indicated that BV exhibited a proliferative effect on Weissella confusa, Lactobacillus plantarum L-2, and Pediococcus pentosaceus. And exhibited a more rapid pH reduction in BV-inoculated silage compared with that in CK and LP-inoculated silage during the initial stage of ensiling. Throughout ensiling, the BV and LP experimental groups showed enhanced silage fermentation quality over CK. Additionally, relative to LP-inoculated silage, BV-inoculated silage displayed reduced pH and propionic acid. BV also prolonged aerobic stability under aerobic conditions. The microbial community in BV-inoculated silage showed greater stability than that in LP-inoculated silage. Additionally, Firmicutes and Lactobacillus exhibited more rapid elevation initially in BV versus LP-inoculated silage, but reached comparable levels between the two inoculation groups in the later stage. Conclusion In summary, BV enhanced the efficacy and aerobic stability of whole-plant corn silage fermentation by stimulating LAB proliferation.
Collapse
Affiliation(s)
- Yili Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Gangqing Ying
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zimo Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yu Tang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhua Zhang
- College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lijuan Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Grabner F M, Grabner H M, Schein H, Weidenholzer E, Busche T, Rückert-Reed C, Buchebner-Jance M. Lacticaseibacillus huelsenbergensis sp. nov., isolated from grass silage and corn silage. Int J Syst Evol Microbiol 2023; 73. [PMID: 37787645 DOI: 10.1099/ijsem.0.006049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Two rod-shaped, facultative anaerobic, Gram-stain-positive lactic acid bacteria were isolated from corn silage and grass silage. They were characterized using a polyphasic approach and designated as HO 1656T and HO 0673. Analysis of 16S rRNA gene sequence of both strains indicated that they belong to the
Lacticaseibacillus
group. The most closely related species,
Lacticaseibacillus casei
DSM 20011T and
Lacticaseibacillus zeae
DSM 20178T, have digital DNA–DNA hybridization (dDDH) values of 63.9 and 53.4%, respectively, with the novel strains. In contrast, the dDDH value between strains HO 1656T and HO 0673 is 99.3 %, clearly showing that these two isolated strains belong to the same species. According to analysis of the housekeeping genes (dnaK, mutL and pheS), both strains form a distinct cluster within the
Lacticaseibacillus
group. Strains HO 0673 and HO 1656T could produce acid from d-arabinose, adonitol, ribose, rhamnose, dulcitol, sorbitol, turanose, l-fucose and l-arabitol, unlike their nearest phylogenetic neighbour
L. casei
DSM 20011T. The major cellular fatty acids of both strains are C16 : 0 and C18 : 1 ω9c. The G+C content of the genomic DNA of both strains is 48.0 mol%. Thus, strains HO 1656T and HO 0673 represent a novel species based on their chemotaxonomic, phenotypic and phylogenetic characteristics. The name Lacticaseibacillus huelsenbergensis sp. nov. is proposed with the type strain HO 1656T (=DSM 115425T=NCIMB 15466T).
Collapse
Affiliation(s)
- Monika Grabner F
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Monika Grabner H
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | - Hermine Schein
- Lactosan GmbH & Co.KG, Industriestraße West 5, 8605 Kapfenberg, Austria
| | | | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert-Reed
- Omics Core Facility NGS, Medical School OWL & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
8
|
Dong D, Lin Z, Dai T, Dong Z, Li J, Shao T. Dynamics associated with fermentation and aerobic deterioration of high-moisture Italian ryegrass silage made using Lactobacillus plantarum and caproic acid. J Appl Microbiol 2023; 134:lxad188. [PMID: 37596068 DOI: 10.1093/jambio/lxad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023]
Abstract
AIMS To determine the fermentation quality, aerobic stability, and chemical composition of Italian ryegrass silage prepared with Lactobacillus plantarum (LP), caproic acid (CA), and their combination during ensiling and feed-out phase. METHODS AND RESULTS Six treatments: control (CON), LP, 0.15% caproic acid (LCA), 0.2% caproic acid (HCA), LCA + LP, and HCA + LP were employed for 30 days ensiling and an 8-days aerobic stability test. LP had similar pH value and lactic acid content with LCA + LP, while the contents of NH3-N and total VFAs in LCA + LP were significantly lower than those in LP and CON, and the fermentation quality of LCA + LP performed best among all silages. As air-exposure extended, contents of water-soluble carbohydrates (WSC), lactic, and acetic acids decreased, while pH, and NH3-N content increased significantly. The population of lactic acid bacteria gradually decreased in contrast to increased counts of aerobic bacteria and yeasts. Compared with LCA, 0.2% CA delayed the aerobic deterioration as judged by a slower increase in pH and high residual of WSC and lactic acid, and negligible ethanol content and anaerobe spores counts remained in HCA at the end of air exposure. Compared with CON (73 h), LP showed less aerobic stability (38 h), whereas HCA and HCA + LP prolonged aerobic stability for 210 and 152 h, better than LCA (109 h) and LCA + LP (146 h). CONCLUSIONS Lactobacillus plantarum apparently improved the fermentation quality, and combined with CA exhibited greater efficiency in inhibiting undesirable microorganism during ensiling. CA at 0.2% optimally extended the aerobic stability.
Collapse
Affiliation(s)
- Dong Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziqun Lin
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongtong Dai
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Huang R, Ma C, Zhang F, Wang X. Effects of Condensed Tannins on Bacterial and Fungal Communities during Aerobic Exposure of Sainfoin Silage. PLANTS (BASEL, SWITZERLAND) 2023; 12:2967. [PMID: 37631178 PMCID: PMC10458702 DOI: 10.3390/plants12162967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Sainfoin is a forage legume that is widely distributed around the world and is beneficial for animals owing to the characteristics of its condensed tannins (CTs), which, from certain plants, can prolong the aerobic stability of silage. METHODS The present study investigated whether sainfoin CTs can prolong aerobic stability by adding polyethylene glycol (PEG) to inactivate CT activity in the silage system. RESULTS The results showed that aerobic stability increased under the PEG treatment (p < 0.05). Ammonia nitrogen (0.71 g/kg DM vs. 0.94 g/kg DM; p < 0.05) was higher in the PEG-treated group compared with the control after 3 d of aerobic exposure. BA was detected only in the PEG-treated group upon aerobic exposure. Yeasts were more abundant in the control compared with the PEG-treated group after 7 d of aerobic exposure, after which the relative abundance of Lactobacillus was lower in the PEG-treated group (65.01% vs. 75.01% in the control; p < 0.05), while the relative abundance of Pediococcus was higher in the PEG-treated group compared with the control (10.9% vs. 4.49%, respectively; p < 0.05).The relative abundances of Apiotrichum and Aspergillus were lower in the control than in the PEG-treated group after 7 d of aerobic exposure. CONCLUSIONS The results suggested that sainfoin CTs decreased aerobic stability, but could inhibit certain bacteria and fungi, such as Pediococcus and Apiotrichum, and preserve the protein content during the aerobic exposure of silage.
Collapse
Affiliation(s)
| | - Chunhui Ma
- Grassland Science, School of Animal Technology, Shihezi University, Shihezi 832000, China; (R.H.); (X.W.)
| | - Fanfan Zhang
- Grassland Science, School of Animal Technology, Shihezi University, Shihezi 832000, China; (R.H.); (X.W.)
| | | |
Collapse
|
10
|
Rossi LG, Andrade MEB, Rabelo CHS, Siqueira GR, Vicente EF, Silva WL, Silva MM, Reis RA. Flint corn silage management: influence of maturity stage, inoculation with Lentilactobacillus buchneri, and storage time on fermentation pattern, aerobic stability, and nutritional characteristics. Front Microbiol 2023; 14:1223717. [PMID: 37533825 PMCID: PMC10390726 DOI: 10.3389/fmicb.2023.1223717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction High quality corn silage depends on factors such as corn type, stage of crop development at harvest time, fermentation time, in addition to use or not of inoculants. This study aimed to investigate the impact of maturity stage, bacterial inoculation, and storage time on fermentation, aerobic stability, and nutritional characteristics of flint corn silage and their implications for corn silage management. Methods A flint corn hybrid was harvested very early, early, and medium (at 250, 300 and 350 g dry matter (DM)/kg as fed, respectively) and ensiled in mini-silos without (control) or with Lentilactobacillus buchneri CNCM I-4323 at 1 × 105 cfu/g for 120, 240 and 360 d to investigate how these factors interact with each other. Results and discussion There was only a small increase (7 g/kg starch; p = 0.003) in starch digestibility (starch-D) in the silages stored for 360 d when compared to that stored for 240 d, but with no difference for 120 d. Despite the reduced starch-D (526 vs. 694 g/kg starch; p < 0.001), silages produced from medium harvest had higher (p < 0.001) starch content (317 vs. 137 g/kg DM) and higher amount of digestible starch (169 vs. 98.5 g/kg DM; p < 0.001) compared to very early harvest. The 2-way interactions (inoculation × storage time and maturity × storage time) showed that inoculation of corn silage with L. buchneri increased (p < 0.001) the aerobic stability, and that more mature crop silage had higher aerobic stability (140 h; p = 0.036) than the others (118 and 48.5 h for those silages from very early and early harvest). Conclusion The storage for a longer time (>120 d) with the goal of increasing silage digestibility did not occur. Harvesting whole-crop flint corn with 300 to 350 g/kg DM is desirable to have higher DM yield and starch accumulation. Inoculation with L. buchneri is recommended to preserve the silage against aerobic deterioration. This study has shown the importance of harvesting flint corn at the right time, and the need for inoculation with L. buchneri to ensure greater yield, starch accumulation, and silage preservation, if 120 days of storage are not exceeded.
Collapse
Affiliation(s)
- Luis G. Rossi
- Department of Animal Science, São Paulo State University, Jaboticabal, SP, Brazil
| | - Marina E. B. Andrade
- Department of Animal Science, São Paulo State University, Jaboticabal, SP, Brazil
| | - Carlos H. S. Rabelo
- Department of Plant Science, Federal University of Pelotas, Capão do Leão, RS, Brazil
| | - Gustavo R. Siqueira
- Department of Animal Science, São Paulo State University, Jaboticabal, SP, Brazil
- São Paulo State Agency for Agribusiness Technology Alta Mogiana, Colina, SP, Brazil
| | - Eduardo F. Vicente
- Faculty of Science and Engineering, São Paulo State University, Tupã, SP, Brazil
| | - Wilton L. Silva
- Department of Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - Matheus M. Silva
- Department of Animal Science, São Paulo State University, Jaboticabal, SP, Brazil
| | - Ricardo A. Reis
- Department of Animal Science, São Paulo State University, Jaboticabal, SP, Brazil
| |
Collapse
|
11
|
Yi Q, Wang P, Tang H, Yu M, Zhao T, Sheng Z, Luo H. Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Ensiling Spent Mushroom Substrate with Microbial Additives. Animals (Basel) 2023; 13:ani13050920. [PMID: 36899777 PMCID: PMC10000080 DOI: 10.3390/ani13050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
This experiment investigated the effects of lactic acid bacteria and cellulase on the fermentation quality, in vitro digestibility, and aerobic stability of Flammulina velutipes spent mushroom substrate silage (F-silage) and Pleurotus eryngii spent mushroom substrate silage (P-silage). Silage treatments included groups without any additives (control), with lactic acid bacteria (L), with cellulase (E), and with lactic acid bacteria and cellulase (M). Data analysis was performed using independent sample t-test and analysis of variance. After 45 days of ensiling, the pH in F-silage and P-silage from the L, E, and M groups were lower than those in the control group (p < 0.05). The pH, acetic acid (AA), and propionic acid (PA) levels in P-silage were lower than those in F-silage, and the LA content in P-silage was higher than that in F-silage (p < 0.05). Compared with the control, the E treatment increased in vitro neutral detergent fibre digestibility (IVNDFD) and in vitro acid detergent fibre digestibility (IVADFD) in F-silage and P-silage (p < 0.05). The aerobic stability of F-silage inoculated with L increased (p < 0.05) by 24 h compared to the control. The aerobic stability of P-silage inoculated with M increased (p < 0.05) by 6 h compared to the control. The improvement in fermentation quality and aerobic stability is extremely large in terms of applying M in F-silage and P-silage. The E is effective in improving the in vitro digestibility of P-silage. The research results provide a theoretical basis for the production of high-quality spent mushroom substrate fermented feed.
Collapse
Affiliation(s)
- Qixuan Yi
- Department of Animal Science, Jilin University, Changchun 130062, China
| | - Peng Wang
- Department of Animal Science, Jilin University, Changchun 130062, China
- Correspondence:
| | - Hongyu Tang
- Department of Animal Science, Jilin University, Changchun 130062, China
| | - Meng Yu
- Department of Animal Science, Jilin University, Changchun 130062, China
| | - Tianyue Zhao
- Department of Animal Science, Jilin University, Changchun 130062, China
| | - Ziyang Sheng
- Sanya Institute of China Agricultural University, Sanya 572025, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hailing Luo
- Sanya Institute of China Agricultural University, Sanya 572025, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
12
|
Effects of Different Types of LAB on Dynamic Fermentation Quality and Microbial Community of Native Grass Silage during Anaerobic Fermentation and Aerobic Exposure. Microorganisms 2023; 11:microorganisms11020513. [PMID: 36838477 PMCID: PMC9965529 DOI: 10.3390/microorganisms11020513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.
Collapse
|
13
|
Yin X, Zhao J, Wang S, Dong Z, Li J, Shao T. The effects of epiphytic microbiota and chemical composition of Italian ryegrass harvested at different growth stages on silage fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1385-1393. [PMID: 36151894 DOI: 10.1002/jsfa.12232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The influence of epiphytic microbiota and chemical composition on fermentation quality and microbial community of Italian ryegrass silage was evaluated. Italian ryegrass harvested at the filling stage (FS) and the dough stage (DS) was sterilized by gamma-ray irradiation and inoculated as follows: (I) FS epiphytic microbiota + irradiated FS (FF); (II) FS epiphytic microbiota + irradiated DS (FD); (III) DS epiphytic microbiota + irradiated DS (DD); (IV) DS epiphytic microbiota + irradiated FS (DF). RESULTS After 60 days of ensiling, silage made from irradiated FS had a lower pH and ammonia nitrogen (NH3 -N) content and a higher lactic acid (LA) content than that made from irradiated DS. Similarly, silage inoculated with the epiphytic microbiota of DS had a lower pH and NH3 -N content and a higher LA content than that inoculated with the epiphytic microbiota of FS. However, LA-type fermentation (lactic acid:acetic acid > 2:1) was presented at DF and DD. The principal coordinates analysis showed that the distance between FF and DF and FD and DD was closer than other treatments, suggesting that the microbial community of silages made from irradiated FS (or DS) was more similar. CONCLUSION The epiphytic microbiota played a more important role in the fermentation type, whereas the chemical composition had a great influence on the contents of fermentation end-products. However, chemical composition had a stronger effect on the microbial community of silage than the epiphytic microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuejing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Wagali P, Sabastian C, Saranga Y, Ben-Zeev S, Mabjeesh SJ. The Effects of Irrigation, Genotype and Additives on Tef Silage Making. Animals (Basel) 2023; 13:470. [PMID: 36766359 PMCID: PMC9913197 DOI: 10.3390/ani13030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Tef is known as a multi-harvest crop with high production capacity and outstanding fodder quality. Hence, our overall goal is to develop tef as a new multi-harvest summer crop that can maintain high-quality feed and contribute to both field crops and the livestock industry in Israel. In this study, we aimed to evaluate the ability to preserve tef as silage. Four tef genotypes grown under well-watered (100%) and water-limited (75%) irrigation regimes were harvested at grain filling stage and ensiled with either no additives (control, CTL), or with heterofermentative inoculum (HI), molasses (MOL), and both MOL + HI. Our results showed for the first time that tef could be ensiled, although water-soluble carbohydrates (WSC) were lower than those in corn, "the perfect ensiling crop". Most of the tef silage qualitative parameters were better at water-limited irrigation. Additives HI or MOL or MOL + HI also improved silage parameters, e.g., lowered pH and ammonia nitrogen content, but increased in vitro dry matter digestibility, lactic acid and crude protein content, and lactic acid bacteria counts of tef silage. The current results imply increasing the diversity of local ruminant fodder crops, ensuring high-quality feed supply during the summer.
Collapse
Affiliation(s)
- Philip Wagali
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Chris Sabastian
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert. H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Shiran Ben-Zeev
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert. H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sameer J. Mabjeesh
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Fu Z, Sun L, Wang Z, Liu J, Hou M, Lu Q, Hao J, Jia Y, Ge G. Effects of growth stage on the fermentation quality, microbial community, and metabolomic properties of Italian ryegrass ( Lolium multiflorum Lam.) silage. Front Microbiol 2023; 13:1054612. [PMID: 36713224 PMCID: PMC9880220 DOI: 10.3389/fmicb.2022.1054612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction This study aimed to investigate the effects of different growth stages (booting period-SYK; initial flowering-SCK; full flowering-SSK) on the fermentation quality, microbial community, metabolic pathways and metabolomic characteristics of Italian ryegrass silage. Methods Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) were used to analyze bacterial communities and metabolites, respectively. Results After 60 d of fermentation, SYK had the lowest pH and the highest lactic acid content, which were significantly different from the other groups. The bacteria with the highest abundance in SYK, SCK and SSK groups were Lactiplantibacillus plantarum (63.98%), Weissella minor (28.82%) and Levilactobacillus brevis (64.81%), respectively. In addition, among the main differential metabolites in different growth stages, the number of amino acids was the most, and the corresponding metabolic pathways were mainly amino acid metabolic pathways. The biosynthesis of phenylalanine, tyrosine and tryptophan was significantly enriched (p<0.01) at booting stage and full flowering stage. Purine metabolism and ABC transporter pathway were significantly enriched at the initial flowering (p<0.001). Lactiplantibacillus plantarum had a negative correlation with xanthine and ganoderic acid F. Weissella minor had a positive correlation with D-Mannose and ganoderic acid F. Levilactobacillus brevis had a positive correlation with xanthine, and Latilactobacillus sakei had a positive correlation with cinnamic acid, D-Mannose, 2-Hydroxycinnamic acid and uridine. Discussion In conclusion, this study reveals the interaction mechanisms between ryegrass raw materials at different growth stages and epiphytic microorganisms during ensiling fermentation, providing new ideas for screening functional lactic acid bacteria, and laying a theoretical foundation for the production of safe and high-quality silage.
Collapse
Affiliation(s)
- Zhihui Fu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Zhijun Wang
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Jingyi Liu
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Meiling Hou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Qiang Lu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Junfeng Hao
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Yushan Jia
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China
| | - Gentu Ge
- College of Grassland, Resources and Environment, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, and Key Laboratory of Grassland Resources, Inner Mongolia Agricultural University, Ministry of Education, Hohhot, China,*Correspondence: Gentu Ge, ✉
| |
Collapse
|
16
|
Herbage utilisation method affects rumen fluid and milk fatty acid profile in Holstein and Montbéliarde cows. Animal 2022; 16:100674. [PMID: 36434984 DOI: 10.1016/j.animal.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with maize silage- and concentrate-based diets, herbage-based diets were repeatedly shown to favourably influence the milk fatty acid (FA) profile. However, it is unclear how the herbage feeding mode (grazing vs indoor green-feeding) and conservation (fresh herbage vs hay vs silage) modify the milk FA profile. Therefore, the aim of the present experiment was to investigate the effect of different herbage utilisation methods (including herbage feeding mode and herbage conservation method) on the ruminal biohydrogenation of dietary FA and the consequences on the milk FA composition in cows of two breeds (Holstein and Montbéliarde). Concomitant effects of botanical composition and phenological stage of the herbage on milk FA profile were controlled for by harvesting barn-dried hay and silage simultaneously as first cut from the same ryegrass-dominated grassland in a semi-mountainous region. Seven weeks later, the first regrowth of the same plot was used as fresh herbage, either grazed or fed indoor (indoor green-feeding). Twenty-four Montbéliarde and 24 Holstein cows were randomly allocated to four groups of 12 cows balanced by breed, parity, and milk yield. In a free-stall barn, three groups were given ad libitum access to hay, silage, or fresh herbage, respectively. The fourth group was strip-grazing. All cows were supplemented with 3 kg DM/day of the same energy-rich concentrate. After 2 weeks of adaptation to the forage, samples of forage, concentrate, milk, blood, and rumen fluid were collected. Fatty acid composition of forages, rumen fluid, and milk was analysed by gas chromatography. Haymaking reduced total FA content of the herbage, in particular that of linoleic acid (LA) and α-linolenic acid (ALA). Still, rumen fluid lipids of hay-fed cows had the highest proportion of rumenic acid, LA, ALA, and total polyunsaturated fatty acids (PUFAs). Milk fat from hay-fed cows had the highest proportion of LA, and the apparent transfer rates from feed to milk of LA and ALA were higher in hay-fed cows than in silage-fed cows. The proportion of PUFAs was highest in milk fat from grazing and indoor green-fed Montbéliarde cows and lowest in silage-fed cows of both breeds. In conclusion, the herbage utilisation method affects the ruminal biohydrogenation of LA and ALA, whereby herbage drying particularly increases their transfer from herbage to milk.
Collapse
|
17
|
Xie Y, Du E, Yao Y, Wang W, Huang X, Sun H, Zheng Y, Cheng Q, Wang C, Chen C, Li P. Effect of epiphytic microflora after aerobic enrichment and reconstitution on fermentation quality and microbial community of corn stalk silage and Pennisetum sinese silage. Front Microbiol 2022; 13:1078408. [DOI: 10.3389/fmicb.2022.1078408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
IntroductionThe objective of this study was to evaluate the effects of enrichment and reconstitution of the forage epiphytic microflora on the fermentation quality, chemical composition, and bacterial community composition of corn stalk and Pennisetum sinese silages.MethodsThe forage juice of fresh corn stalk and P. sinese were collected, diluted by gradient (10–1 to 10–5), and aerobically incubated to enrich and reconstitute the epiphytic microflora. Fresh corn stalk and P. sinese were ensiled for 3, 15, and 45 days after inoculation with either the original (D0) pre-incubated juices, or 10–1 (D1), 10–3 (D3), or 10–5 (D5) diluted and pre-incubated juices.ResultsThe lowest pH was found in the D3 treatment of the corn stalk silage. In P. sinese silage, the hemicellulose content of D3 and D5 treatments was 9.50 and 11.81% lower than that of D0 treatment (P < 0.05). In corn stalk silage, the neutral detergent fiber content was significantly lower in the D3 treatment than in the other treatments (P < 0.05). Both corn stalk and P. sinese silages exhibited a high abundance of Enterobacter during ensiling, resulting in high levels of acetic acid.ConclusionAlthough the dilution and enrichment of the epiphytic microflora did not lead to full lactic acid fermentation, these pre-treatments were found to alter the microbial metabolites and chemical composition of the silage. These results provide a new perspective on the production of pre-fermented silage inoculant.
Collapse
|
18
|
Li YF, Wang LL, Jeong EC, Kim HJ, Ahmadi F, Kim JG. Effects of sodium diacetate or microbial inoculants on aerobic stability of wilted rye silage. Anim Biosci 2022; 35:1871-1880. [PMID: 35798047 PMCID: PMC9659439 DOI: 10.5713/ab.22.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The primary goal was to identify the effectiveness of chemical or biological additives in delaying the deterioration of early-harvested wilted rye silage after exposure to air. METHODS Rye harvested as a whole plant at the early heading stage was wilted for 24 h. The wilted forage was divided into treatments including sodium diacetate (SDA) at 3 (SDA3) and 6 g/kg (SDA6), Lactobacillus plantarum (LP), L. buchneri (LB), or their equal mixture (LP+LB) at 1×106 colony-forming unit/g fresh matter. RESULTS After 60 d of conservation in 20-L silos, lactic acid was greater in LP and LP+LB silages than other treatments (102 vs 90.2 g/kg dry matter [DM]). Acetic acid was greatest in SDA6 (32.0 g/kg DM) followed by LB (26.1 g/kg DM) and was lowest in LP treatment (4.73 g/kg DM). Silage pH was lower with microbial inoculation and the lowest and highest values were observed in LP and untreated silages, respectively. After 60 d, neutral detergent fiber concentration was lowest in SDA6 silages, resulting in the greatest in vitro DM digestibility (846 g/kg DM). Aerobic stability was longest in SDA6 (176 h) followed by LB treatment (134 h). Instability after aerobiosis was greatest in LP silages (68 h), about 8 h less than untreated silages. After aerobic exposure, yeast and mold numbers were lowest in SDA6 silages, resulting in DM loss minimization. Exhaustion of acetic acid and lactic acid after aerobic exposure was lowest with SDA6 but greatest with untreated and LP silages. CONCLUSION Treatment of early-cut wilted rye forage with SDA at 6 g/kg resulted in silages with higher feeding value and fermentation quality, and substantially delayed deterioration after aerobic exposure, potentially qualifying SDA at this load for promotion of silage quality and delaying aerobic spoilage of early-harvested (low DM) rye forage.
Collapse
Affiliation(s)
- Yan Fen Li
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Li Li Wang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Eun Chan Jeong
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Hak Jin Kim
- Research Institute of Eco-friendly Livestock Science, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Farhad Ahmadi
- Research Institute of Eco-friendly Livestock Science, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354,
Korea
| | - Jong Geun Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354,
Korea
- Research Institute of Eco-friendly Livestock Science, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
19
|
Squara S, Ferrero F, Tabacco E, Cordero C, Borreani G. Effect of Inoculation with Lentilactobacillus buchneri and Lacticaseibacillus paracasei on the Maize Silage Volatilome: The Advantages of Advanced 2D-Chromatographic Fingerprinting Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12232-12248. [PMID: 36103255 PMCID: PMC9523707 DOI: 10.1021/acs.jafc.2c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, the complex volatilome of maize silage samples conserved for 229 d, inoculated with Lentilactobacillus buchneri (Lbuc) and Lacticaseibacillus paracasei (Lpar), is explored by means of advanced fingerprinting methodologies based on comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry. The combined untargeted and targeted (UT) fingerprinting strategy covers 452 features, 269 of which were putatively identified and assigned within their characteristic classes. The high amounts of short-chain free fatty acids and alcohols were produced by fermentation and led to a large number of esters. The impact of Lbuc fermentation was not clearly distinguishable from the control samples; however, Lpar had a strong and distinctive signature that was dominated by propionic acid and 1-propanol characteristic volatiles. The approach provides a better understanding of silage stabilization mechanisms against the degradative action of yeasts and molds during the exposure of silage to air.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento
di Scienza e Tecnologia del Farmaco, University
of Turin, Turin 10124, Italy
| | - Francesco Ferrero
- Department
of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco 10124, TO, Italy
| | - Ernesto Tabacco
- Department
of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco 10124, TO, Italy
| | - Chiara Cordero
- Dipartimento
di Scienza e Tecnologia del Farmaco, University
of Turin, Turin 10124, Italy
| | - Giorgio Borreani
- Department
of Agriculture, Forest and Food Sciences, University of Turin, Grugliasco 10124, TO, Italy
| |
Collapse
|
20
|
Suitability of anaerobic fungi culture supernatant or mixed ruminal fluid as novel silage additives. Appl Microbiol Biotechnol 2022; 106:6819-6832. [PMID: 36100752 PMCID: PMC9529681 DOI: 10.1007/s00253-022-12157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
Abstract
This study investigated silage quality characteristics and ruminal fiber degradability of grass and straw ensiled with either anaerobic fungi (AF) supernatant with active fungal enzymes or mixed ruminal fluid as novel silage additives. Compared to control silages, AF supernatant improved the quality of grass and straw silages as evidenced by decreased pH, acetic acid concentration, and dry matter losses. Likewise, mixed ruminal fluid enhanced lactic acid fermentation, which further resulted in lower pH of the treated grass silage. The ruminal fiber degradability was determined using in situ incubations and, compared to controls, the cellulose degradability was higher for grass silage with AF supernatant, whereas ruminal degradability of straw silage was reduced by this treatment. In contrast, mixed ruminal fluid did not influence fiber degradability of silages in the rumen. Concluding, both novel additives improved silage quality, whereas only AF supernatant enhanced ruminal fiber degradability of grass silage and therefore may represent an approach for improving forage utilization by ruminants.
Key points
• Enzymes of anaerobic fungi supernatant improve quality of grass and straw silages.
• Mixed ruminal fluid enhances lactic acid fermentation when ensiling grass and straw.
• Enzymes of anaerobic fungi supernatant increase ruminal grass silage degradability.
Collapse
|
21
|
Cheng Q, Li M, Fan X, Chen Y, Sun H, Xie Y, Zheng Y, Chen C, Li P. Effects of epiphytic and exogenous lactic acid bacteria on fermentation quality and microbial community compositions of paper mulberry silage. Front Microbiol 2022; 13:973500. [PMID: 36090070 PMCID: PMC9453674 DOI: 10.3389/fmicb.2022.973500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to isolate, characterize, and identify lactic acid bacteria (LAB) strains from various sources and evaluate their effects on the nutritional quality, fermentation characteristics, and microbial compositions of paper mulberry (PM) after 60 days of ensiling. Forty-nine LAB strains were isolated from Phalaris arundinacea silage, pickle, and fresh PM leaves; three of these strains (Lactiplantibacillus plantarum, YC1; Levilactobacillus brevis, PC3; and Lactiplantibacillus plantarum, BP17) and one commercial inoculant Gaofuji (GFJ) were subsequently used. Compared with other treatments, PC3 and BP17 increased (P < 0.05) the LAB count and crude protein content and decreased (P < 0.05) the molds and coliform bacteria counts, pH, and ammonia-N content of PM silages. BP17 and PC3 increased the relative Lactiplantibacillus abundance and decreased that of Lelliottia and Cladosporium, improving PM silage quality. Therefore, PC3 and BP17 can improve the fermentation quality of PM silage and could be used as silage starter cultures.
Collapse
Affiliation(s)
- Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Maoya Li
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Xueying Fan
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yulian Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
- Sichuan Academy of Grassland Sciences, Chengdu, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Ping Li,
| |
Collapse
|
22
|
Assessment of organic acid salts on fermentation quality, aerobic stability, and in vitro rumen digestibility of total mixed ration silage. Trop Anim Health Prod 2022; 54:261. [PMID: 35953622 DOI: 10.1007/s11250-022-03249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
The work aimed to investigate the effects of four organic acid salts on fermentation quality, aerobic stability, and in vitro rumen digestibility of total mixed ration (TMR) silage prepared with citric acid residue, wet brewers' grains, and Napier grass. The TMR was ensiled with the following: (1) no additives (control), (2) 0.1% sodium benzoate (SB), (3) 0.1% potassium sorbate (PS), (4) 0.5% sodium diacetate (SDA), (5) 0.5% calcium propionate (CAP) on a fresh weight basis. All silos (10 L) were opened after 60 days of ensiling to determine fermentation profiles and in vitro rumen digestibility, and then were subjected to a 9-day aerobic stability test. Four organic acid salts significantly (p < 0.05) increased dry matter contents, lactic acid bacteria count, and decreased ethanol content and yeast count compared with the control. The SDA and CAP significantly (p < 0.05) increased water-soluble carbohydrates, lactic acid, and crude protein contents, and decreased pH, ammonia nitrogen, neutral detergent fiber, and hemicellulose contents compared with other TMR silages after 60 days of ensiling. Organic acid salts significantly (p < 0.05) prolonged the hours of aerobic stability and significantly (p < 0.05) increased cumulative gas production and potential gas production compared with the control. The treatments of SDA and CAP significantly (p < 0.05) improved aerobic stability as indicated by higher (p < 0.05) lactic acid and water-soluble carbohydrates contents, and lower (p < 0.05) pH, ammonia nitrogen, ethanol contents, and yeast count compared with the control. The treatments of SDA and CAP significantly (p < 0.05) increased in vitro rumen parameters, as indicated by higher (p < 0.05) in vitro digestibility of dry matter, crude protein, and neutral detergent fiber after 60 days of ensiling. Overall, these results indicated that the addition of SDA and CAP could ensure the good fermentation quality and improve aerobic stability of TMR silages. By comprehensive consideration, CAP was recommended for improving fermentation quality, aerobic stability, and in vitro rumen digestibility of TMR silages prepared with wet brewers' grains, citric acid residue, and Napier grass.
Collapse
|
23
|
Li M, Fan X, Cheng Q, Chen Y, Long J, Lei Y, Li P, Chen C. Effect of Amomum villosum essential oil as an additive on the chemical composition, fermentation quality, and bacterial community of paper mulberry silage. Front Microbiol 2022; 13:951958. [PMID: 35935221 PMCID: PMC9355139 DOI: 10.3389/fmicb.2022.951958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Paper mulberry (Broussonetia papyrifera L., PM) is being used as a new type of animal protein feed to address the feed crisis. To investigate the effect of additives on the chemical composition, fermentation quality, and bacterial community of PM silage (at room temperature, 25°), paper mulberry was fermented with formic acid (FA), Amomum villosum essential oil (AVEO) and lactic acid bacteria (LAB) inoculant treatments. The results showed that fresh PM had a low water-soluble carbohydrate (WSC) content and large amounts of unclassified bacteria. Compared with the CK and LAB treatments, the FA and AVEO treatments significantly (P < 0.05) decreased the pH and increased the lactic acid content of PM silage after 60 days of ensiling. In the AVEO-treated silages the abundance of Lactococcus in the early stage of ensiling increased by 14.09%, the abundances of Levilactobacillus and Lentilactobacillus in the late stage of ensiling increased by 58.34 and 91.12%, respectively, and the abundance of Stenotrophomonas decreased by 94.71%, resulting in improved PM silage quality. These results confirmed that AVEO could potentially be developed as a new additive for improving the fermentation quality of silage.
Collapse
Affiliation(s)
- Maoya Li
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Xueying Fan
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Qiming Cheng,
| | - Yulian Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Jianhua Long
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Yao Lei
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Qiming Cheng,
| |
Collapse
|
24
|
Dai T, Dong D, Wang S, Zong C, Yin X, Jia Y, Shao T. The effectiveness of chemical additives on fermentation profiles, aerobic stability and in vitro ruminal digestibility of total mixed ration ensiled with Napier grass and wet distillers’ grains in southeast China. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2078234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tongtong Dai
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Dong Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xuejing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Fibrolytic enzymes increases fermentation losses and reduces fiber content of sorghum silage. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Fiber digestibility is a key-point of forage usage in ruminant production systems. The present study aimed to evaluate the effect of fibrolytic enzyme blend on whole-plant sorghum silage fermentation profile, fermentative losses, chemical composition, in vitro degradation, and aerobic stability. It used fifty experimental silos (plastic bucket, 28 cm i.d. and 25 cm of height) in a blocked randomized design to evaluate the following fibrolytic enzyme levels: 0, 150, 300, 450, and 600 mL per ton. of dry matter (DM). Enzymes had 300 U/mL of xylanase and 300 U/mL of cellulase. Enzymes linearly increased acetic acid, branched-chain organic acids, and ethanol concentration of silage. Although there was no treatment effect on silage DM recovery over the ensiling process, enzyme levels linearly increased gas, effluent, and total losses. Intermediary levels of enzymes (from 312 to 342 mL/ton. DM) decreased fiber content (NDF and ADF), whereas improved NFC silage content. Besides, enzymes did not affect DM and NDF degradation and tended to linearly reduce acid detergent fiber in vitro degradation. The enzymes addition linearly decreased silage temperature after aerobic exposure. However, there was no treatment effect on silage pH after aerobic exposure neither during the time that silage remained with a temperature lower than 2 °C above environmental temperature. Thus, fibrolytic enzymes reduce fiber content, promote a heterolactic fermentation, and reduce silage temperature after aerobic exposure. However, it increases fermentative losses and has no positive effect on in vitro degradation and in the time of aerobic stability.
Collapse
|
26
|
Xie Y, Wang L, Li W, Xu S, Bao J, Deng J, Wu Z, Yu Z. Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Total Mixed Ration Silage in Response to Varying Proportion Alfalfa Silage. Animals (Basel) 2022; 12:ani12081039. [PMID: 35454285 PMCID: PMC9027063 DOI: 10.3390/ani12081039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to evaluate the effects of different proportions of alfalfa silage on the fermentation quality, in vitro digestibility, and aerobic stability of total mixed ration (TMR) silage. Three TMRs were prepared with different silage contents on a fresh matter basis: (1) 60% alfalfa silage (AS60), (2) 40% alfalfa silage (AS40), and (3) 20% alfalfa silage (AS20). The lactic acid in AS60 did not increase after 30 days of ensiling (p > 0.05). Butyric acid was detected in the AS20 group after 14 days of ensiling. The AS60 group showed significantly higher in vitro dry matter digestibility than the AS20 group (p < 0.05). The aerobic stability of TMR silage gradually increased with a decreasing percentage of alfalfa silage (p < 0.05). Unlike AS60, which directly gained an acidic environment from the alfalfa silage, AS40 developed a stable acidic environment during ensiling and further improved aerobic stability. However, when the percentage of alfalfa silage was reduced to 20%, a risk of clostridial spoilage occurred in the TMR silage. Therefore, the addition of 40% alfalfa silage to TMR is optimal and could achieve both good fermentation quality and considerable resistance to aerobic deterioration in TMR silage.
Collapse
Affiliation(s)
- Yixiao Xie
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lei Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
| | - Wenqi Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
| | - Shengyang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
| | - Jinze Bao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
| | - Jiajie Deng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Zhe Wu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (L.W.); (W.L.); (S.X.); (J.B.); (Z.W.)
- Correspondence:
| |
Collapse
|
27
|
Yin X, Zhao J, Wang S, Dong Z, Li J, Shao T. Separating the chemical and microbial factors of oat harvested at two growth stages to determine the main factor on silage fermentation. J Appl Microbiol 2022; 132:4266-4276. [PMID: 35384180 DOI: 10.1111/jam.15566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
AIMS This work evaluated the effects of epiphytic microbiota and chemical components on fermentation quality and microbial community of ensiled oat. METHOD AND RESULTS Oat harvested at the heading stage (HS) and the milk stage (MS) was sterilized by gamma-ray irradiation and inoculated as the following: (1) HS epiphytic microbiota + sterilized HS (H-H); (2) HS epiphytic microbiota + sterilized MS (H-M); (3) MS epiphytic microbiota + sterilized MS (M-M); (4) MS epiphytic microbiota + sterilized HS (M-H). After 60-d fermentation, silages inoculated with the epiphytic microbiota of HS had higher acetic acid content than those inoculated with MS. While, silage made from sterilized MS had lower pH, ammonia nitrogen and butyric acid contents and higher dry matter, water soluble-carbohydrates and lactic acid contents than that made from sterilized HS. The microbial communities of oat silages were similar, and they were mainly lactobacillus. CONCLUSIONS The chemical component rather than the epiphytic microbiota at harvest exerted more effects on oat silages. SIGNIFICANCE AND IMPACT OF THE STUDY This work reveals the different effects of chemical and microbial factors on the fermentation of silage, which is instructive for us to produce quality silage.
Collapse
Affiliation(s)
- Xuejing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Fermentation Quality and Bacterial Ecology of Grass Silage Modulated by Additive Treatments, Extent of Compaction and Soil Contamination. FERMENTATION 2022. [DOI: 10.3390/fermentation8040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New technologies related to the identification of bacterial communities in fresh forage and silage may give valuable detailed information on the best practices to produce animal feeds. The objective was to evaluate how management conditions during silage making manipulate the profile of bacterial communities and fermentation quality of grass silages. Silages were prepared from mixed timothy and meadow fescue grass using two compaction levels. As an additional treatment the grass was contaminated with soil and feces prior to tight compaction. Four additive treatments with different modes of action were applied: control without additive, formic acid-based additive, homofermentative lactic acid bacteria and salt-based additive. After 93 days the silos were opened, samples were taken and routinely analyzed. DNA extraction was carried out and PCR amplification of the bacterial 16S rRNA gene V4 region was performed using universal primers. The silage pH was higher for loose than tight compaction and higher for non-contaminated than for contaminated silages. Great shift was observed in bacterial profiles from fresh material towards silage. Lactobacillus genus was barely found on the relative abundance of fresh grass but became predominant in the final silage along with Sphingomonas genus. Use of additives improved fermentation quality and modified the bacterial profiles of grass ensiled under different management conditions.
Collapse
|
29
|
Using the Mixed Culture of Fodder Mallow (Malva verticillata L.) and White Sweet Clover (Melilotus albus Medik.) for Methane Production. FERMENTATION 2022. [DOI: 10.3390/fermentation8030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ever-growing number of biogas plants also leads to an increasing demand for suitable, alternative plant substrates. A currently dominant plant substrate is maize silage. However, intensive cultivation of maize (Zea mays L.) as an energy crop in monocultures poses risk to the environment (soil erosion, depletion of soil nutrient supplies, increased concentration of pests—Ostrinia nubilalis). In this study, results of experimental methane production from silages of alternative substrates, such as fodder mallow (Malva verticillata var. crispa L.; FM), white sweet clover (Melilotus albus Medik.; WSC) and their mixture, are presented. Based on the dry matter yield of a mixed culture of mallow and sweet clover, the value of the land equivalent ratio parameter (LER) was set as 1.05. The obtained LER (>1) value shows that the cultivation of the two tested crops in the mixed culture is more beneficial than their monocultures. Methane production from all three silage variants was fully comparable with results of methane production from the maize silage. Anaerobic fermentation of the mixture of FM and WSC did not result in higher methane yield than the average result of monosubstrates.
Collapse
|
30
|
Fu J, Liu C, Li L, Liu J, Tie Y, Wen X, Zhao Q, Qiao Z, An Z, Zheng J. Adaptive response and tolerance to weak acids in
Saccharomyces cerevisiae boulardii
: a metabolomics approach. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Fu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Chaolan Liu
- Antibiotics Research and Re‐evalution Key Laboratory of Sichuan Province Sichuan Industrial Institute of Antibiotics Chengdu University Chengdu 610052 China
| | - Li Li
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Jun Liu
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Yu Tie
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- Solid‐State Fermentation Resource Utilisation Key Laboratory of Sichuan Province Yibin 644000 China
| | - Xueping Wen
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
| | - Qikai Zhao
- College of Biotechnology Engineering Sichuan University of Science and Engineering Yibin 644000 China
- HengfengHuaBang Biological Science and Technology Co., Ltd. Leshan 614000 China
| | | | - Zheming An
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| | - Jia Zheng
- Wuliangye Yibin Co, Ltd Yibin 644000 China
| |
Collapse
|
31
|
Özüretmen S, Özelçam H, İpçak H. Effects of whey powder on fermentation quality, nutritive value,
and digestibility of alfalfa silage. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/146345/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Heinzen C, Agarussi M, Diepersloot E, Ferraretto L. Effects of microbial inoculation on dry matter losses, fermentation profile, and aerobic stability of wet brewers grain stored with increasing concentrations of dry ground corn. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
33
|
The Influence of Delayed Sealing and Repeated Air Ingress during the Storage of Maize Silage on Fermentation Patterns, Yeast Development and Aerobic Stability. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study investigates the effects of delayed sealing and repeated air ingress on the formation of primary fermentation products and other volatile organic compounds (VOC), the development of yeasts and the aerobic stability (ASTA) of maize (26.8% dry matter, DM). After packing, the silos were sealed either promptly or with a delay of 24 h, with repeated air ingress after 27, 55 and 135 days of storage. Losses of DM, fermentation pattern, including VOC, yeast numbers and aerobic stability, were determined 6 times during storage for 142 days. Yeast numbers markedly increased during the first three fermentation days, with the effect being much stronger in silage sealed with a delay than in promptly sealed silage (log10 cfu/g FM 7.27 vs. 5.88, p < 0.002). Simultaneously, the concentrations of ethanol and ethyl esters and DM losses increased. The DM losses were closely correlated with the total concentrations of alcohols and acetic acid (delay: R2 = 0.71, p < 0.001; prompt: R2 = 0.91, p < 0.001, respectively). The repeated air ingress for 24 h during storage after completion of the main fermentation phase had only a minor effect on fermentation pattern, VOC formation and DM losses. The relationship between the counts of total yeasts and lactate-assimilating yeasts (LAY) was very strong (R2 = 0.995, p < 0.001), and LAY numbers were shown to be largely responsible for aerobic instability (R2 = 0.752, p < 0.001). This trial proved the detrimental effects of air on silage fermentation with delayed sealing to be much more deleterious than repeated short-term air ingress after about one month of storage.
Collapse
|
34
|
Costa DRD, Ribeiro KG, Cruz GFDL, Silva TCD, Cardoso LL, Pereira OG. Silagens mistas de cana-de-açúcar e amendoim forrageiro tratadas com Lactobacillus buchneri. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e72352p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo O objetivo do estudo foi avaliar composição química, perfil fermentativo, população de microrganismos e recuperação de matéria seca (RMS) de silagem de cana-de-açúcar contendo níveis crescentes (0, 25, 50 e 75%, na base da matéria natural) de amendoim forrageiro (Arachis pintoi cv. Belmonte), tratadas ou não com Lactobacillus buchneri. Usou-se o esquema fatorial 4×2, no delineamento inteiramente casualizado, com três repetições. Verificou-se efeito de interação níveis de amendoim forrageiro e inoculante para teores de matéria seca, proteína bruta, fibra em detergente neutro e ácido, ácidos orgânicos e etanol, população de bactérias láticas e leveduras, perdas por gases e por efluente e RMS. Houve efeito de níveis de amendoim forrageiro no teor de hemicelulose, nitrogênio insolúvel em detergente ácido, pH e nitrogênio amoniacal. Verificou-se que o aumento de níveis de amendoim forrageiro incrementou teor de proteína e diminuiu teor de fibra, além de reduzir a produção de etanol e de efluente. Recomenda-se inclusão de 40% a 75% de amendoim forrageiro na ensilagem de cana-de-açúcar para melhorar a composição química e o perfil de fermentação. A inoculação com L. buchneri associada ao amendoim forrageiro aumenta a concentração de ácidos antifúngicos na silagem e decresce a população de leveduras e a produção de etanol.
Collapse
|
35
|
Han Z, Xu G, Wang S, Dai T, Dong D, Zong C, Yin X, Jia Y, Shao T. Antimicrobial effects of four chemical additives on fermentation quality, aerobic stability, and in vitro ruminal digestibility of total mixed ration silage prepared with local food by-products. Anim Sci J 2022; 93:e13755. [PMID: 35791793 DOI: 10.1111/asj.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
The objective of the work is to evaluate the effects of four chemical additives on fermentation quality, aerobic stability, and in vitro ruminal digestibility of total mixed ration (TMR) silage. TMR containing 15% spent mushroom substrate, 25% soybean sauce residue, 45% napiergrass (Pennisetum purpureum (L.) Schum.), and 15% concentrate was ensiled with the following: (1) no additives (control), (2) potassium sorbate (PS, 0.1%), (3) sodium benzoate (SB, 0.1%), (4) sodium diacetate (SDA, 0.5%), and (5) calcium propionate (CAP, 0.5%) based on fresh weight. All silos (10 L) were opened for fermentation quality, in vitro ruminal digestibility analysis after 60 days of ensiling, and then subjected to aerobic stability test for 9 days. All TMR silages were well-conserved, as indicated by low pH, butyric acid, and ammonia nitrogen contents. During aerobic exposure, SDA was more stable with higher (p < 0.05) lactic acid and acetic acid contents and lower (p < 0.05) yeast counts than other TMR silages. In addition, SDA significantly (p < 0.05) increased cumulate gas production and in vitro dry matter digestibility compared with the control. Overall, SDA is recommended as additives to improve fermentation quality, in vitro ruminal digestibility, and aerobic stability of TMR silage prepared with local food by-products.
Collapse
Affiliation(s)
- Zhe Han
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Guofeng Xu
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Dai
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Dong Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xuejing Yin
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Costa DRD, Ribeiro KG, Cruz GFDL, Silva TCD, Cardoso LL, Pereira OG. Mixed silages of sugarcane and forage peanut treated with Lactobacillus buchneri. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract There is evidence for the beneficial effects of forage peanut on the nutritive value and fermentation profile of silages; however, its effects on sugarcane silage have not been determined. The objective of the study was to evaluate the chemical composition, fermentation profile, microbial composition, and dry matter recovery (DMR) of sugarcane silage containing various amounts of forage peanut (Arachis pintoi cv. Belmonte) (0%, 25%, 50%, and 75% on a fresh matter basis), treated or untreated with Lactobacillus buchneri. A completely randomized 4 × 2 factorial design was used with three replications. The interaction between forage peanut levels and inoculant influenced the concentrations of dry matter, crude protein, neutral detergent fiber and acid detergent fiber, organic acids and ethanol, populations of lactic acid bacteria and yeast, gas and effluent losses, and DMR. Forage peanut levels had effects on dry matter, hemicellulose, acid detergent insoluble nitrogen, pH, and ammonia nitrogen. Increasing proportions of forage peanut increased the protein content and decreased the fiber content in the silage, while also reducing the production of ethanol and effluent. We recommend the inclusion of 40%–75% forage peanut in the sugarcane ensilage to improve the chemical composition and fermentation profile. Furthermore, inoculation with L. buchneri associated with forage peanut increases the concentration of antifungal acids in the silage and decreases the yeast population and ethanol production.
Collapse
|
37
|
Production of high-quality silage from invasive plants plus agro-industrial by-products with or without bacterial inoculation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Wang S, Li J, Zhao J, Dong Z, Shao T. Effect of storage time on the fermentation quality, bacterial community structure and metabolic profiles of napiergrass (Pennisetum purpureum Schum.) silage. Arch Microbiol 2021; 204:22. [DOI: 10.1007/s00203-021-02658-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
|
39
|
Wei SN, Jeong EC, Li YF, Kim HJ, Ahmadi F, Kim JG. Evaluation of forage quality, feed value, and ensilability of Proso
millet (Panicum miliaceum L.) in Korea. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:38-51. [PMID: 35174341 PMCID: PMC8819318 DOI: 10.5187/jast.2021.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Whole-plant corn (Zea may L.) and sorghum-sudangrass hybrid
[Sorghum bicolor (L.) Moench] are major summer crops that
can be fed as direct-cut or silage. Proso millet is a short-season growing crop
with distinct agronomic characteristics that can be productive in marginal
lands. However, information is limited about the potential production, feed
value, and ensilability of proso millet forage. We evaluated proso millet as a
silage crop in comparison with conventional silage crops. Proso millet was sown
on June 8 and harvested on September 5 at soft-dough stage. Corn and
sorghum-sudangrass hybrid were planted on May 10 and harvested on September 10
at the half milk-line and soft-dough stages, respectively. The fermentation was
evaluated at 1, 2, 3, 5, 10, 15, 20, 30, and 45 days after ensiling. Although
forage yield of proso millet was lower than corn and sorghum-sudangrass hybrid,
its relative feed value was greater than sorghum-sudangrass hybrid.
Concentrations of dry matter (DM), crude protein, and water-soluble carbohydrate
decreased commonly in the ensiling forage crops. The DM loss was greater in
proso millet than those in corn and sorghum-sudangrass hybrid. The in
vitro dry matter digestibility declined in the forage crops as
fermentation progressed. In the early stages of fermentation, pH dropped
rapidly, which was stabilized in the later stages. Compared to corn and
sorghum-sudangrass hybrid, the concentration of ammonia-nitrogen was greater in
proso millet. The count of lactic acid bacteria reached the maximum level on day
10, with the values of 6.96, 7.77, and 6.95 Log10 CFU/g fresh weight
for proso millet, corn, and sorghum-sudangrass hybrid, respectively. As ensiling
progressed, the concentrations of lactic acid and acetic acid of the three crops
increased and lactic acid proportion became higher in the order of
sorghum-sudangrass hybrid, corn, and proso millet. Overall, the shorter,
fast-growing proso millet comparing with corn and sorghum-sudangrass hybrid
makes this forage crop an alternative option, particularly in areas where
agricultural inputs are limited. However, additional research is needed to
evaluate the efficacy of viable strategies such as chemical additives or
microbial inoculants to minimize ammonia-nitrogen formation and DM loss during
ensiling.
Collapse
Affiliation(s)
- Sheng Nan Wei
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Eun Chan Jeong
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Yan Fen Li
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Hak Jin Kim
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
| | - Farhad Ahmadi
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
| | - Jong Geun Kim
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
- Research Institute of Eco-friendly
Livestock Science, Institute of GreenBio Science Technology, Seoul National
University, Pyeongchang 25354, Korea
- Corresponding author: Jong Geun Kim, Graduate
School of International Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea. Tel: +82-33-339-5728, E-mail:
| |
Collapse
|
40
|
Sun H, Cui X, Li R, Guo J, Dong R. Ensiling process for efficient biogas production from lignocellulosic substrates: Methods, mechanisms, and measures. BIORESOURCE TECHNOLOGY 2021; 342:125928. [PMID: 34537529 DOI: 10.1016/j.biortech.2021.125928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Ensiling has been developed as mainstream technologies to preserve lignocellulose biomass for biogas production. However, the lack of general evaluation methods and process mechanism research hinders the understanding of its effectiveness. In this context, we reviewed existing studies and proposed some key considerations: (1) For assessing the ensiling process, determined dry matter contents should be corrected according to the volatilization loss in oven-drying method to obtain accurate storage loss and methane yield; (2) For comprehensive assessments, the trade-off between storage loss and enhanced biomethane yield should be evaluated from the entire-chain process; (3) The mechanism to enhance methane yield is primarily attributed to increased lignocellulosic biodigestibility through acid-based hydrolysis and biological degradation during ensiling; (4) Measures including co-storage, increasing buffering capacity, adjusting carbon/nitrogen ratio, and additives can be adopted to increase biogas production. The proposed methods, mechanisms, and measures (3Ms) could help initiate the specific quality criteria of biogas-oriented silages.
Collapse
Affiliation(s)
- Hui Sun
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xian Cui
- College of Engineering, China Agricultural University, Beijing 100083, PR China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Rangling Li
- College of Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jianbin Guo
- College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, PR China; Yantai Institute, China Agricultural University, Yantai 264032, Shandong, PR China
| |
Collapse
|
41
|
Effects of whole-plant corn silage relocation on quality, chemical composition, and intake, digestibility, and nitrogen balance in sheep. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Jia T, Yun Y, Yu Z. Propionic Acid and Sodium Benzoate Affected Biogenic Amine Formation, Microbial Community, and Quality of Oat Silage. Front Microbiol 2021; 12:750920. [PMID: 34819922 PMCID: PMC8606646 DOI: 10.3389/fmicb.2021.750920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/05/2021] [Indexed: 12/04/2022] Open
Abstract
Investigating the microbial communities and biogenic amine (BA) formation in silage is of vital for improving the quality and safety of oat silage. The present study evaluated the effects of propionic acid (P) and sodium benzoate (SB) on the quality properties, microbial communities, and BA formation in oat silage. Oat was harvested at boot stage and ensiled using P and SB as additives in mini silos, followed by 14 days of aerobic exposure. The results showed that P and SB improved fermentation quality of oat silage, increased the lactic acid content, and decreased pH value and ammonia nitrogen content. Putrescine, cadaverine, and tyramine were the dominant BAs in oat silage; spermidine and spermine were not detected. The control silage had the highest content of total biogenic amine (TBA, 2506.7 mg kg–1 DM), and decreased by 51.1 and 57.7% after adding P and SB, respectively. Moreover, a lower putrescine, cadaverine, and tyramine content and undesirable microbes, such as Caproiciproducens, Stenotrophomonas, Herbinix, and Enterobacter genera, were observed in P and SB silages, which was beneficial for oat silage quality. The fungal community of P silage was dominated by Monascus fuliginosus, and the temperature, pH and ammonia nitrogen content increased after exposure to air. Sedimentibacter, Herbinix, Caproiciproducens, Enterobacter, and Escherichia-Shigella were found to be positively correlated with BA formation in oat silage. Overall, P and SB effectively inhibit the undesirable microbes and BA formation in oat silage, the P silage exhibited lower aerobic stability than the SB silage.
Collapse
Affiliation(s)
- Tingting Jia
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhu Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Succession of Microbial Communities of Corn Silage Inoculated with Heterofermentative Lactic Acid Bacteria from Ensiling to Aerobic Exposure. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To further explore the effects of heterofermentative lactic acid bacteria (LAB) on silage fermentation and aerobic stability, whole-plant corn at around the 1/2 milk-line stage was freshly chopped and ensiled in laboratory silos with deionized water (control), Lactobacillus buchneri (LB), or L. rhamnosus (LR). Each treatment was prepared in triplicate for 3, 14, and 60 d of fermentation, followed by 3 and 7 days of aerobic exposure. The dynamic changes in microbial community were studied by single molecule real-time (SMRT) sequencing. The results showed that the two LAB inoculants altered the microbial communities in different ways. Succession from L. plantarum to L. buchneri and L. rhamnosus was observed in LB- and LR-treated silage, respectively. Both silages improved aerobic stability (82 and 78 h vs. 44 h) by occupying the microbial niche to produce higher levels of acetic acid at terminal fermentation. Because Acetobacter fabarum dominated in the silages after aerobic exposure, beta diversity dramatically decreased. In this study, a. fabarum was reported for the first time in silage and was related to aerobic spoilage. The two heterofermentative LAB produced acetic acid and improved the aerobic stability of the corn silage by occupying the microbial niche at terminal fermentation. Inoculated L. rhamnosus had a greater pH for a longer period of time after opening and less DM loss at day 7.
Collapse
|
44
|
Shan G, Rosner V, Milimonka A, Buescher W, Lipski A, Maack C, Berchtold W, Wang Y, Grantz DA, Sun Y. A Multi-Sensor Mini-Bioreactor to Preselect Silage Inoculants by Tracking Metabolic Activity in situ During Fermentation. Front Microbiol 2021; 12:673795. [PMID: 34475854 PMCID: PMC8406527 DOI: 10.3389/fmicb.2021.673795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The microbiome in silage may vary substantially from the onset to the completion of fermentation. Improved additives and inoculants are being developed to accelerate the ensiling process, to enhance fermentation quality, and to delay spoilage during feed-out. However, current methods for preselecting and characterizing these amendments are time-consuming and costly. Here, we have developed a multi-sensor mini-bioreactor (MSMB) to track microbial fermentation in situ and additionally presented a mathematical model for the optimal assessment among candidate inoculants based on the Bolza equation, a fundamental formula in optimal control theory. Three sensors [pH, CO2, and ethanol (EtOH)] provided data for assessment, with four additional sensors (O2, gas pressure, temperature, and atmospheric pressure) to monitor/control the fermentation environment. This advanced MSMB is demonstrated with an experimental method for evaluating three typical species of lactic acid bacteria (LAB), Lentilactobacillus buchneri (LB) alone, and LB mixed with Lactiplantibacillus plantarum (LBLP) or with Enterococcus faecium (LBEF), all cultured in De Man, Rogosa, and Sharpe (MRS) broth. The fermentation process was monitored in situ over 48 h with these candidate microbial strains using the MSMB. The experimental results combine acidification characteristics with production of CO2 and EtOH, optimal assessment of the microbes, analysis of the metabolic sensitivity to pH, and partitioning of the contribution of each species to fermentation. These new data demonstrate that the MSMB associated with the novel rapid data-processing method may expedite development of microbial amendments for silage additives.
Collapse
Affiliation(s)
- Guilin Shan
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| | | | | | - Wolfgang Buescher
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - André Lipski
- Institute of Nutrition and Food Science, University of Bonn, Bonn, Germany
| | - Christian Maack
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Wilfried Berchtold
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - Ye Wang
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| | - David A Grantz
- Department of Botany and Plant Sciences, Kearney Agricultural Center, University of California, Riverside, Riverside, CA, United States
| | - Yurui Sun
- Department of Agricultural Engineering, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Cueva SF, Stefenoni H, Melgar A, Räisänen SE, Lage CFA, Wasson DE, Fetter ME, Pelaez AM, Roth GW, Hristov AN. Lactational performance, rumen fermentation, and enteric methane emission of dairy cows fed an amylase-enabled corn silage. J Dairy Sci 2021; 104:9827-9841. [PMID: 34253370 DOI: 10.3168/jds.2021-20251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/23/2021] [Indexed: 11/19/2022]
Abstract
This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.
Collapse
Affiliation(s)
- S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - H Stefenoni
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - S E Räisänen
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Davis, Tulare 93274
| | - D E Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M E Fetter
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A M Pelaez
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - G W Roth
- Department of Plant Science, The Pennsylvania State University, University Park 16802
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
46
|
Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Kupryś-Caruk M, Choińska R, Dekowska A, Piasecka-Jóźwiak K. Silage quality and biogas production from Spartina pectinata L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Sci Rep 2021; 11:13175. [PMID: 34162969 PMCID: PMC8222392 DOI: 10.1038/s41598-021-92686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the current study was to determine the ability of the Lactobacillus buchneri M B/00077 strain to degrade xylan, its impact on the quality of silage made from the lignocellulosic biomass of Spartina pectinata L., as well as the efficiency of biogas production. In the model in vitro conditions the L. buchneri M B/00077 strain was able to grow in a medium using xylan as the sole source of carbon, and xylanolytic activity was detected in the post-culture medium. In the L. buchneri M B/00077 genome, genes encoding endo-1,4-xylanase and β-xylosidase were identified. The silages prepared using L. buchneri M B/00077 were characterized by a higher concentration of acetic and propionic acids compared to the controls or the silages prepared with the addition of commercial xylanase. The addition of bacteria increased the efficiency of biogas production. From the silages treated with L. buchneri M B/00077, 10% and 20% more biogas was obtained than from the controls and the silages treated with commercial xylanase, respectively. The results of the current study indicated the strain L. buchneri M B/00077 as being a promising candidate for further application in the field of pretreatment of lignocellulosic biomass.
Collapse
Affiliation(s)
- Marta Kupryś-Caruk
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Renata Choińska
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland.
| | - Agnieszka Dekowska
- Department of Microbiology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Katarzyna Piasecka-Jóźwiak
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| |
Collapse
|
48
|
Lee SS, Paradhipta DHV, Lee HJ, Joo YH, Noh HT, Choi JS, Ji KB, Kim SC. Application of lactic acid bacteria producing antifungal substance and carboxylesterase on whole crop rice silage with different dry matter. Anim Biosci 2021; 34:1029-1037. [PMID: 33152212 PMCID: PMC8100494 DOI: 10.5713/ajas.20.0545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
Objective This study was conducted to investigate effects of antifungal substance and carboxylesterase-producing inoculant on fermentation indices and rumen degradation kinetics of whole crop rice (WCR) silage ensiled at different dry matter (DM) contents. Methods Dual-purpose inoculants, Lactobacillus brevis 5M2 and Lactobacillus buchneri 6M1, confirmed both activities of antifungal and carboxylesterase in the previous study. The WCR at mature stage was chopped, and then wilted to obtain three different DM contents consisting of 35.4%, 43.6%, and 51.5%. All WCR forages were applied distilled water (CON) or mixed inoculants with 1:1 ratio at 1×105 colony forming unit/g (INO), and ensiled into 20 L mini silo (5 kg) in quadruplicates for 108 d. Results The INO silages had lower lactate (p<0.001) and butyrate (p = 0.022) with higher acetate (p<0.001) and propionate (p<0.001) than those of CON silages. Ammonia-N (p<0.001), lactate (tendency; p = 0.068), acetate (p = 0.030), and butyrate (p<0.001) concentrations of INO silages decreased linearly with increasing DM content of WCR forage. The INO silages presented higher lactic acid bacteria (p<0.001) with lower molds (p< 0.001) than those of CON silages. Yeasts (p = 0.042) and molds (p = 0.046) of WCR silages decreased linearly with increasing DM content of WCR forage. In the rumen, INO silages had higher the total degradable fraction (p<0.001), total volatile fatty acid (tendency; p = 0.097), and acetate (p = 0.007), but lower the fractional degradation rate (p = 0.011) and propionate (p<0.001) than those of CON silage. The total degradable fraction (p<0.001), total volatile fatty acid (p = 0.001), iso-butyrate (p = 0.036), and valerate (p = 0.008) decreased linearly with increasing DM content of WCR forage, while the lag phase (p<0.001) was increased linearly. Conclusion This study concluded that application of dual-purpose inoculants on WCR silage confirmed antifungal and carboxylesterase activities by inhibiting mold and improving rumen digestibility, while increase of wilting times decreased organic acids production and rumen digestibility.
Collapse
|
49
|
Gomes ALM, Bueno AVI, Osmari MP, Machado J, Nussio LG, Jobim CC, Daniel JLP. Effects of Obligate Heterofermentative Lactic Acid Bacteria Alone or in Combination on the Conservation of Sugarcane Silage. Front Microbiol 2021; 12:643879. [PMID: 34040591 PMCID: PMC8141596 DOI: 10.3389/fmicb.2021.643879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Our objective was to determine the effects of two strains of obligate heterofermentative bacteria, alone or in combination, on the fermentation profile, gas production kinetics, chemical composition, and aerobic stability of sugarcane silage. A plot of sugarcane was manually harvested, mechanically chopped and treated with: distilled water (5 mL kg-1; Control), Lentilactobacillus hilgardii CNCM I-4785 [3 × 105 colony-forming units (cfu) g-1; LH], Lentilactobacillus buchneri NCIMB 40788 (3 × 105 cfu g-1; LB), and LH+LB (1.5 × 105 cfu g-1 of each strain). Treated forages were packed into 1.96-L gas-tight silos (0.40 porosity) and stored at 25 ± 1.5°C for 70 days (4 replicates per treatment). All heterolactic inoculants were effective to increase acetic acid concentration and inhibit yeast metabolism, as treated silages had lower formation of ethanol, ethyl esters and gas during fermentation. Lower fungal development spared soluble carbohydrates, consequently resulting in silages with higher in vitro digestibility. Nevertheless, L. buchneri was the most effective strain to extend the aerobic stability of sugarcane silage (based on both temperature and pH rise). The use of L. buchneri alone or in combination with L. hilgardii, applied at 3 × 105 cfu g-1, is a feasible strategy to inhibit yeast metabolism and increase the nutritional quality of sugarcane silage.
Collapse
Affiliation(s)
| | | | - Milene Puntel Osmari
- Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Juliana Machado
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Luiz Gustavo Nussio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | | |
Collapse
|
50
|
Dual sensor measurement shows that temperature outperforms pH as an early sign of aerobic deterioration in maize silage. Sci Rep 2021; 11:8686. [PMID: 33888808 PMCID: PMC8062529 DOI: 10.1038/s41598-021-88082-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
High quality silage containing abundant lactic acid is a critical component of ruminant diets in many parts of the world. Silage deterioration, a result of aerobic metabolism (including utilization of lactic acid) during storage and feed-out, reduces the nutritional quality of the silage, and its acceptance by animals. In this study, we introduce a novel non-disruptive dual-sensor method that provides near real-time information on silage aerobic stability, and demonstrates for the first time that in situ silage temperature (Tsi) and pH are both associated with preservation of lactic acid. Aerobic deterioration was evaluated using two sources of maize silage, one treated with a biological additive, at incubation temperatures of 23 and 33 °C. Results showed a time delay between the rise of Tsi and that of pH following aerobic exposure at both incubation temperatures. A 11 to 25% loss of lactic acid occurred when Tsi reached 2 °C above ambient. In contrast, by the time the silage pH had exceeded its initial value by 0.5 units, over 60% of the lactic acid had been metabolized. Although pH is often used as a primary indicator of aerobic deterioration of maize silage, it is clear that Tsi was a more sensitive early indicator. However, the extent of the pH increase was an effective indicator of advanced spoilage and loss of lactic acid due to aerobic metabolism for maize silage.
Collapse
|