1
|
Genomic attributes of thermophilic and hyperthermophilic bacteria and archaea. World J Microbiol Biotechnol 2022; 38:135. [PMID: 35695998 DOI: 10.1007/s11274-022-03327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Thermophiles and hyperthermophiles are immensely useful in understanding the evolution of life, besides their utility in environmental and industrial biotechnology. Advancements in sequencing technologies have revolutionized the field of microbial genomics. The massive generation of data enhances the sequencing coverage multi-fold and allows to analyse the entire genomic features of microbes efficiently and accurately. The mandate of a pure isolate can also be bypassed where whole metagenome-assembled genomes and single cell-based sequencing have fulfilled the majority of the criteria to decode various attributes of microbial genomes. A boom has, therefore, been seen in analysing the extremophilic bacteria and archaea using sequence-based approaches. Due to extensive sequence analysis, it becomes easier to understand the gene flow and their evolution among the members of bacteria and archaea. For instance, sequencing unveiled that Thermotoga maritima shares around 24% of genes of archaeal origin. Comparative and functional genomics provide an analytical view to understanding the microbial diversity of thermophilic bacteria and archaea, their interactions with other microbes, their adaptations, gene flow, and evolution over time. In this review, the genomic features of thermophilic bacteria and archaea are dealt with comprehensively.
Collapse
|
2
|
Nazina TN, Abukova LA, Tourova TP, Babich TL, Bidzhieva SK, Filippova DS, Safarova EA. Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172105012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Sokolova DS, Semenova EM, Grouzdev DS, Bidzhieva SK, Babich TL, Loiko NG, Ershov AP, Kadnikov VV, Beletsky AV, Mardanov AV, Zhaparov NS, Nazina TN. Sulfidogenic Microbial Communities of the Uzen High-Temperature Oil Field in Kazakhstan. Microorganisms 2021; 9:1818. [PMID: 34576714 PMCID: PMC8467725 DOI: 10.3390/microorganisms9091818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Application of seawater for secondary oil recovery stimulates the development of sulfidogenic bacteria in the oil field leading to microbially influenced corrosion of steel equipment, oil souring, and environmental issues. The aim of this work was to investigate potential sulfide producers in the high-temperature Uzen oil field (Republic of Kazakhstan) exploited with seawater flooding and the possibility of suppressing growth of sulfidogens in both planktonic and biofilm forms. Approaches used in the study included 16S rRNA and dsrAB gene sequencing, scanning electron microscopy, and culture-based techniques. Thermophilic hydrogenotrophic methanogens of the genus Methanothermococcus (phylum Euryarchaeota) predominated in water from the zone not affected by seawater flooding. Methanogens were accompanied by fermentative bacteria of the genera Thermovirga, Defliviitoga, Geotoga, and Thermosipho (phylum Thermotogae), which are potential thiosulfate- or/and sulfur-reducers. In the sulfate- and sulfide-rich formation water, the share of Desulfonauticus sulfate-reducing bacteria (SRB) increased. Thermodesulforhabdus, Thermodesulfobacterium, Desulfotomaculum, Desulfovibrio, and Desulfoglaeba were also detected. Mesophilic denitrifying bacteria of the genera Marinobacter, Halomonas, and Pelobacter inhabited the near-bottom zone of injection wells. Nitrate did not suppress sulfidogenesis in mesophilic enrichments because denitrifiers reduced nitrate to dinitrogen; however, thermophilic denitrifiers produced nitrite, an inhibitor of SRB. Enrichments and a pure culture Desulfovibrio alaskensis Kaz19 formed biofilms highly resistant to biocides. Our results suggest that seawater injection and temperature of the environment determine the composition and functional activity of prokaryotes in the Uzen oil field.
Collapse
Affiliation(s)
- Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Ekaterina M. Semenova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | | | - Salimat K. Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Nataliya G. Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Alexey P. Ershov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.K.); (A.V.B.); (A.V.M.)
| | - Nurlan S. Zhaparov
- Branch of the Limited Liability Partnership “KazMunaiGas Engineering”, Aktau 130000, Kazakhstan;
| | - Tamara N. Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (D.S.S.); (E.M.S.); (S.K.B.); (T.L.B.); (N.G.L.); (A.P.E.)
| |
Collapse
|
4
|
Rajbongshi A, Gogoi SB. A review on anaerobic microorganisms isolated from oil reservoirs. World J Microbiol Biotechnol 2021; 37:111. [PMID: 34076736 DOI: 10.1007/s11274-021-03080-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
The Role of microorganisms in the petroleum industry is wide-ranging. To understand the role of microorganisms in hydrocarbon transformation, identification of such microorganisms is vital, especially the ones capable of in situ degradation. Microorganisms play a pivotal role in the degradation of hydrocarbons and remediation of heavy metals. Anaerobic microorganisms such as Sulphate Reducing Bacteria (SRB), responsible for the production of hydrogen sulphide (H2S) within the reservoir, reduces the oil quality by causing reservoir souring and reduction in oil viscosity. This paper reviews the diversity of SRB, methanogens, Nitrogen Reducing Bacteria (NRB), and fermentative bacteria present in oil reservoirs. It also reviews the extensive diversity of these microorganisms, their applications in petroleum industries, characteristics and adaptability to survive in different conditions, the potential to alter the petroleum hydrocarbons properties, the propensity to petroleum hydrocarbon degradation, and remediation of metals.
Collapse
Affiliation(s)
- Amarjit Rajbongshi
- Brahmaputra Valley Fertilizer Corporation Limited, Namrup, Assam, India.
| | | |
Collapse
|
5
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Sokolova DS, Semenova EM, Grouzdev DS, Ershov AP, Bidzhieva SK, Ivanova AE, Babich TL, Sissenbayeva MR, Bisenova MA, Nazina TN. Microbial Diversity and Potential Sulfide Producers in the Karazhanbas Oilfield (Kazakhstan). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Bidzhieva SK, Sokolova DS, Grouzdev DS, Kostrikina NA, Poltaraus AB, Tourova TP, Shcherbakova VA, Troshina OY, Nazina TN. Sphaerochaeta halotolerans sp. nov., a novel spherical halotolerant spirochete from a Russian heavy oil reservoir, emended description of the genus Sphaerochaeta, reclassification of Sphaerochaeta coccoides to a new genus Parasphaerochaeta gen. nov. as Parasphaerochaeta coccoides comb. nov. and proposal of Sphaerochaetaceae fam. nov. Int J Syst Evol Microbiol 2020; 70:4748-4759. [PMID: 32697184 DOI: 10.1099/ijsem.0.004340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anaerobic, fermentative, halotolerant bacteria, strains 4-11T and 585, were isolated from production water of two low-temperature petroleum reservoirs (Russia) and were characterized by using a polyphasic approach. Cells of the strains were spherical, non-motile and 0.30-2.5 µm in diameter. Strain 4-11T grew optimally at 35 °C, pH 6.0 and 1.0-2.0% (w/v) NaCl. Both strains grew chemoorganotrophically with mono-, di- and trisaccharides. The major cellular fatty acids of both strains were C14:0, C16:0, C16:1 ω9 and C18:0 3-OH. Major polar lipids were glycolipids and phospholipids. The 16S rRNA gene sequences of the strains 4-11T and 585 had 99.9% similarity and were most closely related to the sequence of Sphaerochaeta associata GLS2T (96.9, and 97.0% similarity, respectively). The G+C content of the genomic DNA of strains 4-11T and 585 were 46.8 and 46.9%, respectively. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain 4-11T and S. associata GLS2T were 73.0 and 16.9%, respectively. Results of phylogenomic metrics analysis of the genomes and 120 core proteins of strains 4-11T and 585 and their physiological and biochemical characteristics confirmed that the strains represented a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta halotolerans sp. nov. is proposed, with the type strain 4-11T (=VKM B-3269T=KCTC 15833T). Based on the results of phylogenetic analysis, Sphaerochaeta coccoides was reclassified as member of a new genus Parasphaerochaeta gen. nov., Parasphaerochaeta coccoides comb. nov. The genera Sphaerochaeta and Parasphaerochaeta form a separate clade, for which a novel family, Sphaerochaetaceae fam. nov., is proposed.
Collapse
Affiliation(s)
- Salimat Kh Bidzhieva
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Diyana Sh Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Denis S Grouzdev
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/1, Moscow, 117312, Russia
| | - Nadezhda A Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Andrey B Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova, 32, Moscow, 119991, Russia
| | - Tatyana P Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| | - Viktoria A Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Olga Yu Troshina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow region 142290, Russia
| | - Tamara N Nazina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya, 7/2, Moscow, 117312, Russia
| |
Collapse
|
8
|
Biodiversity of Microorganisms Colonizing the Surface of Polystyrene Samples Exposed to Different Aqueous Environments. SUSTAINABILITY 2020. [DOI: 10.3390/su12093624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The contamination of marine and freshwater ecosystems with the items from thermoplastics, including polystyrene (PS), necessitates the search for efficient microbial degraders of these polymers. In the present study, the composition of prokaryotes in biofilms formed on PS samples incubated in seawater and the industrial water of a petrochemical plant were investigated. Using a high-throughput sequencing of the V3–V4 region of the 16S rRNA gene, the predominance of Alphaproteobacteria (Blastomonas), Bacteroidetes (Chryseolinea), and Gammaproteobacteria (Arenimonas and Pseudomonas) in the biofilms on PS samples exposed to industrial water was revealed. Alphaproteobacteria (Erythrobacter) predominated on seawater-incubated PS samples. The local degradation of the PS samples was confirmed by scanning microscopy. The PS-colonizing microbial communities in industrial water differed significantly from the PS communities in seawater. Both communities have a high potential ability to carry out the carbohydrates and amino acids metabolism, but the potential for xenobiotic degradation, including styrene degradation, was relatively higher in the biofilms in industrial water. Bacteria of the genera Erythrobacter, Maribacter, and Mycobacterium were potential styrene-degraders in seawater, and Pseudomonas and Arenimonas in industrial water. Our results suggest that marine and industrial waters contain microbial populations potentially capable of degrading PS, and these populations may be used for the isolation of efficient PS degraders.
Collapse
|
9
|
Semenova EM, Grouzdev DS, Tourova TP, Nazina TN. Physiology and Genomic Characteristics of Geotoga petraea, a Bacterium Isolated from a Low-Temperature Petroleum Reservoir (Russia). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261719060171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
The Potential Application of Microorganisms for Sustainable Petroleum Recovery from Heavy Oil Reservoirs. SUSTAINABILITY 2019. [DOI: 10.3390/su12010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A microbial enhanced oil recovery (MEOR) technique was tested at low-temperature heavy oil reservoirs (Russia). The bioaugmentation approach used is based on the introduction of hydrocarbon-oxidizing bacteria into the oilfield in combination with an injection of oxygen as a H2O2 solution in order to initiate the first stage of hydrocarbon oxidation and of (NH4)2HPO4 as a source of biogenic elements. Before the pilot trials, the microorganisms of petroleum reservoirs were investigated by high-throughput sequencing, as well as by culture-base and radioisotope techniques. Molecular studies revealed the differences in microbial composition of the carbonate and terrigenous oil reservoirs and the communities of injection and formation water. Aerobic bacteria Rhodococcus erythropolis HO-KS22 and Gordonia amicalis 6-1 isolated from oilfields oxidized oil and produced biosurfactants. Fermentative enrichment and pure cultures produced considerable amounts of low fatty acids and alcohols from sacchariferous substrates. In core-flooding tests, 43.0–53.5% of additional heavy oil was displaced by aerobic bacteria, producing biosurfactants, and 13.4–45.5% of oil was displaced by fermentative bacteria, producing low fatty acids, alcohols, and gas. A total of 1250 t additional oil was recovered as a result of the application of an MEOR technique at the Cheremukhovskoe heavy oil reservoir and Vostochno-Anzirskoe reservoir with light conventional oil.
Collapse
|
11
|
Ranchou-Peyruse M, Auguet JC, Mazière C, Restrepo-Ortiz CX, Guignard M, Dequidt D, Chiquet P, Cézac P, Ranchou-Peyruse A. Geological gas-storage shapes deep life. Environ Microbiol 2019; 21:3953-3964. [PMID: 31314939 DOI: 10.1111/1462-2920.14745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022]
Abstract
Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| | - Jean-Christophe Auguet
- MARBEC, Montpellier University, CNRS, IFREMER, IRD, Place Eugène Bataillon, Montpellier, France
| | - Camille Mazière
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France.,MARBEC, Montpellier University, CNRS, IFREMER, IRD, Place Eugène Bataillon, Montpellier, France
| | | | - Marion Guignard
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| | - David Dequidt
- STORENGY - Geosciences Department, Bois-Colombes, France
| | | | - Pierre Cézac
- Laboratoire de Thermique, Énergétique et Procédés IPRA, EA1932, Univ Pau & Pays Adour/E2S-UPPA, 000, Pau, France
| | - Anthony Ranchou-Peyruse
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| |
Collapse
|
12
|
Topçuoğlu BD, Meydan C, Nguyen TB, Lang SQ, Holden JF. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile Methanocaldococcus jannaschii during Hydrogen-Limited Growth and Interspecies Hydrogen Transfer. Appl Environ Microbiol 2019; 85:e00180-19. [PMID: 30824444 PMCID: PMC6495749 DOI: 10.1128/aem.00180-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/20/2022] Open
Abstract
Hyperthermophilic methanogens are often H2 limited in hot subseafloor environments, and their survival may be due in part to physiological adaptations to low H2 conditions and interspecies H2 transfer. The hyperthermophilic methanogen Methanocaldococcus jannaschii was grown in monoculture at high (80 to 83 μM) and low (15 to 27 μM) aqueous H2 concentrations and in coculture with the hyperthermophilic H2 producer Thermococcus paralvinellae The purpose was to measure changes in growth and CH4 production kinetics, CH4 fractionation, and gene expression in M. jannaschii with changes in H2 flux. Growth and cell-specific CH4 production rates of M. jannaschii decreased with decreasing H2 availability and decreased further in coculture. However, cell yield (cells produced per mole of CH4 produced) increased 6-fold when M. jannaschii was grown in coculture rather than monoculture. Relative to high H2 concentrations, isotopic fractionation of CO2 to CH4 (εCO2-CH4) was 16‰ larger for cultures grown at low H2 concentrations and 45‰ and 56‰ larger for M. jannaschii growth in coculture on maltose and formate, respectively. Gene expression analyses showed H2-dependent methylene-tetrahydromethanopterin (H4MPT) dehydrogenase expression decreased and coenzyme F420-dependent methylene-H4MPT dehydrogenase expression increased with decreasing H2 availability and in coculture growth. In coculture, gene expression decreased for membrane-bound ATP synthase and hydrogenase. The results suggest that H2 availability significantly affects the CH4 and biomass production and CH4 fractionation by hyperthermophilic methanogens in their native habitats.IMPORTANCE Hyperthermophilic methanogens and H2-producing heterotrophs are collocated in high-temperature subseafloor environments, such as petroleum reservoirs, mid-ocean ridge flanks, and hydrothermal vents. Abiotic flux of H2 can be very low in these environments, and there is a gap in our knowledge about the origin of CH4 in these habitats. In the hyperthermophile Methanocaldococcus jannaschii, growth yields increased as H2 flux, growth rates, and CH4 production rates decreased. The same trend was observed increasingly with interspecies H2 transfer between M. jannaschii and the hyperthermophilic H2 producer Thermococcus paralvinellae With decreasing H2 availability, isotopic fractionation of carbon during methanogenesis increased, resulting in isotopically more negative CH4 with a concomitant decrease in H2-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression and increase in F420-dependent methylene-tetrahydromethanopterin dehydrogenase gene expression. The significance of our research is in understanding the nature of hyperthermophilic interspecies H2 transfer and identifying biogeochemical and molecular markers for assessing the physiological state of methanogens and possible source of CH4 in natural environments.
Collapse
Affiliation(s)
- Begüm D Topçuoğlu
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cem Meydan
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Tran B Nguyen
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - Susan Q Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
13
|
Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 2019; 103:2391-2401. [DOI: 10.1007/s00253-018-09574-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
|
14
|
Bidzhieva SK, Sokolova DS, Tourova TP, Nazina TN. Bacteria of the Genus Sphaerochaeta from Low-Temperature Heavy Oil Reservoirs (Russia). Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
15
|
Phetcharat T, Dawkrajai P, Chitov T, Wongpornchai P, Saenton S, Mhuantong W, Kanokratana P, Champreda V, Bovonsombut S. Effect of inorganic nutrients on bacterial community composition in oil-bearing sandstones from the subsurface strata of an onshore oil reservoir and its potential use in Microbial Enhanced Oil Recovery. PLoS One 2018; 13:e0198050. [PMID: 30496176 PMCID: PMC6264815 DOI: 10.1371/journal.pone.0198050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/14/2018] [Indexed: 11/18/2022] Open
Abstract
Microbial Enhanced Oil Recovery (MEOR) is a promising strategy to improve recovery of residual oil in reservoirs, which can be performed by promoting specific indigenous microorganisms. In this study, we performed preliminary evaluation of the possibility of conducting MEOR at Mae Soon reservoir, an onshore reservoir in Northern Thailand. The reservoir’s physicochemical characteristics, including the characteristics of the wells, the oil-bearing sandstone cores, and the reservoir’s produced water, were determined. The microbiological characteristics of the oil wells in the reservoir were also investigated by submerging the reservoir’s sandstone core samples, obtained from 6 oil wells, in the reservoir’s produced water and in the produced water added with inorganic nutrients (KNO3 and NaH2PO4). The uncultured bacteria in both treatments were determined, using tagged 16S rRNA gene amplicon with Ion Torrent Sequencing Analysis. The effects of inorganic nutrients and the reservoir’s parameters on the bacterial communities were analysed. A total number of 16,828 OTUs were taxonomically classified into 89 classes and 584 genera. In the controls (sandstone cores submerged in the produced water), the dominant bacterial populations were related to Deinococcus-Thermus, and Betaproteobacteria; while in the nutrient treated samples, there was a marked increase in the relative abundance of Gammaproteobacteria in three samples. Thermus, Acinetobacter, and Pseudomonas were the most abundant genera, and these are potential microorganisms for MEOR. Analysis of correlations between physiochemical properties of the reservoir and bacterial genera, using spearman’s correlation analysis, suggested that some of the reservoir’s properties, especially of the well and the rock, could influence some bacterial genera. To our knowledge, this is the first demonstration of the effect of inorganic nutrients on alteration of bacterial communities attached to reservoir’s rock, and how the bacterial, physical, and chemical properties of a reservoir were co-analysed to serve as a basis for designing a MEOR process.
Collapse
Affiliation(s)
- Thanachai Phetcharat
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Centre (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pinan Dawkrajai
- Northern Petroleum Development Centre (NPDC), Defence Energy Department, Chiang Mai, Thailand
| | - Thararat Chitov
- Environmental Science Research Centre (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pisanu Wongpornchai
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Schradh Saenton
- Department of Geological Sciences, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, The National Centre for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, The National Centre for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, The National Centre for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Sakunnee Bovonsombut
- Environmental Science Research Centre (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- * E-mail:
| |
Collapse
|
16
|
Safonov AV, Babich TL, Sokolova DS, Grouzdev DS, Tourova TP, Poltaraus AB, Zakharova EV, Merkel AY, Novikov AP, Nazina TN. Microbial Community and in situ Bioremediation of Groundwater by Nitrate Removal in the Zone of a Radioactive Waste Surface Repository. Front Microbiol 2018; 9:1985. [PMID: 30190715 PMCID: PMC6115527 DOI: 10.3389/fmicb.2018.01985] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022] Open
Abstract
The goal of the present work was to investigate the physicochemical and radiochemical conditions and the composition of the microbial community in the groundwater of a suspended surface repository for radioactive waste (Russia) and to determine the possibility of in situ groundwater bioremediation by removal of nitrate ions. Groundwater in the repository area (10-m depth) had elevated concentrations of strontium, tritium, nitrate, sulfate, and bicarbonate ions. High-throughput sequencing of the V3-V4/V4 region of the 16S rRNA gene revealed the presence of members of the phyla Proteobacteria (genera Acidovorax, Simplicispira, Thermomonas, Thiobacillus, Pseudomonas, Brevundimonas, and uncultured Oxalobacteraceae), Firmicutes (genera Bacillus and Paenibacillus), and Actinobacteria (Candidatus Planktophila, Gaiella). Canonical correspondence analysis suggested that major contaminant - nitrate, uranium, and sulfate shaped the composition of groundwater microbial community. Groundwater samples contained culturable aerobic organotrophic, as well as anaerobic fermenting, iron-reducing, and denitrifying bacteria. Pure cultures of 33 bacterial strains belonging to 15 genera were isolated. Members of the genera Pseudomonas, Rhizobium, Cupriavidus, Shewanella, Ensifer, and Thermomonas reduced nitrate to nitrite and/or dinitrogen. Application of specific primers revealed the nirS and nirK genes encoding nitrite reductases in bacteria of the genera Pseudomonas, Rhizobium, and Ensifer. Nitrate reduction by pure bacterial cultures resulted in decreased ambient Eh. Among the organic substrates tested, sodium acetate and milk whey were the best for stimulation of denitrification by the microcosms with groundwater microorganisms. Injection of these substrates into the subterranean horizon (single-well push-pull test) resulted in temporary removal of nitrate ions in the area of the suspended radioactive waste repository and confirmed the possibility for in situ application of this method for bioremediation.
Collapse
Affiliation(s)
- Alexey V. Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - Tamara L. Babich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Diyana S. Sokolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Denis S. Grouzdev
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Tatiyana P. Tourova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena V. Zakharova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P. Novikov
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia
| | - Tamara N. Nazina
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, Moscow, Russia
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Nazina TN, Sokolova DS, Babich TL, Semenova EM, Borzenkov IA, Bidzhieva SK, Merkel AY, Khisametdinov MR, Tourova TP. Phylogenetic Diversity of Microorganisms from the Sludge of a Biogas Reactor Processing Oil-Containing and Municipal Waste. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Liang B, Zhang K, Wang LY, Liu JF, Yang SZ, Gu JD, Mu BZ. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs. Front Microbiol 2018; 9:841. [PMID: 29755446 PMCID: PMC5934436 DOI: 10.3389/fmicb.2018.00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C) by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05). Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.
Collapse
Affiliation(s)
- Bo Liang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Kai Zhang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Li-Ying Wang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Bonch-Osmolovskaya E, Elcheninov A, Zayulina K, Kublanov I. New thermophilic prokaryotes with hydrolytic activities. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Thermophilic microorganisms are capable of growing on polymeric substrates and have been intensively studied for their enzymes, thermostable hydrolases (glycosidases, proteinases, lipases), which have important applications in many fields of bioindustry: production of detergents, food processing, paper and textile industry, biofuel formation from organic wastes, etc.1. The advantages of thermostable enzymes application are in their higher stability not only against temperature, but also against high or low pH, presence of detergents, etc. High temperature increases solubility of substrates2, thus making them more available, and significantly decreases the contamination risks. Many highly stable hydrolases, produced by thermophilic bacteria and archaea have been discovered3–6; however, due to continuous industrial demand and our knowledge that natural environments are a significant reservoir of genetic and hence functional diversity7, new thermophilic organisms producing hydrolytic enzymes are still of high interest. Here we present our achievements in isolation of novel thermophilic bacteria and archaea with various hydrolytic activities.
Collapse
|
20
|
Nazina TN, Sokolova DS, Babich TL, Semenova EM, Ershov AP, Bidzhieva SK, Borzenkov IA, Poltaraus AB, Khisametdinov MR, Tourova TP. Microorganisms of low-temperature heavy oil reservoirs (Russia) and their possible application for enhanced oil recovery. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717060121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Nazina TN, Feng Q, Kostryukova NK, Shestakova NM, Babich TL, Ni F, Wang J, Min L, Ivanov MV. Microbiological and production characteristics of the Dagang high-temperature heavy oil reservoir (block no. 1) during trials of the biotechnology for enhanced oil recovery. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717050162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Michas A, Vestergaard G, Trautwein K, Avramidis P, Hatzinikolaou DG, Vorgias CE, Wilkes H, Rabus R, Schloter M, Schöler A. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. MICROBIOME 2017; 5:118. [PMID: 28893308 PMCID: PMC5594585 DOI: 10.1186/s40168-017-0337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/03/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. RESULTS Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. CONCLUSIONS The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Pavlos Avramidis
- Department of Geology, University of Patras, Panepistimioupoli Patron, 26504 Rio-Patras, Greece
| | - Dimitris G. Hatzinikolaou
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Constantinos E. Vorgias
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
23
|
Okpala GN, Chen C, Fida T, Voordouw G. Effect of Thermophilic Nitrate Reduction on Sulfide Production in High Temperature Oil Reservoir Samples. Front Microbiol 2017; 8:1573. [PMID: 28900416 PMCID: PMC5581841 DOI: 10.3389/fmicb.2017.01573] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/03/2017] [Indexed: 01/25/2023] Open
Abstract
Oil fields can experience souring, the reduction of sulfate to sulfide by sulfate-reducing microorganisms. At the Terra Nova oil field near Canada's east coast, with a reservoir temperature of 95°C, souring was indicated by increased hydrogen sulfide in produced waters (PW). Microbial community analysis by 16S rRNA gene sequencing showed the hyperthermophilic sulfate-reducing archaeon Archaeoglobus in Terra Nova PWs. Growth enrichments in sulfate-containing media at 55-70°C with lactate or volatile fatty acids yielded the thermophilic sulfate-reducing bacterium (SRB) Desulfotomaculum. Enrichments at 30-45°C in nitrate-containing media indicated the presence of mesophilic nitrate-reducing bacteria (NRB), which reduce nitrate without accumulation of nitrite, likely to N2. Thermophilic NRB (tNRB) of the genera Marinobacter and Geobacillus were detected and isolated at 30-50°C and 40-65°C, respectively, and only reduced nitrate to nitrite. Added nitrite strongly inhibited the isolated thermophilic SRB (tSRB) and tNRB and SRB could not be maintained in co-culture. Inhibition of tSRB by nitrate in batch and continuous cultures required inoculation with tNRB. The results suggest that nitrate injected into Terra Nova is reduced to N2 at temperatures up to 45°C but to nitrite only in zones from 45 to 65°C. Since the hotter zones of the reservoir (65-80°C) are inhabited by thermophilic and hyperthermophilic sulfate reducers, souring at these temperatures might be prevented by nitrite production if nitrate-reducing zones of the system could be maintained at 45-65°C.
Collapse
Affiliation(s)
- Gloria N. Okpala
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of TechnologyHarbin, China
| | - Tekle Fida
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, CalgaryAB, Canada
| |
Collapse
|
24
|
Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir. Front Microbiol 2017; 8:707. [PMID: 28487680 PMCID: PMC5403907 DOI: 10.3389/fmicb.2017.00707] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/05/2017] [Indexed: 11/30/2022] Open
Abstract
The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles.
Collapse
Affiliation(s)
- Tamara N. Nazina
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Natalya M. Shestakova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Ekaterina M. Semenova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Alena V. Korshunova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Nadezda K. Kostrukova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana P. Tourova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Liu Min
- Dagang Oil Field Group Ltd.Tianjin, China
| | | | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
25
|
Frank YA, Kadnikov VV, Gavrilov SN, Banks D, Gerasimchuk AL, Podosokorskaya OA, Merkel AY, Chernyh NA, Mardanov AV, Ravin NV, Karnachuk OV, Bonch-Osmolovskaya EA. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study. Front Microbiol 2016; 7:2101. [PMID: 28082967 PMCID: PMC5187383 DOI: 10.3389/fmicb.2016.02101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 11/13/2022] Open
Abstract
The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of 5 years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a temperature of ca. 50°C. Its chemical composition varies, but it steadily contains acetate, propionate, and traces of hydrocarbons and gives rise to microbial mats along the surface flow. Community analysis by PCR-DGGE 16S rRNA genes profiling, repeatedly performed within 5 years, revealed several dominating phylotypes consistently found in the borehole water, and highly variable diversity of prokaryotes, brought to the surface with the borehole outflow. The major planktonic components of the microbial community were Desulfovirgula thermocuniculi and Methanothermobacter spp. The composition of the minor part of the community was unstable, and molecular analysis did not reveal any regularity in its variations, except some predominance of uncultured Firmicutes. Batch cultures with complex organic substrates inoculated with water samples were set in order to enrich prokaryotes from the variable part of the community. PCR-DGGE analysis of these enrichments yielded uncultured Firmicutes, Chloroflexi, and Ignavibacteriae. A continuous-flow microaerophilic enrichment culture with a water sample amended with acetate contained Hydrogenophilus thermoluteolus, which was previously detected in the microbial mat developing at the outflow of the borehole. Cultivation results allowed us to assume that variable components of the 3P well community are hydrolytic organotrophs, degrading buried biopolymers, while the constant planktonic components of the community degrade dissolved fermentation products to methane and CO2, possibly via interspecies hydrogen transfer. Occasional washout of minor community components capable of oxygen respiration leads to the development of microbial mats at the outflow of the borehole where residual dissolved fermentation products are aerobically oxidized. Long-term community analysis with the combination of molecular and cultivation techniques allowed us to characterize stable and variable parts of the community and propose their environmental roles.
Collapse
Affiliation(s)
- Yulia A. Frank
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Vitaly V. Kadnikov
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Sergey N. Gavrilov
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - David Banks
- Glasgow and Holymoor Consultancy Ltd., Glasgow UniversityChesterfield, UK
| | - Anna L. Gerasimchuk
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Olga A. Podosokorskaya
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Alexander Y. Merkel
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Nikolai A. Chernyh
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| | - Andrey V. Mardanov
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Nikolai V. Ravin
- Federal Research Centre (FRC) Biotechnology, Institute of BioengineeringMoscow, Russia
| | - Olga V. Karnachuk
- Department of Plant Physiology and Biotechnology, Tomsk State UniversityTomsk, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Federal Research Centre (FRC) Biotechnology, Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences (RAS)Moscow, Russia
| |
Collapse
|
26
|
Sierra-Garcia IN, Dellagnezze BM, Santos VP, Chaves B MR, Capilla R, Santos Neto EV, Gray N, Oliveira VM. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales. Extremophiles 2016; 21:211-229. [PMID: 27915388 DOI: 10.1007/s00792-016-0897-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Abstract
Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, UNICAMP, Campinas, CEP 13148-218, Brazil. .,School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Bruna M Dellagnezze
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, UNICAMP, Campinas, CEP 13148-218, Brazil
| | - Viviane P Santos
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, UNICAMP, Campinas, CEP 13148-218, Brazil
| | - Michel R Chaves B
- Institute of Chemistry, University of Campinas, Campinas, CEP13083-970, Brazil
| | - Ramsés Capilla
- PETROBRAS/R&D Center, Rio de Janeiro, CEP 21949-900, Brazil
| | | | - Neil Gray
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Valeria M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, UNICAMP, Campinas, CEP 13148-218, Brazil
| |
Collapse
|
27
|
Schouw A, Leiknes Eide T, Stokke R, Pedersen RB, Steen IH, Bødtker G. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016; 66:1724-1734. [PMID: 26822139 DOI: 10.1099/ijsem.0.000934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81T, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2-9.5, 14-42 °C and 0.5-6 % (w/w) NaCl, with optima at pH 7.0-8.2, 37 °C and 3% (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81T was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81T is affiliated with the family Lachnospiraceae, and is most closely related to the type strains of Natranaerovirga pectinivora (92 % sequence similarity) and Natranaerovirga hydrolytica (90%). The major cellular fatty acids of strain L81T were C15 : 0, anteiso-C15 : 0 and C16 : 0, and the profile was distinct from those of the species of the genus Natranaerovirga. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81T is considered to represent a novel species of a new genus of the family Lachnospiraceae, for which we propose the name Abyssivirga alkaniphila gen. nov., sp. nov. The type strain of Abyssivirga alkaniphila is L81T (=DSM 29592T=JCM 30920T). We also provide emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica.
Collapse
Affiliation(s)
- Anders Schouw
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway
| | - Tove Leiknes Eide
- Centre for Integrated Petroleum Research, Uni Research AS, Thormøhlensgate 55, N-5008, Bergen, Norway
| | - Runar Stokke
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway
| | - Rolf Birger Pedersen
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007, Bergen, Norway.,Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Ida Helene Steen
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Gunhild Bødtker
- Centre for Integrated Petroleum Research, Uni Research AS, Thormøhlensgate 55, N-5008, Bergen, Norway
| |
Collapse
|
28
|
Zhou M, Liu Q, Xie Y, Dong B, Chen X. Draft genome sequence of Thermococcus sp. EP1, a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent on the East Pacific Rise. Mar Genomics 2015; 26:9-11. [PMID: 26672397 DOI: 10.1016/j.margen.2015.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Thermococcus sp. strain EP1 is a novel anaerobic hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent on the East Pacific Rise. It grows optimally at 80 °C and can produce industrial enzymes at high temperature. We report here the draft genome of EP1, which contains 1,819,157 bp with a G+C content of 39.3%. The sequence will provide the genetic basis for better understanding of adaptation to hydrothermal environment and the development of novel thermostable enzymes for industrial application.
Collapse
Affiliation(s)
- Meixian Zhou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China.
| | - Qing Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Yunbiao Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Binbin Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| | - Xiaoyao Chen
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, China
| |
Collapse
|
29
|
Yeung CW, Lee K, Cobanli S, King T, Bugden J, Whyte LG, Greer CW. Characterization of the microbial community structure and the physicochemical properties of produced water and seawater from the Hibernia oil production platform. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17697-17715. [PMID: 26154038 DOI: 10.1007/s11356-015-4947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Hibernia is Canada's largest offshore oil platform. Produced water is the major waste byproduct discharged into the ocean. In order to evaluate different potential disposal methods, a comprehensive study was performed to determine the impact from the discharge. Microorganisms are typically the first organisms to respond to changes in their environment. The objectives were to characterize the microbial communities and the chemical composition in the produced water and to characterize changes in the seawater bacterial community around the platform. The results from chemical, physicochemical, and microbial analyses revealed that the discharge did not have a detectable effect on the surrounding seawater. The seawater bacterial community was relatively stable, spatially. Unique microorganisms like Thermoanaerobacter were found in the produced water. Thermoanaerobacter-specific q-PCR and nested-PCR primers were designed, and both methods demonstrated that Thermoanaerobacter was present in seawater up to 1000 m from the platform. These methods could be used to track the dispersion of produced water into the surrounding ocean.
Collapse
Affiliation(s)
- C William Yeung
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada.
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Kenneth Lee
- Oceans and Atmosphere National Research Flagship, Australian Resources Research Centre, CSIRO, 26 Dick Perry Avenue, Kensington, WA, 6151, Australia
| | - Susan Cobanli
- Fisheries and Oceans Canada, PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| | - Tom King
- Fisheries and Oceans Canada, PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| | - Jay Bugden
- Fisheries and Oceans Canada, PO Box 1006, Dartmouth, NS, B2Y 4A2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Charles W Greer
- Energy, Mining and Environment, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| |
Collapse
|
30
|
You J, Wu G, Ren F, Chang Q, Yu B, Xue Y, Mu B. Microbial community dynamics in Baolige oilfield during MEOR treatment, revealed by Illumina MiSeq sequencing. Appl Microbiol Biotechnol 2015; 100:1469-1478. [PMID: 26496917 DOI: 10.1007/s00253-015-7073-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
This study was carried out to understand microbial diversity and function in the microbial enhanced oil recovery (MEOR) process and to assess the impact of MEOR treatment on the microbial community in an oil reservoir. The Illumina MiSeq-based method was used to investigate the structure and dynamics of the microbial community in a MEOR-treated block of the Baolige oilfield, China. The results showed that microbial diversity was high and that 23 phyla occurred in the analyzed samples. Proteobacteria, Firmicutes, Bacteroidetes, Thermotogae, and Euryarchaeota were present in relatively high abundance in all analyzed samples. Injection of bacteria and nutrients resulted in interesting changes in the composition of the microbial community. During MEOR treatment, the community was dominated by the known hydrocarbon-utilizing genera Pseudomonas and Acinetobacter. After the treatment, the two genera decreased in abundance over time while Methanobacteriaceae, as well as known syntrophic genera such as Syntrophomonas, Pelotomaculum, Desulfotomaculum, and Thermacetogenium gradually increased. The change in dominant microbial populations indicated the presence of a succession of microbial communities over time, and the hydrocarbon degradation and syntrophic oxidation of acetate and propionate to methane in the MEOR-treated oilfield. This work contributes to a better understanding of microbial processes in oil reservoirs and helps to optimize MEOR technology.
Collapse
Affiliation(s)
- Jing You
- Petroleum Production Engineering Institute of Huabei Oilfield Ltd, Renqiu, 062552, China.,School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Wu
- Petroleum Production Engineering Institute of Huabei Oilfield Ltd, Renqiu, 062552, China
| | - Fuping Ren
- Petroleum Production Engineering Institute of Huabei Oilfield Ltd, Renqiu, 062552, China
| | - Qi Chang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanfen Xue
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bozhong Mu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
31
|
Nesbø CL, S Swithers K, Dahle H, Haverkamp THA, Birkeland NK, Sokolova T, Kublanov I, Zhaxybayeva O. Evidence for extensive gene flow and Thermotoga subpopulations in subsurface and marine environments. ISME JOURNAL 2014; 9:1532-42. [PMID: 25500512 DOI: 10.1038/ismej.2014.238] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the 'burial and isolation' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.
Collapse
Affiliation(s)
- Camilla L Nesbø
- 1] Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Blindern, Oslo, Norway [2] Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen S Swithers
- 1] Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, USA [2] Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Håkon Dahle
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Thomas H A Haverkamp
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Blindern, Oslo, Norway
| | - Nils-Kåre Birkeland
- Department of Biology and Centre for Geobiology, University of Bergen, Bergen, Norway
| | - Tatiana Sokolova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kublanov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Zhaxybayeva
- 1] Department of Biological Sciences, Dartmouth College, Hanover, NH, USA [2] Department of Computer Science, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
32
|
Pavlova-Kostryukova NK, Tourova TP, Poltaraus AB, Feng Q, Nazina TN. Microbial diversity in formation water and enrichment cultures from the Gangxi bed of the Dagang terrigenous oilfield (PRC). Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714050208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Slobodkin AI, Slobodkina GB. Thermophilic prokaryotes from deep subterranean habitats. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Purwasena IA, Sugai Y, Sasaki K. Petrotoga japonica sp. nov., a thermophilic, fermentative bacterium isolated from Yabase Oilfield in Japan. Arch Microbiol 2014; 196:313-21. [PMID: 24604301 DOI: 10.1007/s00203-014-0972-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 11/25/2022]
Abstract
A gram-negative, motile, fermentative, thermophilic bacterium, designated AR80(T), was isolated from a high-temperature oil reservoir in Yabase Oilfield in Akita, Japan. Cells were rod-shaped, motile by means of polar flagella, and formed circular, convex, white colonies. The strain grew at 40-65 °C (optimum 60 °C), 0.5-9 % (w/v) NaCl (optimum 0.5-1 %), pH 6-9 (optimum pH 7.5), and elemental sulfur or thiosulfate serves as terminal electron acceptor. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain AR80(T) belonged to the genus Petrotoga and shared approximately 94.5 % sequence similarity with the type species of this genus. The G + C content of genomic DNA was 32.4 mol% while the value of DNA-DNA hybridization between the closest relative species Petrotoga miotherma and AR80(T) was 58.1 %. The major cellular fatty acids of strain AR80(T) consisted of 18:1 w9c, 16:0, and 16:1 w9c. Based on genetic and phenotypic properties, strain AR80(T) was different with other identified Petrotoga species and represents as a novel species, for which the name Petrotoga japonica sp. nov. is proposed. The type strain is AR80(T) (=NBRC 108752(T) = KCTC 15103(T) = HUT 8122(T)).
Collapse
MESH Headings
- Bacterial Typing Techniques
- Base Composition
- DNA, Bacterial/genetics
- Fatty Acids/chemistry
- Fermentation
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification
- Hot Temperature
- Japan
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Oil and Gas Fields/microbiology
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Thiosulfates/metabolism
Collapse
Affiliation(s)
- Isty Adhitya Purwasena
- School of Life Science and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, West Java, 40132, Indonesia,
| | | | | |
Collapse
|
35
|
Nazina TN, Pavlova NK, Tatarkin YV, Shestakova NM, Babich TL, Sokolova DS, Ivoilov VS, Khisametdinov MR, Ibatullin RR, Tourova TP, Belyaev SS, Ivanov MV. Microorganisms of the carbonate petroleum reservoir 302 of the Romashkinskoe oilfield and their biotechnological potential. Microbiology (Reading) 2013. [DOI: 10.1134/s0026261713020124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 2013; 17:311-27. [DOI: 10.1007/s00792-013-0518-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
|
37
|
Wentzel A, Lewin A, Cervantes FJ, Valla S, Kotlar HK. Deep Subsurface Oil Reservoirs as Poly-extreme Habitats for Microbial Life. A Current Review. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
39
|
Gong XC, Liu ZS, Guo P, Chi CQ, Chen J, Wang XB, Tang YQ, Wu XL, Liu CZ. Bacteria in crude oil survived autoclaving and stimulated differentially by exogenous bacteria. PLoS One 2012; 7:e40842. [PMID: 23028421 PMCID: PMC3444520 DOI: 10.1371/journal.pone.0040842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022] Open
Abstract
Autoclaving of crude oil is often used to evaluate the hydrocarbon-degrading abilities of bacteria. This may be potentially useful for bioaugmentation and microbial enhanced oil recovery (MEOR). However, it is not entirely clear if “endogenous” bacteria (e.g., spores) in/on crude oil survive the autoclaving process, or influence subsequent evaluation of the hydrocarbon-degradation abilities of the “exogenous” bacterial strains. To test this, we inoculated autoclaved crude oil medium with six exogenous bacterial strains (three Dietzia strains, two Acinetobacter strains, and one Pseudomonas strain). The survival of the spore-forming Bacillus and Paenibacillus and the non-spore-forming mesophilic Pseudomonas, Dietzia, Alcaligenes, and Microbacterium was detected using a 16S rRNA gene clone library and terminal restriction fragment length polymorphism (T-RFLP) analysis. However, neither bacteria nor bacterial activity was detected in three controls consisting of non-inoculated autoclaved crude oil medium. These results suggest that detection of endogenous bacteria was stimulated by the six inoculated strains. In addition, inoculation with Acinetobacter spp. stimulated detection of Bacillus, while inoculation with Dietzia spp. and Pseudomonas sp. stimulated the detection of more Pseudomonas. In contrast, similar exogenous bacteria stimulated similar endogenous bacteria at the genus level. Based on these results, special emphasis should be applied to evaluate the influence of bacteria capable of surviving autoclaving on the hydrocarbon-degrading abilities of exogenous bacteria, in particular, with regard to bioaugmentation and MEOR. Bioaugmentation and MEOR technologies could then be developed to more accurately direct the growth of specific endogenous bacteria that may then improve the efficiency of treatment or recovery of crude oil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, P.R. China
- * E-mail:
| | | |
Collapse
|
40
|
Zhao L, Ma T, Gao M, Gao P, Cao M, Zhu X, Li G. Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol Biotechnol 2012; 28:3039-52. [PMID: 22806743 DOI: 10.1007/s11274-012-1114-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/15/2012] [Indexed: 12/01/2022]
Abstract
The diversity and distribution of bacterial and archaeal communities in four different water flooding oil reservoirs with different geological properties were investigated using 16S rDNA clone library construction method. Canonical correspondence analysis was used to analyze microbial community clustering and the correlation with environmental factors. The results indicated that the diversity and abundance in the bacterial communities were significantly higher than the archaeal communities, while both of them had high similarity within the communities respectively. Phylogenetic analysis showed that of compositions of bacterial communities were distinctly different both at phylum and genus level. Proteobacteria dominated in each bacterial community, ranging from 61.35 to 75.83 %, in which α-proteobacteria and γ-proteobacteria were the main groups. In comparison to bacterial communities, the compositions of archaeal communities were similar at phylum level, while varied at genus level, and the dominant population was Methanomicrobia, ranging from 65.91 to 92.74 % in the single oil reservoir. The factor that most significantly influenced the microbial communities in these reservoirs was found to be temperature. Other environmental factors also influenced the microbial communities but not significantly. It is therefore assumed that microbial communities are formed by an accumulated effect of several factors. These results are essential for understanding ecological environment of the water flooding oil reservoirs and providing scientific guidance to the performance of MEOR technology.
Collapse
Affiliation(s)
- Lingxia Zhao
- Key Laboratory of Molecular Microbiology Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Mnif S, Bru-Adan V, Godon JJ, Sayadi S, Chamkha M. Characterization of the microbial diversity in production waters of mesothermic and geothermic Tunisian oilfields. J Basic Microbiol 2012; 53:45-61. [DOI: 10.1002/jobm.201100528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/03/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Sami Mnif
- Laboratory of Environmental Bioprocesses, Regional Pole of Excellence AUF (PER-LBPE) - Centre of Biotechnology of Sfax; University of Sfax; Sfax; Tunisia
| | - Valérie Bru-Adan
- INRA, UR50; Laboratory of Environmental Biotechnology; Avenue des Etangs, Narbonne; France
| | - Jean-Jacques Godon
- INRA, UR50; Laboratory of Environmental Biotechnology; Avenue des Etangs, Narbonne; France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Regional Pole of Excellence AUF (PER-LBPE) - Centre of Biotechnology of Sfax; University of Sfax; Sfax; Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Regional Pole of Excellence AUF (PER-LBPE) - Centre of Biotechnology of Sfax; University of Sfax; Sfax; Tunisia
| |
Collapse
|
42
|
Davidova IA, Duncan KE, Perez-Ibarra BM, Suflita JM. Involvement of thermophilic archaea in the biocorrosion of oil pipelines. Environ Microbiol 2012; 14:1762-71. [DOI: 10.1111/j.1462-2920.2012.02721.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Phylogenetic diversity of microbial communities associated with the crude-oil, large-insoluble-particle and formation-water components of the reservoir fluid from a non-flooded high-temperature petroleum reservoir. J Biosci Bioeng 2012; 113:204-10. [DOI: 10.1016/j.jbiosc.2011.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022]
|
44
|
Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 2012; 78:1978-86. [PMID: 22247137 DOI: 10.1128/aem.07069-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Four hyperthermophilic members of the bacterial genus Thermotoga (T. maritima, T. neapolitana, T. petrophila, and Thermotoga sp. strain RQ2) share a core genome of 1,470 open reading frames (ORFs), or about 75% of their genomes. Nonetheless, each species exhibited certain distinguishing features during growth on simple and complex carbohydrates that correlated with genomic inventories of specific ABC sugar transporters and glycoside hydrolases. These differences were consistent with transcriptomic analysis based on a multispecies cDNA microarray. Growth on a mixture of six pentoses and hexoses showed no significant utilization of galactose or mannose by any of the four species. T. maritima and T. neapolitana exhibited similar monosaccharide utilization profiles, with a strong preference for glucose and xylose over fructose and arabinose. Thermotoga sp. strain RQ2 also used glucose and xylose, but was the only species to utilize fructose to any extent, consistent with a phosphotransferase system (PTS) specific for this sugar encoded in its genome. T. petrophila used glucose to a significantly lesser extent than the other species. In fact, the XylR regulon was triggered by growth on glucose for T. petrophila, which was attributed to the absence of a glucose transporter (XylE2F2K2), otherwise present in the other Thermotoga species. This suggested that T. petrophila acquires glucose through the XylE1F1K1 transporter, which primarily serves to transport xylose in the other three Thermotoga species. The results here show that subtle differences exist among the hyperthermophilic Thermotogales with respect to carbohydrate utilization, which supports their designation as separate species.
Collapse
|
45
|
Li D, Midgley DJ, Ross JP, Oytam Y, Abell GCJ, Volk H, Daud WAW, Hendry P. Microbial biodiversity in a Malaysian oil field and a systematic comparison with oil reservoirs worldwide. Arch Microbiol 2012; 194:513-23. [PMID: 22245906 DOI: 10.1007/s00203-012-0788-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
Collapse
Affiliation(s)
- Dongmei Li
- CSIRO Food and Nutritional Sciences, P. O. Box 52, North Ryde, NSW 1670, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 2011; 92:263-82. [DOI: 10.1007/s00253-011-3542-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/29/2011] [Accepted: 08/05/2011] [Indexed: 02/07/2023]
|
47
|
Ren HY, Zhang XJ, Song ZY, Rupert W, Gao GJ, Guo SX, Zhao LP. Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS One 2011; 6:e23258. [PMID: 21858049 PMCID: PMC3156122 DOI: 10.1371/journal.pone.0023258] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 11/18/2022] Open
Abstract
Water flooding plays an important role in recovering oil from depleted petroleum reservoirs. Exactly how the microbial communities of production wells are affected by microorganisms introduced with injected water has previously not been adequately studied. Using denaturing gradient gel electrophoresis (DGGE) approach and 16S rRNA gene clone library analysis, the comparison of microbial communities is carried out between one injection water and two production waters collected from a working block of the water-flooded Gudao petroleum reservoir located in the Yellow River Delta. DGGE fingerprints showed that the similarities of the bacterial communities between the injection water and production waters were lower than between the two production waters. It was also observed that the archaeal composition among these three samples showed no significant difference. Analysis of the 16S rRNA gene clone libraries showed that the dominant groups within the injection water were Betaproteobacteria, Gammaproteobacteria and Methanomicrobia, while the dominant groups in the production waters were Gammaproteobacteria and Methanobacteria. Only 2 out of 54 bacterial operational taxonomic units (OTUs) and 5 out of 17 archaeal OTUs in the injection water were detected in the production waters, indicating that most of the microorganisms introduced by the injection water may not survive to be detected in the production waters. Additionally, there were 55.6% and 82.6% unique OTUs in the two production waters respectively, suggesting that each production well has its specific microbial composition, despite both wells being flooded with the same injection water.
Collapse
Affiliation(s)
- Hong-Yan Ren
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| | - Zhi-yong Song
- Institute of Oil Recovery Research, Shengli Oil Field Ltd., Dongying, China
| | - Wieger Rupert
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang-Jun Gao
- Institute of Oil Recovery Research, Shengli Oil Field Ltd., Dongying, China
| | - Sheng-xue Guo
- Institute of Oil Recovery Research, Shengli Oil Field Ltd., Dongying, China
| | - Li-Ping Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
48
|
Pathak A, Shanker R, Garg SK, Manickam N. Profiling of biodegradation and bacterial 16S rRNA genes in diverse contaminated ecosystems using 60-mer oligonucleotide microarray. Appl Microbiol Biotechnol 2011; 90:1739-54. [DOI: 10.1007/s00253-011-3268-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/01/2022]
|
49
|
Yamane K, Hattori Y, Ohtagaki H, Fujiwara K. Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98 °C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 2011; 76:220-35. [DOI: 10.1111/j.1574-6941.2011.01044.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Gieg LM, Davidova IA, Duncan KE, Suflita JM. Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 2010; 12:3074-86. [DOI: 10.1111/j.1462-2920.2010.02282.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|