1
|
Kataržytė M, Gyraitė G, Kalvaitienė G, Vaičiūtė D, Budrytė O, Bučas M. Potentially Pathogenic Vibrio spp. in Algal Wrack Accumulations on Baltic Sea Sandy Beaches. Microorganisms 2024; 12:2101. [PMID: 39458410 PMCID: PMC11509979 DOI: 10.3390/microorganisms12102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Vibrio bacteria known to cause infections to humans and wildlife have been largely overlooked in coastal environments affected by beach wrack accumulations from seaweed or seagrasses. This study presents findings on the presence and distribution of potentially pathogenic Vibrio species on coastal beaches that are used for recreation and are affected by red-algae-dominated wrack. Using species-specific primers and 16S rRNA gene amplicon sequencing, we identified V. vulnificus, V. cholerae (non-toxigenic), and V. alginolyticus, along with 14 operational taxonomic units (OTUs) belonging to the Vibrio genus in such an environment. V. vulnificus and V. cholerae were most frequently found in water at wrack accumulation sites and within the wrack itself compared to sites without wrack. Several OTUs were exclusive to wrack accumulation sites. For the abundance and presence of V. vulnificus and the presence of V. cholerae, the most important factors in the water were the proportion of V. fucoides in the wrack, chl-a, and CDOM. Specific Vibrio OTUs correlated with salinity, water temperature, cryptophyte, and blue-green algae concentrations. To better understand the role of wrack accumulations in Vibrio abundance and community composition, future research should include different degradation stages of wrack, evaluate the link with nutrient release, and investigate microbial food-web interactions within such ecosystems, focusing on potentially pathogenic Vibrio species that could be harmful both for humans and wildlife.
Collapse
Affiliation(s)
- Marija Kataržytė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Greta Gyraitė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Greta Kalvaitienė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Diana Vaičiūtė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| | - Otilija Budrytė
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
- Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, Akademija, 58344 Kėdainiai, Lithuania
| | - Martynas Bučas
- Marine Research Institute, Klaipėda University, University Avenue 17, 92295 Klaipėda, Lithuania; (G.G.); (G.K.); (D.V.); (M.B.)
| |
Collapse
|
2
|
Denpetkul T, Pumkaew M, Sittipunsakda O, Sresung M, Chyerochana N, Kongprajug A, Rattanakul S, Patarapongsant Y, Mongkolsuk S, Sirikanchana K. Quantitative microbial risk assessment of the gastrointestinal risks to swimmers at Southeast Asian urban beaches using site-specific and combined autochthonous and fecal bacteria exposure data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165818. [PMID: 37517714 DOI: 10.1016/j.scitotenv.2023.165818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Recreational exposure to microbial pollution at urban beaches poses a health risk to beachgoers. The accurate quantification of such risks is crucial in managing beaches effectively and establishing warning guidelines. In this study, we employed a quantitative microbial risk assessment (QMRA) framework to assess marine water quality and estimate the risks associated with Vibrio parahaemolyticus, an autochthonous pathogen that causes gastrointestinal illnesses, and enterococci, a traditional fecal bacteria indicator. The microbial contamination levels of V. parahaemolyticus and enterococci were determined from 48 water samples collected at two beaches in Thailand during dry and wet seasons. The accidentally ingested water volumes were obtained through a survey involving 438 respondents. The probability of illness (Pill) was estimated using dose-response models and Monte Carlo simulation. The results revealed that enterococci posed a higher risk of illness than V. parahaemolyticus at all seven study sites. The median combined gastrointestinal (GI) risk from both bacteria at all sites met the US EPA risk benchmark of 0.036 and the 0.05 benchmark set by the WHO, but the 95th percentile risk data at all sites exceeded the benchmarks. This emphasizes the need for the continuous monitoring and management of microbial pollution at these sites. The site-specific exposure data showed higher estimated risks with increased variations compared to the WHO-referenced values, which highlights the significance of locally measured microbial concentrations and survey exposure data to avoid underestimation. Estimating the risks from recreational exposure to waterborne bacteria can inform beach management policies aimed at reducing public health risks to swimmers. The study findings improve the understanding of the risks associated with water recreation activities at Southeast Asian beaches and offer valuable insights for the development of water quality guidelines, which are crucial for the sustainable development of the blue economy.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Monchai Pumkaew
- Environmental Engineering and Disaster Management Program, School of Multidisciplinary, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yupin Patarapongsant
- Behavioral Research and Informatics in Social Sciences Research Unit (RU-BRI), SASIN School of Management, Chulalongkorn University, Bangkok 10330, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
3
|
Waidner LA, Potdukhe TV. Tools to Enumerate and Predict Distribution Patterns of Environmental Vibrio vulnificus and Vibrio parahaemolyticus. Microorganisms 2023; 11:2502. [PMID: 37894160 PMCID: PMC10609196 DOI: 10.3390/microorganisms11102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are water- and foodborne bacteria that can cause several distinct human diseases, collectively called vibriosis. The success of oyster aquaculture is negatively impacted by high Vibrio abundances. Myriad environmental factors affect the distribution of pathogenic Vibrio, including temperature, salinity, eutrophication, extreme weather events, and plankton loads, including harmful algal blooms. In this paper, we synthesize the current understanding of ecological drivers of Vv and Vp and provide a summary of various tools used to enumerate Vv and Vp in a variety of environments and environmental samples. We also highlight the limitations and benefits of each of the measurement tools and propose example alternative tools for more specific enumeration of pathogenic Vv and Vp. Improvement of molecular methods can tighten better predictive models that are potentially important for mitigation in more controlled environments such as aquaculture.
Collapse
Affiliation(s)
- Lisa A. Waidner
- Hal Marcus College of Science and Engineering, University of West Florida, 11000 University Pkwy, Building 58, Room 108, Pensacola, FL 32514, USA
| | - Trupti V. Potdukhe
- GEMS Program, College of Medicine, University of Illinois Chicago, 1853 W. Polk St., Chicago, IL 60612, USA;
| |
Collapse
|
4
|
Flütsch S, Wiestner F, Butticaz L, Moor D, Stölting KN. Vibrio-Sequins - dPCR-traceable DNA standards for quantitative genomics of Vibrio spp. BMC Genomics 2023; 24:375. [PMID: 37403035 DOI: 10.1186/s12864-023-09429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Vibrio spp. are a diverse group of ecologically important marine bacteria responsible for several foodborne outbreaks of gastroenteritis around the world. Their detection and characterization are moving away from conventional culture-based methods towards next generation sequencing (NGS)-based approaches. However, genomic methods are relative in nature and suffer from technical biases arising from library preparation and sequencing. Here, we introduce a quantitative NGS-based method that enables the quantitation of Vibrio spp. at the limit of quantification (LOQ) through artificial DNA standards and their absolute quantification via digital PCR (dPCR). RESULTS We developed six DNA standards, called Vibrio-Sequins, together with optimized TaqMan assays for their quantification in individually sequenced DNA libraries via dPCR. To enable Vibrio-Sequin quantification, we validated three duplex dPCR methods to quantify the six targets. LOQs were ranging from 20 to 120 cp/µl for the six standards, whereas the limit of detection (LOD) was ~ 10 cp/µl for all six assays. Subsequently, a quantitative genomics approach was applied to quantify Vibrio-DNA in a pooled DNA mixture derived from several Vibrio species in a proof-of-concept study, demonstrating the increased power of our quantitative genomic pipeline through the coupling of NGS and dPCR. CONCLUSIONS We significantly advance existing quantitative (meta)genomic methods by ensuring metrological traceability of NGS-based DNA quantification. Our method represents a useful tool for future metagenomic studies aiming at quantifying microbial DNA in an absolute manner. The inclusion of dPCR into sequencing-based methods supports the development of statistical approaches for the estimation of measurement uncertainties (MU) for NGS, which is still in its infancy.
Collapse
Affiliation(s)
- Sabrina Flütsch
- Swiss Federal Institute of Metrology METAS, Lindenweg 50, Bern-Wabern, 3003, Switzerland.
- Swiss Federal Institute of Metrology METAS, Campus Liebefeld, Schwarzenburgstrasse 165, Bern-Köniz, 3097, Switzerland.
| | - Fabian Wiestner
- Swiss Federal Institute of Metrology METAS, Lindenweg 50, Bern-Wabern, 3003, Switzerland
- Swiss Federal Institute of Metrology METAS, Campus Liebefeld, Schwarzenburgstrasse 165, Bern-Köniz, 3097, Switzerland
| | - Lisa Butticaz
- Federal Food Safety and Veterinary Office FSVO, Schwarzenburgstrasse 165, Bern-Köniz, 3003, Switzerland
- Swiss Federal Institute of Metrology METAS, Campus Liebefeld, Schwarzenburgstrasse 165, Bern-Köniz, 3097, Switzerland
| | - Dominik Moor
- Federal Food Safety and Veterinary Office FSVO, Schwarzenburgstrasse 165, Bern-Köniz, 3003, Switzerland
- Swiss Federal Institute of Metrology METAS, Campus Liebefeld, Schwarzenburgstrasse 165, Bern-Köniz, 3097, Switzerland
| | - Kai N Stölting
- Swiss Federal Institute of Metrology METAS, Lindenweg 50, Bern-Wabern, 3003, Switzerland.
- Swiss Federal Institute of Metrology METAS, Campus Liebefeld, Schwarzenburgstrasse 165, Bern-Köniz, 3097, Switzerland.
| |
Collapse
|
5
|
Batista FM, Hatfield R, Powell A, Baker-Austin C, Lowther J, Turner AD. Methodological advances in the detection of biotoxins and pathogens affecting production and consumption of bivalve molluscs in a changing environment. Curr Opin Biotechnol 2023; 80:102896. [PMID: 36773575 DOI: 10.1016/j.copbio.2023.102896] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023]
Abstract
The production, harvesting and safe consumption of bivalve molluscs can be disrupted by biological hazards that can be divided into three categories: (1) biotoxins produced by naturally occurring phytoplankton that are bioaccumulated by bivalves during filter-feeding, (2) human pathogens also bioaccumulated by bivalves and (3) bivalve pathogens responsible for disease outbreaks. Environmental changes caused by human activities, such as climate change, can further aggravate these challenges. Early detection and accurate quantification of these hazards are key to implementing measures to mitigate their impact on production and safeguard consumers. This review summarises the methods currently used and the technological advances in the detection of biological hazards affecting bivalves, for the screening of known hazards and discovery of new ones.
Collapse
Affiliation(s)
- Frederico M Batista
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Robert Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - James Lowther
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
6
|
Vibrio vulnificus and Vibrio parahaemolyticus in Oysters under Low Tidal Range Conditions: Is Seawater Analysis Useful for Risk Assessment? Foods 2022; 11:foods11244065. [PMID: 36553807 PMCID: PMC9778087 DOI: 10.3390/foods11244065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Human-pathogenic Vibrio bacteria are acquired by oysters through filtering seawater, however, the relationships between levels of these bacteria in measured in oysters and overlying waters are inconsistent across regions. The reasons for these discrepancies are unclear hindering our ability to assess if -or when- seawater samples can be used as a proxy for oysters to assess risk. We investigated whether concentrations of total and human pathogenic Vibrio vulnificus (vvhA and pilF genes) and Vibrio parahaemolyticus (tlh, tdh and trh genes) measured in seawater reflect concentrations of these bacteria in oysters (Crassostrea virginica) cultured within the US lower Chesapeake Bay region. We measured Vibrio spp. concentrations using an MPN-qPCR approach and analyzed the data using structural equation modeling (SEM). We found seawater concentrations of these bacteria to predictably respond to temperature and salinity over chlorophyll a, pheophytin or turbidity. We also inferred from the SEM results that Vibrio concentrations in seawater strongly predict their respective concentrations in oysters. We hypothesize that such seawater-oyster coupling can be observed in regions of low tidal range. Due to the ease of sampling and processing of seawater samples compared to oyster samples, we suggest that under low tidal range conditions, seawater samples can foster increased spatial and temporal coverage and complement data associated with oyster samples.
Collapse
|
7
|
Park SB, Chang SKC. Development of Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay To Detect Hemolysin Gene of Vibrio vulnificus in Oysters. J Food Prot 2022; 85:1716-1725. [PMID: 35435978 DOI: 10.4315/jfp-21-455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Vibrio vulnificus inhabits estuarine waters around the world and can cause severe infections in people who eat contaminated raw or undercooked oysters. Although current detection methods are sensitive and specific, there are continuous demands for the development of rapid and accurate methods without a trained operator and equipment in the field conditions. Herein, we developed a simple and rapid method by detecting the hemolysin (vvh) gene of V. vulnificus by using recombinase polymerase amplification (RPA) combined with a lateral flow dipstick (LFD). The RPA-LFD could detect 100 fg of DNA (P < 0.05) and 20 CFU of V. vulnificus per reaction within 30 min (P < 0.01) and showed the result with incubation temperature ranges from 30 to 45°C (P < 0.001). The test was specific only to V. vulnificus and was not responsive to 10 other closely related Vibrio species and 18 foodborne pathogenic bacteria. Compared with PCR, quantitative PCR, and colony hybridization assays by using naturally contaminated oyster samples, our RPA-LFD showed the same detection ability as quantitative PCR assay. Therefore, the current RPA-LFD would be a valuable tool to detect V. vulnificus in oysters, especially in field conditions. HIGHLIGHTS
Collapse
Affiliation(s)
- Seong Bin Park
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagula, Mississippi 39567
| | - Sam K C Chang
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Mississippi State University, Pascagula, Mississippi 39567.,Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
8
|
Bullington JA, Golder AR, Steward GF, McManus MA, Neuheimer AB, Glazer BT, Nigro OD, Nelson CE. Refining real-time predictions of Vibrio vulnificus concentrations in a tropical urban estuary by incorporating dissolved organic matter dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154075. [PMID: 35218838 DOI: 10.1016/j.scitotenv.2022.154075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The south shore of O'ahu, Hawai'i is one of the most visited coastal tourism areas in the United States with some of the highest instances of recreational waterborne disease. A population of the pathogenic bacterium Vibrio vulnificus lives in the estuarine Ala Wai Canal in Honolulu which surrounds the heavily populated tourism center of Waikīkī. We developed a statistical model to predict V. vulnificus dynamics in this system using environmental measurements from moored oceanographic and atmospheric sensors in real time. During a year-long investigation, we analyzed water from 9 sampling events at 3 depths and 8 sites along the canal (n = 213) for 36 biogeochemical variables and V. vulnificus concentration using quantitative polymerase chain reaction (qPCR) of the hemolysin A gene (vvhA). The best multiple linear regression model of V. vulnificus concentration, explaining 80% of variation, included only six predictors: 5-day average rainfall preceding water sampling, daily maximum air temperature, water temperature, nitrate plus nitrite, and two metrics of humic dissolved organic matter (DOM). We show how real-time predictions of V. vulnificus concentration can be made using these models applied to the time series of water quality measurements from the Pacific Islands Ocean Observing System (PacIOOS) as well as the PacIOOS plume model based on the Waikīkī Regional Ocean Modeling System (ROMS) products. These applications highlight the importance of including DOM variables in predictive modeling of V. vulnificus and the influence of rain events in elevating nearshore concentrations of V. vulnificus. Long-term climate model projections of locally downscaled monthly rainfall and air temperature were used to predict an overall increase in V. vulnificus concentration of approximately 2- to 3-fold by 2100. Improving these predictive models of microbial populations is critical for management of waterborne pathogen risk exposure, particularly in the wake of a changing global climate.
Collapse
Affiliation(s)
- Jessica A Bullington
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, United States.
| | - Abigail R Golder
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States
| | - Margaret A McManus
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Anna B Neuheimer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Department of Biology, Aarhus University, Aarhus, Denmark
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Olivia D Nigro
- Department of Natural Science, Hawai'i Pacific University, Honolulu, HI, United States
| | - Craig E Nelson
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
9
|
Ultrastructure and Morphological Variability of Non-Culturable Forms of Yersinia pseudotuberculosis Bacteria. Bull Exp Biol Med 2022; 172:725-728. [PMID: 35503586 DOI: 10.1007/s10517-022-05465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 10/18/2022]
Abstract
One of the mechanisms underlying the appearance of chronic infections is transition of pathogens into a non-culturable state, which is largely associated with the use of antibiotics. We studied ultrastructure of dormant bacteria Yersinia pseudotuberculosis obtained from the vegetative form of strain 512 by inhibition with kanamycin. On the model of the causative agent of pseudotuberculosis we showed that transition of prokaryotes to a dormant state occurs through apoptosis of bacteria. Fragmentation and condensation of chromatin with the formation of electron-dense fibrils, clumps and large conglomerates characteristic of apoptosis were found in the nucleoid zone of the cytoplasm of inhibited bacterial cells. These results are of great importance for understanding the mechanisms of the existence of pathogens in different conditions, as well as for identifying the causative agents of infectious diseases.
Collapse
|
10
|
Conrad JW, Harwood VJ. Sewage Promotes Vibrio vulnificus Growth and Alters Gene Transcription in Vibrio vulnificus CMCP6. Microbiol Spectr 2022; 10:e0191321. [PMID: 35171011 PMCID: PMC8849060 DOI: 10.1128/spectrum.01913-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a naturally occurring, potentially lethal pathogen found in coastal waters, fish, and shellfish. Sewage spills in coastal waters occur when infrastructure fails due to severe storms or age, and may affect bacterial populations by altering nutrient levels. This study investigated effects of sewage on clonal and natural V. vulnificus populations in microcosms. Addition of 1% sewage to estuarine water caused the density of a pure culture of V. vulnificus CMCP6 and a natural V. vulnificus population to increase significantly, by two to three orders of magnitude, whether measured by quantitative PCR (qPCR) or culture and in batch and continuous cultures. Changes in the transcription of six virulence- and survival-associated genes in response to sewage were assessed using continuous culture. Exposure to sewage affected transcription of genes that may be associated with virulence, i.e., it modulated the oxidative stress response by altering superoxide dismutase transcription, significantly increasing sodB transcription while repressing sodA. Sewage also repressed transcription of nptA, which encodes a sodium-phosphate cotransporter. Sewage had no effect on sodC transcription or the putative virulence-associated genes hupA or wza. The effects of environmentally relevant levels of sewage on V. vulnificus populations and gene transcription suggest that sewage spills that impact warm coastal waters could lead to an increased risk of V. vulnificus infections. IMPORTANCE Vibrio vulnificus infections have profound impacts such as limb amputation and death for individuals with predisposing conditions. The warming climate is contributing to rising V. vulnificus prevalence in waters that were previously too cold to support high levels of the pathogen. Climate change is also expected to increase precipitation in many regions, which puts more pressure on wastewater infrastructure and will result in more frequent sewage spills. The finding that 1% wastewater in estuarine water leads to 100 to over 1,000-fold greater V. vulnificus concentrations suggests that human exposure to oysters and estuarine water could have greater health impacts in the future. Further, wastewater had a significant effect on gene transcription and has the potential to affect virulence during the initial environment-to-host transition.
Collapse
Affiliation(s)
- James W. Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
11
|
Variable freshwater influences on the abundance of Vibrio vulnificus in a tropical urban estuary. Appl Environ Microbiol 2022; 88:e0188421. [PMID: 35196141 PMCID: PMC8939318 DOI: 10.1128/aem.01884-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the controls on the opportunistic human pathogen Vibrio vulnificus in warm tropical waters, we conducted a year-long investigation in the Ala Wai Canal, a channelized estuary in Honolulu, HI. The abundance of V. vulnificus as determined by qPCR of the hemolysin gene (vvhA), varied spatially and temporally nearly four orders of magnitude (≤ 3 to 14,000 mL-1). Unlike in temperate and subtropical systems, temperatures were persistently warm (19-31°C) and explained little of the variability in V. vulnificus abundance. Salinity (1-36 ppt) had a significant, but non-linear, relationship with V. vulnificus abundance with highest vvhA concentrations (> 2,500 mL-1) observed only at salinities from 7 to 22 ppt. V. vulnificus abundances were lower on average in the summer dry season when waters were warmer but more saline. Highest canal-wide average abundances were observed during a time of modest rainfall when moderate salinities and elevated concentrations of reduced nitrogen species and silica suggested a groundwater influence. Distinguishing the abundances of two genotypes of V. vulnificus (C-type and E-type) suggest that C-type strains, which are responsible for most human infections, were usually less abundant (25% on average), but their relative contribution was greater at higher salinities, suggesting a broader salinity tolerance. Generalized regression models suggested up to 67% of sample-to-sample variation in log-transformed V. vulnificus abundance was explained (n = 202) using the measured environmental variables, and up to 97% of the monthly variation in canal-wide average concentrations (n = 13) was explained with the best subset of four variables. IMPORTANCE Our data illustrate that, in the absence of strong seasonal variation in water temperature in the tropics, variation in salinity driven by rainfall becomes a primary controlling variable on V. vulnificus abundance. There is thus a tendency for a rainfall-driven seasonal cycle in V. vulnificus abundance that is inverted from the temperature-driven seasonal cycle at higher latitudes. However, stochasticity in rainfall and its non-linear, indirect effects on V. vulnificus concentration means that high abundances can occur at any location in the canal at any time of year, making it challenging to predict concentrations of this pathogen at high temporal or spatial resolution. Much of the variability in canal-wide average concentrations, on the other hand, was explained by a few variables that reflect the magnitude of freshwater input to the system, suggesting that relative risk of exposure to this pathogen could be predicted as an average for the system.
Collapse
|
12
|
Xiao X, Lin Z, Huang X, Lu J, Zhou Y, Zheng L, Lou Y. Rapid and Sensitive Detection of Vibrio vulnificus Using CRISPR/Cas12a Combined With a Recombinase-Aided Amplification Assay. Front Microbiol 2021; 12:767315. [PMID: 34745075 PMCID: PMC8566878 DOI: 10.3389/fmicb.2021.767315] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is an important zoonotic and aquatic pathogen and can cause vibriosis in humans and aquatic animals (especially farmed fish and shrimp species). Rapid and sensitive detection methods for V. vulnificus are still required to diagnose human vibriosis early and reduce aquaculture losses. Herein, we developed a rapid and sensitive diagnostic method comprising a recombinase-aided amplification (RAA) assay and the CRISPR/Cas12a system (named RAA-CRISPR/Cas12a) to detect V. vulnificus. The RAA-CRISPR/Cas12a method allows rapid and sensitive detection of V. vulnificus in 40 min without a sophisticated instrument, and the limit of detection is two copies of V. vulnificus genomic DNA per reaction. Meanwhile, the method shows satisfactory specificity toward non-target bacteria and high accuracy in the spiked blood, stool, and shrimp samples. Therefore, our proposed rapid and sensitive V. vulnificus detection method, RAA-CRISPR/Cas12a, has great potential for early diagnosis of human vibriosis and on-site V. vulnificus detection in aquaculture and food safety control.
Collapse
Affiliation(s)
- Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ziqin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Xianhui Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jinfang Lu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yan Zhou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Laibao Zheng
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Bienlien LM, Audemard C, Reece KS, Carnegie RB. Impact of parasitism on levels of human-pathogenic Vibrio species in eastern oysters. J Appl Microbiol 2021; 132:760-771. [PMID: 34487403 DOI: 10.1111/jam.15287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
AIMS To investigate the relationships between individual health status of oysters, particularly with regard to parasitic infection, and variability in abundance of human-pathogenic Vibrio species. METHODS AND RESULTS Aquacultured eastern oysters, Crassostrea virginica, were analysed individually for infection by the protozoan parasite Perkinsus marinus through quantitative PCR, and total Vibrio vulnificus and total and pathogenic Vibrio parahaemolyticus abundance was assessed using a most probable number (MPN)-qPCR approach. Additionally, perspective on general oyster health and other parasitic infections was obtained through histopathology. Perkinsus marinus infection and human-pathogenic Vibrio species levels were not correlated, but through histology, analyses revealed that oysters infected by Haplosporidium nelsoni harboured more V. vulnificus. CONCLUSIONS The highly prevalent parasite P. marinus had little influence on human-pathogenic Vibrio species levels in eastern oysters, but the less prevalent parasite, H. nelsoni, may influence V. vulnificus levels, highlighting the potential nuances of within-oyster dynamics of Vibrio species. SIGNIFICANCE AND IMPACT OF THE STUDY Human-pathogenic bacteria continue to be a concern to the oyster industry and causes for individual oyster variation in bacterial levels remain unknown. The major oyster pathogen P. marinus does not appear to affect levels of these bacteria within oysters, suggesting that other factors may influence Vibrio spp. levels in oysters.
Collapse
Affiliation(s)
- Lydia M Bienlien
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Corinne Audemard
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Kimberly S Reece
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| | - Ryan B Carnegie
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, USA
| |
Collapse
|
14
|
Diner RE, Kaul D, Rabines A, Zheng H, Steele JA, Griffith JF, Allen AE. Pathogenic Vibrio Species Are Associated with Distinct Environmental Niches and Planktonic Taxa in Southern California (USA) Aquatic Microbiomes. mSystems 2021; 6:e0057121. [PMID: 34227831 PMCID: PMC8407410 DOI: 10.1128/msystems.00571-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae, V. parahaemolyticus, and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems.
Collapse
Affiliation(s)
- Rachel E. Diner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Drishti Kaul
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
15
|
Dutta D, Kaushik A, Kumar D, Bag S. Foodborne Pathogenic Vibrios: Antimicrobial Resistance. Front Microbiol 2021; 12:638331. [PMID: 34276582 PMCID: PMC8278402 DOI: 10.3389/fmicb.2021.638331] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
Foodborne illness caused by pathogenic Vibrios is generally associated with the consumption of raw or undercooked seafood. Fish and other seafood can be contaminated with Vibrio species, natural inhabitants of the marine, estuarine, and freshwater environment. Pathogenic Vibrios of major public health concerns are Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Common symptoms of foodborne Vibrio infection include watery diarrhea, stomach cramping, nausea, vomiting, fever, and chills. Administration of oral or intravenous rehydration salts solution is the mainstay for the management of cholera, and antibiotics are also used to shorten the duration of diarrhea and to limit further transmission of the disease. Currently, doxycycline, azithromycin, or ciprofloxacin are commonly used for V. cholerae, and doxycycline or quinolone are administered for V. parahaemolyticus, whereas doxycycline and a third-generation cephalosporin are recommended for V. vulnificus as initial treatment regimen. The emergence of antimicrobial resistance (AMR) in Vibrios is increasingly common across the globe and a decrease in the effectiveness of commonly available antibiotics poses a global threat to public health. Recent progress in comparative genomic studies suggests that the genomes of the drug-resistant Vibrios harbor mobile genetic elements like plasmids, integrating conjugative elements, superintegron, transposable elements, and insertion sequences, which are the major carriers of genetic determinants encoding antimicrobial resistance. These mobile genetic elements are highly dynamic and could potentially propagate to other bacteria through horizontal gene transfer (HGT). To combat the serious threat of rising AMR, it is crucial to develop strategies for robust surveillance, use of new/novel pharmaceuticals, and prevention of antibiotic misuse.
Collapse
Affiliation(s)
- Dipanjan Dutta
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Anupam Kaushik
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | - Dhirendra Kumar
- Department of Microbiology, National Centre for Disease Control, New Delhi, India
| | | |
Collapse
|
16
|
Fan S, Ma C, Tian X, Ma X, Qin M, Wu H, Tian X, Lu J, Lyu M, Wang S. Detection of Vibrio vulnificus in Seafood With a DNAzyme-Based Biosensor. Front Microbiol 2021; 12:655845. [PMID: 34149642 PMCID: PMC8213197 DOI: 10.3389/fmicb.2021.655845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Vibrio vulnificus is an important pathogenic bacterium that is often associated with seafood-borne illnesses. Therefore, to detect this pathogen in aquatic products, a DNAzyme-based fluorescent sensor was developed for the in vitro detection of V. vulnificus. After screening and mutation, a DNAzyme that we denominated “RFD-VV-M2” exhibited the highest activity, specificity, and sensitivity. The limit of detection was 2.2 × 103 CFU/ml, and results could be obtained within 5–10 min. Our findings suggested that the target of DNAzyme RFD-VV-M2 was a protein with a molecular weight between 50 and 100 kDa. The proposed biosensor exhibited an excellent capacity to detect marine products contaminated with V. vulnificus. Therefore, our study established a rapid, simple, sensitive, and highly specific detection method for V. vulnificus in aquatic products.
Collapse
Affiliation(s)
- Shihui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Chao Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Xiaoyi Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Mingcan Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Hangjie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Marine Resources Development Research Institute, Lianyungang, China
| |
Collapse
|
17
|
Bonny SQ, Hossain MAM, Uddin SMK, Pulingam T, Sagadevan S, Johan MR. Current trends in polymerase chain reaction based detection of three major human pathogenic vibrios. Crit Rev Food Sci Nutr 2020; 62:1317-1335. [DOI: 10.1080/10408398.2020.1841728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmin Quazi Bonny
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Thiruchelvi Pulingam
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre, Institute of Advanced Studies, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Çam S, Brinkmeyer R. Differential expression of vvhA and CPS operon allele 1 genes in Vibrio vulnificus under biofilm and planktonic conditions. Antonie van Leeuwenhoek 2020; 113:1437-1446. [PMID: 32696279 DOI: 10.1007/s10482-020-01452-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022]
Abstract
Examination of genes encoding for the virulence factors, hemolysin/cytolysin (vvhA) and capsular polysaccharide (CPS allele 1), during biofilm formation revealed that their expression was influenced by the maturity of the biofilm as well as by temperature. At 24 °C, expression of vvhA during biofilm formation was low between 4 and 12 h but increased 10-fold by 24 h to (5.1 × 104 ± 6.3 × 103mRNA copies/ml) as the biofilm matured. Compared to planktonic cells, expression of vvhA during biofilm formation at 24 °C was initially up-regulated at 4 h (1.07 ± 0.00-fold) but then was down-regulated almost four-fold during the intermediate and mature stages of biofilm formation. In contrast, vvhA expression at 37 °C was up-regulated almost four-fold in the early stages (4 and 6 h) of biofilm formation and remained two-fold up-regulated by 24 h even as the biofilm was deteriorating. CPS allele 1 expression at 24 °C during biofilm formation was up-regulated (1.50 ± 0.18-fold) during the initial attachment phase of the cells but was strongly down-regulated during the intermediate phases at 8 and 10 h (74.42 ± 42.16-fold and 453.76 ± 193.32-fold, respectively), indicating that capsular polysaccharide (CPS) is not important to intermediate biofilm architecture. Interestingly, as the biofilm matured by 24 h, expression of CPS allele 1 was again up-regulated (1.88 ± 1.07), showing that CPS plays a role in mature biofilm. At 37 °C, CPS allele 1 expression was significantly up-regulated (up to 105) during biofilm formation, indicating that the biofilm form of V. vulnificus may be preferred over the planktonic form in the human host.
Collapse
Affiliation(s)
- Sedat Çam
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA.
- Department of Biology, Harran University, 63100, Şanlıurfa, Turkey.
| | - Robin Brinkmeyer
- Department of Marine Science, Texas A&M University at Galveston, Galveston, TX, USA
| |
Collapse
|
19
|
Gyraite G, Katarzyte M, Schernewski G. First findings of potentially human pathogenic bacteria Vibrio in the south-eastern Baltic Sea coastal and transitional bathing waters. MARINE POLLUTION BULLETIN 2019; 149:110546. [PMID: 31543486 DOI: 10.1016/j.marpolbul.2019.110546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/02/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Vibrio spp. are bacteria that inhabit fresh and marine waters throughout the world and can cause severe infections in humans. This study aimed to investigate the presence of potentially pathogenic Vibrio bacteria in the coastal waters of the Lithuanian Baltic Sea and the Curonian Lagoon. The results of cultivation on TCBS media showed that total abundance of Vibrio spp. varied from 1.2 × 102 to 6 × 104 CFU L-1. Real-time PCR revealed that the V. vulnificus vvhA gene varied from 2.8 × 103 to 3.7 × 104 copies L-1, with the highest amounts in sites with average water salinity of 7.1 PSU. Both green and blue-green algae and lower salinity play a role in the growth and spread of total Vibrio spp. Although potential infection risk was low at the time of this study, regular monitoring of Vibrio spp. and infection risk assessments are recommended.
Collapse
Affiliation(s)
- Greta Gyraite
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania; Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock, Germany.
| | - Marija Katarzyte
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania
| | - Gerald Schernewski
- Klaipeda University, Marine Research Institute, University Avenue 17, 92295 Klaipeda, Lithuania; Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119 Rostock, Germany
| |
Collapse
|
20
|
Çam S, Brinkmeyer R, Schwarz JR. Quantitative PCR enumeration of vcgC and 16S rRNA type A and B genes as virulence indicators for environmental and clinical strains of Vibrio vulnificus in Galveston Bay oysters. Can J Microbiol 2019; 65:613-621. [PMID: 31145009 DOI: 10.1139/cjm-2018-0399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oysters from a reef in Galveston Bay, Texas, USA, were screened for more virulent clinical strains versus less virulent environmental strains of Vibrio vulnificus using a combination of quantitative PCR assays for the virulence correlating gene (clinical variant, vcgC) and 16S rRNA types A and B (type A = environmental, type B = clinical). The combination of vcgC and 16S rRNA type B loci to determine clinical type strains was suitable, as indicated by the strong correlation (R2 = 0.98; p < 0.001) between these gene counts over time and their relative proportion (up to 93.8% and 94.3%, respectively) to vvhA genes used to quantify all strains of V. vulnificus. A strong seasonal shift of V. vulnificus strain types was observed. Environmental strains (16S rRNA type A) predominated from April to mid-June as salinities increased from 22 to 27 PSU (practical salinity unit) and temperatures rose 20 to 28 °C, with peak gene quantities of 16 812 ± 56 CFU/g. As temperatures increased to ≥30 °C from mid-June to September and salinities rose above 27 PSU, clinical strains (16S rRNA type B; vcgC) predominated with peak quantities 31 868 ± 287 and 32 360 ± 178 CFU/g, respectively.
Collapse
Affiliation(s)
- Sedat Çam
- a Department of Marine Biology, Texas A&M University at Galveston, Texas, USA.,b Department of Biology, Harran University, Şanlıurfa, Turkey
| | - Robin Brinkmeyer
- a Department of Marine Biology, Texas A&M University at Galveston, Texas, USA
| | - John R Schwarz
- a Department of Marine Biology, Texas A&M University at Galveston, Texas, USA
| |
Collapse
|
21
|
Yoon JH, Moon SK, Choi C, Ryu BY, Lee SY. Detection of viable but nonculturable Vibrio parahaemolyticus induced by prolonged cold-starvation using propidium monoazide real-time polymerase chain reaction. Lett Appl Microbiol 2019; 68:537-545. [PMID: 30933376 DOI: 10.1111/lam.13157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022]
Abstract
Viable but nonculturable (VBNC) Vibrio parahaemolyticus cannot be detected by the standard cultivation-based methods. In this study, commonly used viability assessment methods were evaluated for the detection of V. parahaemolyticus in a VBNC state. Vibrio parahaemolyticus cells exposed to nutrient deficiency at cold temperature were used for epifluorescence microscopy with SYTO9 and propidium iodide (PI) staining and real-time polymerase chain reaction (qPCR) with propidium monoazide (PMA), and its resuscitative ability was determined by a temperature upshift in freshly prepared artificial sea water (ASW; pH 7) fluids. Viable cells with intact membranes always exceeded 5·0 log CFU per ml in ASW microcosms at 4°C. After 80 days, cycle thresholds for V. parahaemolyticus ATCC 27969 were 16·15-16·69. During cold-starvation, PMA qPCR selectively excluded DNAs from heat-killed cells. However, there may be some penetration of PMA into undamaged cells that persisted in ASW for 150 days, as evidenced by their ability to resuscitate from a VBNC state after a temperature upshift (25°C); V. parahaemolyticus ATCC 33844 and V. parahaemolyticus ATCC 27969 were successfully reactivated from a VBNC state in ASW microcosms containing <5% NaCl, following enrichment in ASW medium (pH 7). SIGNIFICANCE AND IMPACT OF THE STUDY: Few studies have evaluated the characteristics of and detection methods for viable but nonculturable (VBNC) Vibrio parahaemolyticus induced by cold-starvation. Currently, VBNC cells are routinely detected by SYTO9 and propidium iodide double staining. However, viable cell counts might be overestimated by this approach, suggesting that the fluorescence dyes may be ineffective for accurately determining the viability of bacterial cells. We demonstrated that quantitative real-time polymerase chain reaction with propidium monoazide, which selectively permeates damaged cell membranes, can be used to obtain viable cell counts of V. parahaemolyticus after its evolution to a VBNC state under cold-starvation conditions.
Collapse
Affiliation(s)
- J-H Yoon
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Korea
| | - S-K Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Korea
| | - C Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Korea
| | - B-Y Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Korea
| | - S-Y Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong-si, Gyeonggi-do, Korea
| |
Collapse
|
22
|
Oyelade AA, Adelowo OO, Fagade OE. bla NDM-1-producing Vibrio parahaemolyticus and V. vulnificus isolated from recreational beaches in Lagos, Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33538-33547. [PMID: 30267350 DOI: 10.1007/s11356-018-3306-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Twenty-six strains of Vibrio parahaemolyticus and 14 strains of V. vulnificus isolated from selected beaches in Lagos State, Nigeria, were examined for virulence and antimicrobial resistance genes. The V. parahaemolyticus isolates were further serotyped and subjected to pulsed field gel electrophoresis (PFGE). Five strains of V. vulnificus and one of V. parahaemolyticus carried the New Delhi-metallo-beta-lactamase gene blaNDM-1, seven strains carried blaTEM, and four strains of V. vulnificus and one of V. parahaemolyticus carried blaCMY. Real-time PCR assay for detection of virulence genes tdh and trh in the V. parahaemolyticus isolates showed that five isolates were positive for tdh, two for trh, and one isolate carried both genes. Ten V. parahaemolyticus serogroups and 23 pulsotypes were identified from 26 isolates based on O and K antigens typing and PFGE. Five of the isolates belong to the pandemic strains O1:Kut and O3:K6, and three belonged to the highly virulent O4:Kut serotype. Nineteen of the isolates showed distinct PFGE banding patterns. These results highlighted the importance of Nigerian recreational beaches as reservoirs of antimicrobial resistance genes of global public health interest, such as blaNDM-1.
Collapse
Affiliation(s)
- Abolade A Oyelade
- Department of Microbiology, University of Ibadan, Ibadan, Nigeria.
- New Jersey Department of Environmental Protection, Leeds Point Office, Leeds Point, NJ, USA.
| | | | | |
Collapse
|
23
|
Audemard C, Kator HI, Reece KS. High salinity relay as a post-harvest processing method for reducing Vibrio vulnificus levels in oysters (Crassostrea virginica). Int J Food Microbiol 2018; 279:70-79. [DOI: 10.1016/j.ijfoodmicro.2018.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/15/2022]
|
24
|
Abstract
Vibrio is a genus of ubiquitous bacteria found in a wide variety of aquatic and marine habitats; of the >100 described Vibrio spp., ~12 cause infections in humans. Vibrio cholerae can cause cholera, a severe diarrhoeal disease that can be quickly fatal if untreated and is typically transmitted via contaminated water and person-to-person contact. Non-cholera Vibrio spp. (for example, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus) cause vibriosis - infections normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. Non-cholera bacteria can lead to several clinical manifestations, most commonly mild, self-limiting gastroenteritis, with the exception of V. vulnificus, an opportunistic pathogen with a high mortality that causes wound infections that can rapidly lead to septicaemia. Treatment for Vibrio spp. infection largely depends on the causative pathogen: for example, rehydration therapy for V. cholerae infection and debridement of infected tissues for V. vulnificus-associated wound infections, with antibiotic therapy for severe cholera and systemic infections. Although cholera is preventable and effective oral cholera vaccines are available, outbreaks can be triggered by natural or man-made events that contaminate drinking water or compromise access to safe water and sanitation. The incidence of vibriosis is rising, perhaps owing in part to the spread of Vibrio spp. favoured by climate change and rising sea water temperature.
Collapse
|
25
|
Vibrio Ecology in the Neuse River Estuary, North Carolina, Characterized by Next-Generation Amplicon Sequencing of the Gene Encoding Heat Shock Protein 60 ( hsp60). Appl Environ Microbiol 2018; 84:AEM.00333-18. [PMID: 29678912 DOI: 10.1128/aem.00333-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022] Open
Abstract
Of marine eubacteria, the genus Vibrio is intriguing because member species are relevant to both marine ecology and human health. Many studies have touted the relationships of Vibrio to environmental factors, especially temperature and salinity, to predict total Vibrio abundance but lacked the taxonomic resolution to identify the relationships among species and the key drivers of Vibrio dynamics. To improve next-generation sequencing (NGS) surveys of Vibrio, we have conducted both 16S small subunit rRNA and heat shock protein 60 (hsp60) amplicon sequencing of water samples collected at two well-studied locations in the Neuse River Estuary, NC. Samples were collected between May and December 2016 with enhanced sampling efforts in response to two named storms. Using hsp60 sequences, 21 Vibrio species were identified, including the potential human pathogens V. cholerae, V. parahaemolyticus, and V. vulnificus Changes in the Vibrio community mirrored seasonal and storm-related changes in the water column, especially in response to an influx of nutrient-rich freshwater to the estuary after Hurricane Matthew, which initiated dramatic changes in the overall Vibrio community. Individual species dynamics were wide ranging, indicating that individual Vibrio taxa have unique ecologies and that total Vibrio abundance predictors are insufficient for risk assessments of potentially pathogenic species. Positive relationships between Vibrio, dinoflagellates, and Cyanobacteria were identified, as were intraspecies associations, which further illuminated the interactions of cooccurring Vibrio taxa along environmental gradients.IMPORTANCE The objectives of this research were to utilize a novel approach to improve sequence-based surveys of Vibrio communities and to demonstrate the usefulness of this approach by presenting an analysis of Vibrio dynamics in the context of environmental conditions, with a particular focus on species that cause disease in humans and on storm effects. The methods presented here enabled the analysis of Vibrio dynamics with excellent taxonomic resolution and could be incorporated into future ecological studies and risk prediction strategies for potentially pathogenic species. Next-generation sequencing of hsp60 and other innovative sequence-based approaches are valuable tools and show great promise for studying Vibrio ecology and associated public health risks.
Collapse
|
26
|
Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C. Comparative 16SrDNA Gene-Based Microbiota Profiles of the Pacific Oyster (Crassostrea gigas) and the Mediterranean Mussel (Mytilus galloprovincialis) from a Shellfish Farm (Ligurian Sea, Italy). MICROBIAL ECOLOGY 2018; 75:495-504. [PMID: 28803409 DOI: 10.1007/s00248-017-1051-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
The pacific oyster Crassostrea gigas and the Mediterranean mussel Mytilus galloprovincialis are two widely farmed bivalve species which show contrasting behaviour in relation to microbial diseases, with C. gigas being more susceptible and M. galloprovincialis being generally resistant. In a recent study, we showed that different susceptibility to infection exhibited by these two bivalve species may depend on their different capability to kill invading pathogens (e.g., Vibrio spp.) through the action of haemolymph components. Specific microbial-host interactions may also impact bivalve microbiome structure and further influence susceptibility/resistance to microbial diseases. To further investigate this concept, a comparative study of haemolymph and digestive gland 16SrDNA gene-based bacterial microbiota profiles in C. gigas and M. galloprovincialis co-cultivated at the same aquaculture site was carried out using pyrosequencing. Bacterial communities associated with bivalve tissues (hemolymph and digestive gland) were significantly different from those of seawater, and were dominated by relatively few genera such as Vibrio and Pseudoalteromonas. In general, Vibrio accounted for a larger fraction of the microbiota in C. gigas (on average 1.7-fold in the haemolymph) compared to M. galloprovincialis, suggesting that C. gigas may provide better conditions for survival for these bacteria, including potential pathogenic species such as V. aestuarianus. Vibrios appeared to be important members of C. gigas and M. galloprovincialis microbiota and might play a contrasting role in health and disease of bivalve species. Accordingly, microbiome analyses performed on bivalve specimens subjected to commercial depuration highlighted the ineffectiveness of such practice in removing Vibrio species from bivalve tissues.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| | - L Stagnaro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Grande
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - G Tassistro
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - L Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - C Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
27
|
Karunasagar I, Maiti B, Kumar BK. Molecular Methods to Study Vibrio parahaemolyticus and Vibrio vulnificus From Atypical Environments. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Federici S, Serrazanetti DI, Guerzoni ME, Campana R, Ciandrini E, Baffone W, Gianotti A. Development of a rapid PCR protocol to detect Vibrio parahaemolyticus in clams. Journal of Food Science and Technology 2017; 55:749-759. [PMID: 29391640 DOI: 10.1007/s13197-017-2986-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 11/25/2022]
Abstract
Vibrio parahaemolyticus is part of the natural microflora of estuarine and coastal marine waters and can be also present in seafood, especially shellfish and bivalve molluscs. In this study we compared the reference cultural method ISO 6887-3 with two molecular methods, multiplex PCR and real-time PCR, for the detection of two distinct genetic markers (tlh species-specific gene and tdh virulence gene) of V. parahaemolyticus in bivalve mollusc. The analyses were performed on clams inoculated with V. parahaemolyticus ATCC 43996 at T0 and after a 3 and 6 h of pre-enrichment in alkaline saline peptone water. Counts on agar plates were largely inaccurate, probably due to other Vibrio species grown on the TCBS selective agar. Multiplex PCR assays, performed using primers pairs for tdh and tlh genes, showed a detection limit of 104 CFU/g of shell stock within 6 h of pre-enrichment, respecting however the action level indicated by the National Seafood Sanitation Program guideline. Detection by tdh gene in real-time PCR reached the definitely highest sensitivity in shorter times, 101 CFU/g after 3 h of pre-enrichment, while the sensitivity for the tlh gene was not promising, detecting between 105 and 106 CFU/g after 6 h of pre-enrichment. Our findings provide a rapid routine method of detection of V. parahaemolyticus based on tdh gene by real-time PCR for commercial seafood analysis to identify the risk of gastrointestinal diseases.
Collapse
Affiliation(s)
- Sara Federici
- 1Department of Biomolecular Sciences, Division of Toxicological, Hygienic and Environmental Sciences, University of Urbino "Carlo Bo", Via S. Chiara 27, 61029 Urbino, Italy
| | - Diana I Serrazanetti
- 2Inter-departmental Centre for Industrial Agri-Food Research, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - M Elisabetta Guerzoni
- 3Department of Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Raffaella Campana
- 1Department of Biomolecular Sciences, Division of Toxicological, Hygienic and Environmental Sciences, University of Urbino "Carlo Bo", Via S. Chiara 27, 61029 Urbino, Italy
| | - Eleonora Ciandrini
- 1Department of Biomolecular Sciences, Division of Toxicological, Hygienic and Environmental Sciences, University of Urbino "Carlo Bo", Via S. Chiara 27, 61029 Urbino, Italy
| | - Wally Baffone
- 1Department of Biomolecular Sciences, Division of Toxicological, Hygienic and Environmental Sciences, University of Urbino "Carlo Bo", Via S. Chiara 27, 61029 Urbino, Italy
| | - Andrea Gianotti
- 2Inter-departmental Centre for Industrial Agri-Food Research, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy.,3Department of Food Science, Alma Mater Studiorum, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy.,4Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), Department of Agricultural and Food Science, Alma Mater Studiorum, Università di Bologna, Via Fanin 50, 40127 Bologna, Italy.,Unità Organizzativa di Cesena, Piazza Goidanich 60, Cesena, FC Italy
| |
Collapse
|
29
|
Schwartz K, Kukuc C, Bier N, Taureck K, Hammerl JA, Strauch E. Diversity of Vibrio navarrensis Revealed by Genomic Comparison: Veterinary Isolates Are Related to Strains Associated with Human Illness and Sewage Isolates While Seawater Strains Are More Distant. Front Microbiol 2017; 8:1717. [PMID: 28932221 PMCID: PMC5592226 DOI: 10.3389/fmicb.2017.01717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022] Open
Abstract
Strains of Vibrio navarrensis are present in aquatic environments like seawater, rivers, and sewage. Recently, strains of this species were identified in human clinical specimens. In this study, V. navarrensis strains isolated from livestock in Germany were characterized that were found in aborted fetuses and/or placentas after miscarriages. The veterinary strains were analyzed using phenotypical and genotypical methods and compared to isolates from marine environments of the Baltic Sea and North Sea. The investigated phenotypical traits were similar in all German strains. Whole genome sequencing (WGS) was used to evaluate a phylogenetic relationship by performing a single nucleotide polymorphism (SNP) analysis. For the SNP analysis, WGS data of two American human pathogenic strains and two Spanish environmental isolates from sewage were included. A phylogenetic analysis of concatenated sequences of five protein-coding housekeeping genes (gyrB, pyrH, recA, atpA, and rpoB), was additionally performed. Both phylogenetic analyses reveal a greater distance of the environmental seawater strains to the other strains. The phylogenetic tree constructed from concatenated sequences of housekeeping genes places veterinary, human pathogenic and Spanish sewage strains into one cluster. Presence and absence of virulence-associated genes were investigated based on WGS data and confirmed by PCR. However, this analysis showed no clear pattern for the potentially pathogenic strains. The detection of V. navarrensis in human clinical specimens strongly suggests that this species should be regarded as a potential human pathogen. The identification of V. navarrensis strains in domestic animals implicates a zoonotic potential of this species. This could indicate a potential threat for humans, as according to the “One Health” concept, human, animal, and environmental health are linked. Future studies are necessary to search for reservoirs of these bacteria in the environment and/or in living organisms.
Collapse
Affiliation(s)
- Keike Schwartz
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Cindy Kukuc
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Nadja Bier
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Karin Taureck
- Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen SachsenDresden, Germany
| | - Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Eckhard Strauch
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| |
Collapse
|
30
|
Eschbach E, Martin A, Huhn J, Seidel C, Heuer R, Schumacher JH, Ulrich S, Axe JO, Konietzny A, Strauch E, Oberheitmann B. Detection of enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus: performance of real-time PCR kits in an interlaboratory study. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2844-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Parveen S, Jahncke M, Elmahdi S, Crocker H, Bowers J, White C, Gray S, Morris AC, Brohawn K. High Salinity Relaying to Reduce Vibrio parahaemolyticus and Vibrio vulnificus in Chesapeake Bay Oysters (Crassostrea virginica). J Food Sci 2017; 82:484-491. [PMID: 28099766 DOI: 10.1111/1750-3841.13584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/01/2022]
Abstract
Cases of Vibrio infections in the United States have tripled from 1996 to 2009 and these infections are most often associated with the consumption of seafood, particularly oysters (Crassostrea virginica). Information is needed on how to reduce numbers of Vibrio parahaemolyticus and Vibrio vulnificus in bi-valve molluscan shellfish (for example, oysters). The purpose of this study was to evaluate the effectiveness of high salinity relaying or treatment in recirculating aquaculture systems (RASs) as methods to reduce the abundance of V. parahaemolyticus and V. vulnificus in oysters. For relaying field trials, oysters were collected from approved harvest waters, temperature abused outside under a tarp for 4 h, and then transferred to high (29 to 33 ppt.) and moderate (12 to 19 ppt.) salinities. For RAS treatment trial, oysters were transferred to 32 to 34 ppt. salinity at 15 °C. After 7, 14, 21, and in some instances 28 d, oysters were collected and analyzed for V. parahaemolyticus and V. vulnificus levels using multiplex real-time PCR. Initial levels of V. parahaemolyticus and V. vulnificus ranged from 3.70 to 5.64 log10 MPN/g, and were reduced by 2 to 5 logs after 21 to 28 d in high salinity water (29 to 34 ppt.). Oyster mortalities averaged 4% or less, and did not exceed 7%. Relaying of oysters to high salinity field sites or transfer to high salinity RAS tanks was more effective in reducing V. vulnificus compared with V. parahaemolyticus. These results suggest that high salinity relaying of oysters is more effective in reducing V. vulnificus than V. parahaemolyticus in the oyster species used in this study.
Collapse
Affiliation(s)
- Salina Parveen
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, U.S.A
| | - Michael Jahncke
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, Hampton, VA, 23669, U.S.A
| | - Sara Elmahdi
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, U.S.A
| | - Helen Crocker
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, Hampton, VA, 23669, U.S.A
| | - John Bowers
- U.S. FDA, Center for Food Safety and Applied Nutrition, College Park, MD, 20740, U.S.A
| | - Chanelle White
- Univ. of Maryland Eastern Shore, Princess Anne, MD, 21853, U.S.A
| | - Stephanie Gray
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, Hampton, VA, 23669, U.S.A
| | - Amanda C Morris
- Virginia Tech., Virginia Seafood Agricultural Research and Extension Center, Hampton, VA, 23669, U.S.A
| | - Kathy Brohawn
- Maryland Dept. of the Environment, Baltimore, MD, 21230, U.S.A
| |
Collapse
|
32
|
Gdoura M, Sellami H, Nasfi H, Trabelsi R, Mansour S, Attia T, Nsaibia S, Vallaeys T, Gdoura R, Siala M. Molecular Detection of the Three Major Pathogenic Vibrio Species from Seafood Products and Sediments in Tunisia Using Real-Time PCR. J Food Prot 2016; 79:2086-2094. [PMID: 28221954 DOI: 10.4315/0362-028x.jfp-16-205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vibrio spp. have emerged as a serious threat to human health worldwide. V. parahaemolyticus , V. cholerae , and V. vulnificus pose a considerable public health risk in Tunisia because they cause sporadic and epidemic foodborne infections associated with the consumption of raw or undercooked contaminated seafood. More recently, toxR-positive V. alginolyticus was also reported to be a potential source of contaminated seafood. A total of 247 samples, including 113 fishes ( Labrus viridis , Penaeus kerathurus , Diplodus annularis , Diplodus sparaillon , Scorparna porcus , Sarpa salpa , Dentex dentex , Scorparna scrofa , Sardinella aurita , Trachurus trachurus , Synodus saurus , Pagellus erythrinus , and Metapenaeus monoceros ), 83 clams ( Ruditapes decussatus species), 30 seawater samples, and 21 sediment samples were analyzed using traditional culture methods (ISO/TS 21872-1; International Organization for Standardization 2007) and a conventional PCR method for Vibrio spp. IDENTIFICATION A rapid, sensitive, and highly reproducible real-time PCR assay was developed to detect the three major Vibrio spp. pathogenic for humans in Tunisian seafood products and sediments. A conventional culture method found 102 (41.3%) of 247 analyzed samples positive for Vibrio spp.; a conventional PCR method found 126 (51%) of the 247 samples positive. Real-time PCR assay found 126 (51.1%) samples positive; V. alginolyticus toxR was the most common, found in 99 (78.57%) of samples, followed by V. parahaemolyticus in 26 (20.63%) and V. cholerae in 1 (0.7%). All culture-positive samples were PCR positive. However, 24 samples that were positive by conventional PCR and real-time PCR were culture negative. Our findings indicate that retail seafood is commonly contaminated with Vibrio spp. and presents a potential risk to human health in Tunisia. These data also indicate that real-time PCR can provide sensitive species-specific detection of Vibrio spp. in seafood without prior isolation and characterization of the bacteria by traditional microbiological methods.
Collapse
Affiliation(s)
- Morsi Gdoura
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia.,Société La cinquième des produits de mer SARL, 3011 Sfax, Tunisia
| | - Hanen Sellami
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia
| | - Hanen Nasfi
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia.,Ecologie des Systèmes Marins Côtiers, UMR 5119, Université de Montpellier 2, Place Eugène Bataillon, Montpellier cedex 5 34095, France
| | - Rahma Trabelsi
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia
| | - Sabeur Mansour
- Agence Nationale de Contrôle Sanitaire et Environnemental des Produits (Ministère de la santé), 2 Rue Ibn Nadim, Montplaisir, 1073 Tunis, Tunisia
| | - Touraya Attia
- L'Observatoire National des Maladies Nouvelles et Émergentes (ONMNE), Ministère de la santé, Tunis 1006, Tunisia
| | - Siwar Nsaibia
- Laboratoire Régional de Santé Publique de Nabeul, 8, Rue Bab Ezzaouia, Nabeul 8000, Tunisia
| | - Tatiana Vallaeys
- Ecologie des Systèmes Marins Côtiers, UMR 5119, Université de Montpellier 2, Place Eugène Bataillon, Montpellier cedex 5 34095, France
| | - Radhouane Gdoura
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia
| | - Mariam Siala
- Unité de recherche Toxicologie-Microbiologie Environnementale et Santé (UR11ES70), Faculté des Sciences de Sfax, Universitéde Sfax, 3000 Sfax, Tunisia
| |
Collapse
|
33
|
Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 2016; 113:E5062-71. [PMID: 27503882 DOI: 10.1073/pnas.1609157113] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Climate change is having a dramatic impact on marine animal and plant communities but little is known of its influence on marine prokaryotes, which represent the largest living biomass in the world oceans and play a fundamental role in maintaining life on our planet. In this study, for the first time to our knowledge, experimental evidence is provided on the link between multidecadal climatic variability in the temperate North Atlantic and the presence and spread of an important group of marine prokaryotes, the vibrios, which are responsible for several infections in both humans and animals. Using archived formalin-preserved plankton samples collected by the Continuous Plankton Recorder survey over the past half-century (1958-2011), we assessed retrospectively the relative abundance of vibrios, including human pathogens, in nine areas of the North Atlantic and North Sea and showed correlation with climate and plankton changes. Generalized additive models revealed that long-term increase in Vibrio abundance is promoted by increasing sea surface temperatures (up to ∼1.5 °C over the past 54 y) and is positively correlated with the Northern Hemisphere Temperature (NHT) and Atlantic Multidecadal Oscillation (AMO) climatic indices (P < 0.001). Such increases are associated with an unprecedented occurrence of environmentally acquired Vibrio infections in the human population of Northern Europe and the Atlantic coast of the United States in recent years.
Collapse
|
34
|
Effects of Intertidal Harvest Practices on Levels of Vibrio parahaemolyticus and Vibrio vulnificus Bacteria in Oysters. Appl Environ Microbiol 2016; 82:4517-4522. [PMID: 27208133 DOI: 10.1128/aem.00721-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vibrio parahaemolyticus and Vibrio vulnificus can grow rapidly in shellfish subjected to ambient air conditions, such as during intertidal exposure. In this study, levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and total V. vulnificus were determined in oysters collected from two study locations where intertidal harvest practices are common. Samples were collected directly off intertidal flats, after exposure (ambient air [Washington State] or refrigerated [New Jersey]), and after reimmersion by natural tidal cycles. Samples were processed using a most-probable-number (MPN) real-time PCR method for total and pathogenic V. parahaemolyticus or V. vulnificus In Washington State, the mean levels of V. parahaemolyticus increased 1.38 log MPN/g following intertidal exposure and dropped 1.41 log MPN/g after reimmersion for 1 day, but the levels were dependent upon the container type utilized. Pathogenic V. parahaemolyticus levels followed a similar trend. However, V. vulnificus levels increased 0.10 log MPN/g during intertidal exposure in Washington but decreased by >1 log MPN/g after reimmersion. In New Jersey, initial levels of all vibrios studied were not significantly altered during the refrigerated sorting and containerizing process. However, there was an increase in levels after the first day of reimmersion by 0.79, 0.72, 0.92, and 0.71 log MPN/g for total, tdh(+) and trh(+) V. parahaemolyticus, and V. vulnificus, respectively. The levels of all targets decreased to those similar to background after a second day of reimmersion. These data indicate that the intertidal harvest and handling practices for oysters that were studied in Washington and New Jersey do not increase the risk of illness from V. parahaemolyticus or V. vulnificus IMPORTANCE Vibrio parahaemolyticus and Vibrio vulnificus are the leading causes of seafood-associated infectious morbidity and mortality in the United States. Vibrio spp. can grow rapidly in shellfish subjected to ambient air conditions, such as during periods of intertidal exposure. When oysters are submersed with the incoming tide, the vibrios can be purged. However, data on the rates of increase and purging during intertidal harvest are scarce, which limits the accuracy of risk assessments. The objective of this study was to help fill these data gaps by determining the levels of total and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus and V. vulnificus in oysters from two locations where intertidal harvest practices are common, using the current industry practices. The data generated provide insight into the responses of Vibrio spp. to relevant practices of the industry and public health, which can be incorporated into risk management decisions.
Collapse
|
35
|
Rapid and Sensitive Detection of Vibrio parahaemolyticus and Vibrio vulnificus by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique. Molecules 2016; 21:E111. [PMID: 26797596 PMCID: PMC6273463 DOI: 10.3390/molecules21010111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/02/2023] Open
Abstract
Vibrio parahaemolyticus and Vibrio vulnificus are two marine seafood-borne pathogens causing severe illnesses in humans and aquatic animals. In this study, a recently developed novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully developed and evaluated for simultaneous detection of V. parahaemolyticus and V. vulnificus strains in only a single reaction. Two MERT-LAMP primer sets were designed to specifically target toxR gene of V. parahaemolyticus and rpoS gene of V. vulnificus. The MERT-LAMP reactions were conducted at 62 °C, and the positive results were produced in as short as 19 min with the genomic DNA templates extracted from the V. parahaemolyticus and V. vulnificus strains. The two target pathogens present in the same sample could be simultaneously detected and correctly differentiated based on distinct fluorescence curves in a real-time format. The sensitivity of MERT-LAMP assay was 250 fg and 125 fg DNA per reaction with genomic templates of V. parahaemolyticus and V. vulnificus strains, which was in conformity with conventional LAMP detection. Compared with PCR-based techniques, the MERT-LAMP technology was 100- and 10-fold more sensitive than that of PCR and qPCR methods. Moreover, the limit of detection of MERT-LAMP approach for V. parahaemolyticus isolates and V. vulnificus isolates detection in artificially-contaminated oyster samples was 92 CFU and 83 CFU per reaction. In conclusion, the MERT-LAMP assay presented here was a rapid, specific, and sensitive tool for the detection of V. parahaemolyticus and V. vulnificus, and could be adopted for simultaneous screening of V. parahaemolyticus and V. vulnificus in a wide variety of samples.
Collapse
|
36
|
Garrido-Maestu A, Lozano-León A, Rodríguez-Souto RR, Vieites-Maneiro R, Chapela MJ, Cabado AG. Presence of pathogenic Vibrio species in fresh mussels harvested in the southern Rias of Galicia (NW Spain). Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Kinsey TP, Lydon KA, Bowers JC, Jones JL. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels. J Food Prot 2015; 78:1574-80. [PMID: 26219373 DOI: 10.4315/0362-028x.jfp-15-017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P < 0.001) from initial levels. After 7 days of resubmersion, Vv and total Vp levels (excluding total Vp in oysters stored for 5 h) were not significantly different (P < 0.1) from levels in background oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.
Collapse
Affiliation(s)
- Thomas P Kinsey
- Interstate Shellfish Sanitation Conference, Columbia, South Carolina 29223, USA; U.S. Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama 36528, USA
| | - Keri A Lydon
- U.S. Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama 36528, USA; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - John C Bowers
- U.S. Food and Drug Administration, Biostatistics and Bioinformatics Staff, Center for Food Safety and Applied Nutrition, College Park, Maryland 20740, USA
| | - Jessica L Jones
- U.S. Food and Drug Administration, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, Dauphin Island, Alabama 36528, USA.
| |
Collapse
|
38
|
Sediment and vegetation as reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of Mexico. Appl Environ Microbiol 2015; 81:2489-94. [PMID: 25636843 DOI: 10.1128/aem.03243-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Vibrio vulnificus occurs naturally in estuarine habitats and is readily cultured from water and oysters under warm conditions but infrequently at ambient conditions of <15°C. The presence of V. vulnificus in other habitats, such as sediments and aquatic vegetation, has been explored much less frequently. This study investigated the ecology of V. vulnificus in water by culture and quantitative PCR (qPCR) and in sediment, oysters, and aquatic vegetation by culture. V. vulnificus samples were taken from five sites around Tampa Bay, FL. Levels determined by qPCR and culture were significantly correlated (P = 0.0006; r = 0.352); however, V. vulnificus was detected significantly more frequently by qPCR (85% of all samples) compared to culture (43%). Culturable V. vulnificus bacteria were recovered most frequently from oyster samples (70%), followed by vegetation and sediment (∼50%) and water (43%). Water temperature, which ranged from 18.5 to 33.4°C, was positively correlated with V. vulnificus concentrations in all matrices but sediments. Salinity, which ranged from 1 to 35 ppt, was negatively correlated with V. vulnificus levels in water and sediments but not in other matrices. Significant interaction effects between matrix and temperature support the hypothesis that temperature affects V. vulnificus concentrations differently in different matrices and that sediment habitats may serve as seasonal reservoirs for V. vulnificus. V. vulnificus levels in vegetation have not been previously measured and reveal an additional habitat for this autochthonous estuarine bacterium.
Collapse
|
39
|
Abstract
Bacteria associated with the Eastern oysters (Crassostrea virginica) native to Apalachicola Bay, FL, were investigated using 16S rRNA gene amplicon metagenomic sequencing which revealed that the oyster microbiome was predominated by Cyanobacteria and Proteobacteria. We also found that the oyster tissues were predominated by the pathogenic and symbiotic Photobacterium spp. (formerly known as Vibrio damselae).
Collapse
|
40
|
Kim JY, Lee JL. Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:2807-2817. [PMID: 24752974 PMCID: PMC4368387 DOI: 10.1002/jsfa.6699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND This study describes the first multiplex real-time polymerase chain reaction assay developed, as a multipurpose assessment, for the simultaneous quantification of total bacteria and three Vibrio spp. (V. parahaemolyticus, V. vulnificus and V. anguillarum) in fish and seawater. The consumption of raw finfish as sushi or sashimi has been increasing the chance of Vibrio outbreaks in consumers. Freshness and quality of fishery products also depend on the total bacterial populations present. RESULTS The detection sensitivity of the specific targets for the multiplex assay was 1 CFU mL⁻¹ in pure culture and seawater, and 10 CFU g⁻¹ in fish. While total bacterial counts by the multiplex assay were similar to those obtained by cultural methods, the levels of Vibrio detected by the multiplex assay were generally higher than by cultural methods of the same populations. Among the natural samples without Vibrio spp. inoculation, eight out of 10 seawater and three out of 20 fish samples were determined to contain Vibrio spp. CONCLUSION Our data demonstrate that this multiplex assay could be useful for the rapid detection and quantification of Vibrio spp. and total bacteria as a multipurpose tool for surveillance of fish and water quality as well as diagnostic method.
Collapse
Affiliation(s)
- Ji Yeun Kim
- Department of Human Ecology, Food Science, College of Agriculture and Related Sciences, Delaware State UniversityDover, DE 19901, USA
| | - Jung-Lim Lee
- Department of Human Ecology, Food Science, College of Agriculture and Related Sciences, Delaware State UniversityDover, DE 19901, USA
| |
Collapse
|
41
|
González-Castillo A, Balboa S, Romalde JL, Gomez-Gil B. Vibrio crosai sp. nov., isolated from a cultured oyster Crassostrea gigas. Antonie van Leeuwenhoek 2014; 106:457-63. [PMID: 24973134 DOI: 10.1007/s10482-014-0214-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
A motile, facultative anaerobic, marine bacterial isolate (CAIM 1437(T)) was obtained from a cultured oyster (Crassostrea gigas) in Sonora, México. The strain was studied by a phylogenetic analysis based on sequences of the 16S rRNA and five housekeeping genes, i.e. ftsZ, gapA, pyrH, recA, and topA. Comparison of the almost-complete 16S rRNA gene sequence with those of other type strains of the genus Vibrio showed a close relationship with the type strains of Vibrio orientalis and Vibrio rotiferianus, with similarity values ranging from 98.4 to 98.3 %, respectively. MLSA placed this strain within the Orientalis clade. The DNA-DNA hybridization value of strain CAIM 1437(T) with V. orientalis was 59 % and with V. rotiferianus 55 %. The DNA G+C content was determined to be 45.6 mol %. Phenotypic characteristics also showed differences with the species analysed. The results presented here support the description of a novel species, for which the name Vibrio crosai sp. nov. is proposed, with CAIM 1437(T) (= DSM 27145(T)) as the type strain.
Collapse
|
42
|
Thomas JC, Wafula D, Chauhan A, Green SJ, Gragg R, Jagoe C. A survey of deepwater horizon (DWH) oil-degrading bacteria from the Eastern oyster biome and its surrounding environment. Front Microbiol 2014; 5:149. [PMID: 24782841 PMCID: PMC3988384 DOI: 10.3389/fmicb.2014.00149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/20/2014] [Indexed: 12/03/2022] Open
Abstract
The deepwater horizon (DWH) accident led to the release of an estimated 794,936,474 L of crude oil into the northern Gulf of Mexico over an 85 day period in 2010, resulting in the contamination of the Gulf of Mexico waters, sediments, permeable beach sands, coastal wetlands, and marine life. This study examines the potential response of the Eastern oyster’s microbiome to hydrocarbon contamination and compares it with the bacterial community responses observed from the overlaying water column (WC) and the oyster bed sediments. For this purpose, microcosms seeded with DWH crude oil were established and inoculated separately with oyster tissue (OT), mantle fluid (MF), overlaying WC, and sediments (S) collected from Apalachicola Bay, FL, USA. Shifts in the microbial community structure in the amended microcosms was monitored over a 3-month period using automated ribosomal intergenic spacer region analysis, which showed that the microbiome of the OT and MF were more similar to the sediment communities than those present in the overlaying WC. This pattern remained largely consistent, regardless of the concentration of crude oil or the enrichment period. Additionally, 72 oil-degrading bacteria were isolated from the microcosms containing OT, MF, WC, and S and identified using 16S ribosomal RNA gene sequencing and compared by principal component analysis, which clearly showed that the WC isolates were different to those identified from the sediment. Conversely, the OT and MF isolates clustered together; a strong indication that the oyster microbiome is uniquely structured relative to its surrounding environment. When selected isolates from the OT, MF, WC, and S were assessed for their oil-degrading potential, we found that the DWH oil was biodegraded between 12 and 42%, under the existing conditions.
Collapse
Affiliation(s)
- Jesse C Thomas
- Environmental Biotechnology Laboratory, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA
| | - Denis Wafula
- Environmental Biotechnology Laboratory, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA
| | - Ashvini Chauhan
- Environmental Biotechnology Laboratory, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA
| | - Stefan J Green
- DNA Services Facility, University of Illinois at Chicago Chicago, IL, USA ; Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Richard Gragg
- Environmental Biotechnology Laboratory, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA
| | - Charles Jagoe
- Environmental Biotechnology Laboratory, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA ; NOAA Environmental Cooperative Science Center, School of the Environment, Florida Agricultural and Mechanical University Tallahassee, FL, USA
| |
Collapse
|
43
|
Zeng J, Wei H, Zhang L, Liu X, Zhang H, Cheng J, Ma D, Zhang X, Fu P, Liu L. Rapid detection of Vibrio parahaemolyticus in raw oysters using immunomagnetic separation combined with loop-mediated isothermal amplification. Int J Food Microbiol 2014; 174:123-8. [DOI: 10.1016/j.ijfoodmicro.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/16/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
44
|
Garrido-Maestu A, Chapela MJ, Peñaranda E, Vieites JM, Cabado AG. In-house validation of novel multiplex real-time PCR gene combination for the simultaneous detection of the main human pathogenic vibrios (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus). Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
45
|
Givens C, Bowers J, DePaola A, Hollibaugh J, Jones J. Occurrence and distribution of Vibrio vulnificus
and Vibrio parahaemolyticus
- potential roles for fish, oyster, sediment and water. Lett Appl Microbiol 2014; 58:503-10. [DOI: 10.1111/lam.12226] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C.E. Givens
- Department of Marine Science; University of Georgia; Athens GA USA
| | - J.C. Bowers
- Division of Public Health Informatics and Analytics; FDA Center for Food Safety and Applied Nutrition; College Park MD USA
| | - A. DePaola
- FDA Division of Seafood Science and Technology; Gulf Coast Seafood Laboratory; Dauphin Island AL USA
| | - J.T. Hollibaugh
- Department of Marine Science; University of Georgia; Athens GA USA
| | - J.L. Jones
- FDA Division of Seafood Science and Technology; Gulf Coast Seafood Laboratory; Dauphin Island AL USA
| |
Collapse
|
46
|
Avendaño-Herrera R, Maldonado JP, Tapia-Cammas D, Feijóo CG, Calleja F, Toranzo AE. PCR protocol for detection of Vibrio ordalii by amplification of the vohB (hemolysin) gene. DISEASES OF AQUATIC ORGANISMS 2014; 107:223-234. [PMID: 24429473 DOI: 10.3354/dao02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Vibrio ordalii is the causative agent of atypical vibriosis and has the potential to cause severe losses in salmonid aquaculture. To prevent and control outbreaks, a rapid, reproducible, sensitive, and effective diagnostic method is needed. We evaluated a new conventional polymerase chain reaction (PCR) and real-time PCR (qPCR) protocol using a primer set (VohB_Fw-VohB_Rv) designed to amplify a 112 bp fragment flanking the vohB gene (coding for hemolysin production), against 24 V. ordalii strains isolated from different fish species, the V. ordalii type strain, and 42 representative related and unrelated bacterial species. The primer set was species-specific, recognizing all V. ordalii strains evaluated, with no cross-reaction with the other bacterial species. A sensitivity of 103 copies of the vohB gene was obtained with a standard curve. When the VohB_Fw-VohB_Rv qPCR protocol was applied to Atlantic salmon seeded tissues (kidney, liver, spleen, and muscle), the detection limit ranged from 5.27 × 102 to 4.13 × 103 V. ordalii CFU ml-1, i.e. 62 to 145 copies of the vohB gene, using the previously calculated standard curve. The conventional PCR also detected V. ordalii, but the total reaction time was 1 h longer. When the qPCR protocol was applied to naturally infected cage-cultured Atlantic salmon samples, 5 of 8 fish tested positive for V. ordalii, but only one of them was diagnosed as positive by direct cultivation on agar. We conclude that the PCR protocol evaluated is fast, specific, and sensitive enough to detect V. ordalii in infected tissues and is an important tool for secure diagnosis of atypical vibriosis, and is therefore helpful for the control of the disease through the prompt detection within fish populations.
Collapse
Affiliation(s)
- R Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | | | | | | | | | | |
Collapse
|
47
|
Application of a novel pathogenicity marker in a multiplex real-time PCR method to assess total and pathogenic Vibrio vulnificus in food and environmental samples. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Development of TaqMan real-time PCR assays for monitoring Vibrio harveyi infection and a plasmid harbored by virulent strains in European abalone Haliotis tuberculata aquaculture. AQUACULTURE 2013. [DOI: 10.1016/j.aquaculture.2013.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Staley C, Chase E, Harwood VJ. Detection and differentiation of Vibrio vulnificus and V. sinaloensis in water and oysters of a Gulf of Mexico estuary. Environ Microbiol 2012; 15:623-33. [PMID: 23240813 DOI: 10.1111/1462-2920.12045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 11/28/2022]
Abstract
Vibrio vulnificus is a potentially lethal human pathogen that occurs naturally in estuarine waters and shellfish. Vibrio vulnificus was quantified in water and oysters from Florida's Gulf Coast by plating on mCPC agar, enrichment and plating, and quantitative PCR (qPCR). Vibrio vulnificus was detected in 19%, 29%, and 97% of samples respectively by direct plating, qPCR, and enrichment. Only 8% of typical colonies from direct plating were confirmed by PCR for vvhA; others yielded no or atypically sized amplicons. Sequencing of the 16S rDNA of 16 vvhA-negative isolates with colony morphology typical of V. vulnificus identified 75% as V. sinaloensis. In vitro growth curves showed that V. sinaloensis grew more rapidly than V. vulnificus in seawater at temperatures ≤ 30°C. In contrast, the growth rate of V. vulnificus in alkaline peptone water was greater than that of V. sinaloensis, suggesting that these species can outcompete one another under conditions that are relevant to environmental parameters or regulatory monitoring regimes respectively. The virulence potential and ecology of V. sinaloensis are poorly understood; however, its phenotypic resemblance to V. vulnificus and the possibility that it could outcompete the pathogen in warm, estuarine waters argue for the need for a better understanding of this newly described Vibrio species.
Collapse
Affiliation(s)
- Christopher Staley
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | |
Collapse
|
50
|
Kim HJ, Lee HJ, Lee KH, Cho JC. Simultaneous detection of Pathogenic Vibrio species using multiplex real-time PCR. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|