1
|
Manna T, De A, Nurjamal K, Husain SM. Asymmetric synthesis of (+)-teratosphaerone B, its non-natural analogue and (+)-xylarenone using an ene- and naphthol reductase cascade. Org Biomol Chem 2022; 20:7410-7414. [PMID: 36093846 DOI: 10.1039/d2ob01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a one-pot bienzymatic cascade containing an ene and a naphthol reductase is developed. It is applied for the synthesis of (+)-(3R,4R)-teratosphaerone B, its non-natural regioisomer in both cis- and trans-forms and (+)-xylarenone by the reduction of chemically synthesized naphthoquinone precursors in high yields (76-92%) and excellent ee (>99%). This work implies similar biosynthetic steps in the formation of the synthesized natural products.
Collapse
Affiliation(s)
- Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Arijit De
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Khondekar Nurjamal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
2
|
Wu S, Wang B, Yan H. Semi-rational protein engineering of a novel ene-reductase from Galdieria sulphuraria for asymmetric reduction of (R)-carvone and ketoisophorone. Biotechnol Appl Biochem 2022; 70:697-706. [PMID: 35906824 DOI: 10.1002/bab.2391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022]
Abstract
Asymmetric reduction of (R)-carvone and ketoisophorone by an engineered ene-reductase from Galdieria sulphuraria (GsOYE) combined with glucose dehydrogenase for NADPH regeneration were studied. A semi-rational protein engineering was used to enhance the activity and selectivity of GsOYE. Upon the sequence alignment and molecular docking results, two amino acid residues at positions 66 and 270 were selected as saturation mutation sites. Finally, a single substitution variant of GsOYE-N270A with complete conversion (100%) and diastereoselectivity (dep >99%) for reduction of (R)-carvone and a double substitution variant GsOYE-Y66P/N270H with improved stereoselectivity for reduction of ketoisophorone were obtained. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shijin Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bijiao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Hongde Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,School of Chemistry and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, China
| |
Collapse
|
3
|
Hagiwara H. Introduction of Chiral Centers to α- and/or β-Positions of Carbonyl Groups by Biocatalytic Asymmetric Reduction of α,β-Unsaturated Carbonyl Compounds. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221099054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biocatalytic asymmetric reductions of acyclic and cyclic α,β-unsaturated carbonyl compounds are favorable protocols for introduction of chiral centers to α- and/or β-positions of the carbonyl groups. Representative biocatalytic reductions of electron deficient olefins are compiled from a synthetic point of view according to compound types from the papers in 2012 to early 2022. Applications to syntheses of some enantiomericaly enriched perfumery ingredients are presented to show the feasibility of the biocatalytic reductions.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, 8050, 2-Nocho, Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
4
|
Křen V, Kroutil W, Hall M. A Career in Biocatalysis: Kurt Faber. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir Křen
- Institute of Microbiology, Czech Academy of Sciences, Laboratory of Biotransformation, 14220 Prague, Czech Republic
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
- BioTechMed, University of Graz, 8010 Graz, Austria
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Enantioselective liquid-liquid extraction of tryptophan enantiomers by a recyclable aqueous biphasic system based on stimuli-responsive polymers. J Chromatogr A 2021; 1656:462532. [PMID: 34525428 DOI: 10.1016/j.chroma.2021.462532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
The hydrophobic organic solvents/water biphasic system had been always used in the traditional enantioselective liquid-liquid extraction (ELLE). In recent years, aqueous biphasic systems (ABSs) are considered as a promising method used in the ELLE. In the present work, a recyclable ABS composed of a temperature-responsive polymer poly(MAH-β-CD-co-NIPAAm) (PN-CD) and a pH-responsive polymer poly(AA-DMAEMA-BMA) (PADB) was employed in the enantioseparation of tryptophan enantiomers. The polymer PN-CD acted as not only the phase-forming component but also the chiral selector, which can be recycled by changing the temperature. The polymer PADB can be used as the phase-forming component, which can also be recycled by adjusting the pH. The phase behaviors of this PN-CD/PADB ABS had been studied. The influencing parameters were studied for this chiral separation process, including the polymer concentration, initial tryptophan concentration, extraction temperature, and system pH. The maximum separation factor (α) of 1.42 was obtained by one-step extraction under the optimal conditions. Meanwhile, the distribution coefficients of L-tryptophan (L-Trp) and D-tryptophan (D-Trp) were 2.79 and 1.96, respectively. This study develops a green and sustainable strategy for enantioseparation by using the ELLE.
Collapse
|
6
|
Horita S, Kataoka M, Kitamura N, Miyakawa T, Ohtsuka J, Maejima Y, Shimomura K, Nagata K, Shimizu S, Tanokura M. Structural basis of different substrate preferences of two old yellow enzymes from yeasts in the asymmetric reduction of enone compounds. Biosci Biotechnol Biochem 2018; 83:456-462. [PMID: 30445889 DOI: 10.1080/09168451.2018.1543014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Old yellow enzymes (OYEs) are potential targets of protein engineering for useful biocatalysts because of their excellent asymmetric reductions of enone compounds. Two OYEs from different yeast strains, Candida macedoniensis AKU4588 OYE (CmOYE) and Pichia sp. AKU4542 OYE (PsOYE), have a sequence identity of 46%, but show different substrate preferences; PsOYE shows 3.4-fold and 39-fold higher catalytic activities than CmOYE toward ketoisophorone and (4S)-phorenol, respectively. To gain insights into structural basis of their different substrate preferences, we have solved a crystal structure of PsOYE, and compared its catalytic site structure with that of CmOYE, revealing the catalytic pocket of PsOYE is wider than that of CmOYE due to different positions of Phe246 (PsOYE)/Phe250 (CmOYE) in static Loop 5. This study shows a significance of 3D structural information to explain the different substrate preferences of yeast OYEs which cannot be understood from their amino acid sequences. Abbreviations: OYE: Old yellow enzymes, CmOYE: Candida macedoniensis AKU4588 OYE, PsOYE: Pichia sp. AKU4542 OYE.
Collapse
Affiliation(s)
- Shoichiro Horita
- a Department of Applied Biologic al Chemistry , Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo , Japan.,b Department of Bioregulation and Pharmacological Medicine , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Michihiko Kataoka
- c Division of Applied Life Sciences , Graduate School of Life and Environmental Sciences, Osaka Prefecture University , Osaka , Japan
| | - Nahoko Kitamura
- d Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Takuya Miyakawa
- a Department of Applied Biologic al Chemistry , Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo , Japan
| | - Jun Ohtsuka
- a Department of Applied Biologic al Chemistry , Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo , Japan
| | - Yuko Maejima
- b Department of Bioregulation and Pharmacological Medicine , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Kenju Shimomura
- b Department of Bioregulation and Pharmacological Medicine , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Koji Nagata
- a Department of Applied Biologic al Chemistry , Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo , Japan
| | - Sakayu Shimizu
- d Division of Applied Life Sciences , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | - Masaru Tanokura
- a Department of Applied Biologic al Chemistry , Graduate School of Agricultural and Life Sciences, University of Tokyo , Tokyo , Japan
| |
Collapse
|
7
|
On the bi-enzymatic behaviour of Saccharomyces cerevisiae -mediated stereoselective biotransformation of 2,6,6-trimethylcyclohex-2-ene-1,4-dione. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Zilbeyaz K, Kurbanoglu EB, Kilic H. Preparation of Enantiomerically Pure (S)-(−)-1-(1′-naphthyl)-ethanol by the FungusAlternaria alternata. Chirality 2016; 28:669-73. [DOI: 10.1002/chir.22629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/14/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Kani Zilbeyaz
- Department of Chemistry; Agri Ibrahim Cecen University; Agri Turkey
| | | | | |
Collapse
|
9
|
Li B, Nie Y, Mu XQ, Xu Y. De novo construction of multi-enzyme system for one-pot deracemization of (R,S)-1-phenyl-1,2-ethanediol by stereoinversion of (S)-enantiomer to the corresponding counterpart. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Kataoka M, Miyakawa T, Shimizu S, Tanokura M. Enzymes useful for chiral compound synthesis: structural biology, directed evolution, and protein engineering for industrial use. Appl Microbiol Biotechnol 2016; 100:5747-57. [DOI: 10.1007/s00253-016-7603-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
11
|
Zhou X, Zhang R, Xu Y, Liang H, Jiang J, Xiao R. Coupled (R)-carbonyl reductase and glucose dehydrogenase catalyzes (R)-1-phenyl-1,2-ethanediol biosynthesis with excellent stereochemical selectivity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Horita S, Kataoka M, Kitamura N, Nakagawa T, Miyakawa T, Ohtsuka J, Nagata K, Shimizu S, Tanokura M. An engineered old yellow enzyme that enables efficient synthesis of (4R,6R)-Actinol in a one-pot reduction system. Chembiochem 2015; 16:440-5. [PMID: 25639703 DOI: 10.1002/cbic.201402555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 11/06/2022]
Abstract
(4R,6R)-Actinol can be stereo-selectively synthesized from ketoisophorone by a two-step conversion using a mixture of two enzymes: Candida macedoniensis old yellow enzyme (CmOYE) and Corynebacterium aquaticum (6R)-levodione reductase. However, (4S)-phorenol, an intermediate, accumulates because of the limited substrate range of CmOYE. To address this issue, we solved crystal structures of CmOYE in the presence and absence of a substrate analogue p-HBA, and introduced point mutations into the substrate-recognition loop. The most effective mutant (P295G) showed two- and 12-fold higher catalytic activities toward ketoisophorone and (4S)-phorenol, respectively, than the wild-type, and improved the yield of the two-step conversion from 67.2 to 90.1%. Our results demonstrate that the substrate range of an enzyme can be changed by introducing mutation(s) into a substrate-recognition loop. This method can be applied to the development of other favorable OYEs with different substrate preferences.
Collapse
Affiliation(s)
- Shoichiro Horita
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wada M, Yoshizumi A, Furukawa Y, Kawabata H, Ueda M, Takagi H, Nakamori S. Cloning and Overexpression of theExiguobacteriumsp. F42 Gene Encoding a New Short Chain Dehydrogenase, Which Catalyzes the Stereoselective Reduction of Ethyl 3-Oxo-3-(2-thienyl)propanoate to Ethyl (S)-3-Hydroxy-3-(2-thienyl)propanoate. Biosci Biotechnol Biochem 2014; 68:1481-8. [PMID: 15277752 DOI: 10.1271/bbb.68.1481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exiguobacterium sp. F42 was screened as a producer of an enzyme catalyzing the NADPH-dependent stereoselective reduction of ethyl 3-oxo-3-(2-thienyl)propanoate (KEES) to ethyl (S)-3-hydroxy-3-(2-thienyl)propanoate ((S)-HEES). (S)-HEES is a key intermediate for the synthesis of (S)-duloxetine, a potent inhibitor of the serotonin and norepinephrine uptake carriers. The responsible enzyme (KEES reductase) was partially purified, and the gene encoding KEES reductase was cloned and sequenced via an inverse PCR approach. Sequence analysis of the gene for KEES reductase revealed that the enzyme was a member of the short chain dehydrogenase/reductase family. The probable NADPH-interacting site and 3 catalytic residues (Ser-Tyr-Lys) were fully conserved. The gene was highly expressed in Escherichia coli, and the gene product was purified to homogeneity from the recombinant E. coli by simpler procedures than from the original host. The molecular mass of the purified enzyme was 27,500 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 55,000 as determined by gel filtration chromatography. Our results show that this enzyme can be used for the practical production of (S)-HEES.
Collapse
Affiliation(s)
- Masaru Wada
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Kenjyojima, Matsuoka-cho, Fukui 910-1195, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Isolation and characterization of a thermotolerant ene reductase from Geobacillus sp. 30 and its heterologous expression in Rhodococcus opacus. Appl Microbiol Biotechnol 2014; 98:5925-35. [PMID: 24927695 DOI: 10.1007/s00253-014-5668-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/04/2023]
Abstract
Rhodococcus opacus B-4 cells are adhesive to and even dispersible in water-immiscible hydrocarbons owing to their highly lipophilic nature. In this study, we focused on the high operational stability of thermophilic enzymes and applied them to a biocatalytic conversion in an organic reaction medium using R. opacus B-4 as a lipophilic capsule of enzymes to deliver them into the organic medium. A novel thermo- and organic-solvent-tolerant ene reductase, which can catalyze the enantioselective reduction of ketoisophorone to (6R)-levodione, was isolated from Geobacillus sp. 30, and the gene encoding the enzyme was heterologously expressed in R. opacus B-4. Another thermophilic enzyme which catalyzes NAD(+)-dependent dehydrogenation of cyclohexanol was identified from the gene-expression library of Thermus thermophilus and the gene was coexpressed in R. opacus B-4 for cofactor regeneration. While the recombinant cells were not viable in the mixture due to high reaction temperature, 634 mM of (6R)-levodione could be produced with an enantiopurity of 89.2 % ee by directly mixing the wet cells of the recombinant R. opacus with a mixture of ketoisophorone and cyclohexanol at 50 °C. The conversion rate observed with the heat-killed recombinant cells was considerably higher than that obtained with a cell-free enzyme solution, demonstrating that the accessibility between the substrates and enzymes could be improved by employing R. opacus cells as a lipophilic enzyme capsule. These results imply that a combination of thermophilic enzymes and lipophilic cells can be a promising approach for the biocatalytic production of water-insoluble chemicals.
Collapse
|
15
|
Daugherty AB, Govindarajan S, Lutz S. Improved biocatalysts from a synthetic circular permutation library of the flavin-dependent oxidoreductase old yellow enzyme. J Am Chem Soc 2013; 135:14425-32. [PMID: 23987134 DOI: 10.1021/ja4074886] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Members of the old yellow enzyme (OYE) family are widely used, effective biocatalysts for the stereoselective trans-hydrogenation of activated alkenes. To further expand their substrate scope and improve catalytic performance, we have applied a protein engineering strategy called circular permutation (CP) to enhance the function of OYE1 from Saccharomyces pastorianus. CP can influence a biocatalyst's function by altering protein backbone flexibility and active site accessibility, both critical performance features because the catalytic cycle for OYE1 is thought to involve rate-limiting conformational changes. To explore the impact of CP throughout the OYE1 protein sequence, we implemented a highly efficient approach for cell-free cpOYE library preparation by combining whole-gene synthesis with in vitro transcription/translation. The versatility of such an ex vivo system was further demonstrated by the rapid and reliable functional evaluation of library members under variable environmental conditions with three reference substrates ketoisophorone, cinnamaldehyde, and (S)-carvone. Library analysis identified over 70 functional OYE1 variants with several biocatalysts exhibiting over an order of magnitude improved catalytic activity. Although catalytic gains of individual cpOYE library members vary by substrate, the locations of new protein termini in functional variants for all tested substates fall within the same four distinct loop/lid regions near the active site. Our findings demonstrate the importance of these structural elements in enzyme function and support the hypothesis of conformational flexibility as a limiting factor for catalysis in wild type OYE.
Collapse
Affiliation(s)
- Ashley B Daugherty
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30084, United States
| | | | | |
Collapse
|
16
|
Bhattacharya I, Yan S, Yadav JSS, Tyagi RD, Surampalli RY. Saccharomyces unisporus: Biotechnological Potential and Present Status. Compr Rev Food Sci Food Saf 2013; 12:353-363. [PMID: 33412685 DOI: 10.1111/1541-4337.12016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 02/28/2013] [Indexed: 12/14/2022]
Abstract
The yeast species of the Saccharomyces genus have a long history of traditional applications and beneficial effects. Among these presence of the Saccharomyces unisporus has been documented in various dairy products and has become a subject of interest and great importance. S. unisporus has shown a significant role in the ripening of cheese and production of fermented milk products such as kefir and koumiss. The absence of pseudohyphae during the life cycle of S. unisporus is an indication of nonpathogenicity. Significance has been laid on the presence of S. unisporus in food-grade products and a close proximity of S. unisporus to S. florentinus and both of these species are accepted by the International Dairy Federation and the European Food and Feed Cultures Association for food and feed applications. Since over the years, S. unisporus has already become a part of various dairy products, S. unisporus can be considered as a potential candidate for generally regarded as safe status. S. unisporus has the capacity to convert ketoisophorone to levodione, which is an important pharmaceutical precursor. S. unisporus are considered as the potential producers of farnesol which eventually controls filamentation of pathogenic microorganisms. Apart from that, S. unisporus produces certain omega unsaturated fatty acids which combat diseases. Henceforth, the areas which S. unisporus can be possibly exploited for its useful intermediates are the enzymes and fatty acids it produces. In this context, this review attempts to describe and discuss the ubiquity of S. unisporus in food products, cellular composition, regulatory pathways, and its synthesis of fatty acids and enzymes.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Song Yan
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Jay Shankar Singh Yadav
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R D Tyagi
- Inst. Natl. de la recherche scientifique, Univ. du Québec, 490, Rue de la Couronne, Québec, Canada, G1K 9A9
| | - R Y Surampalli
- U.S. Environmental Protection Agency (USEPA), P. O. Box 17-2141, Kansas City, KS 66117, U.S.A
| |
Collapse
|
17
|
Kaswurm V, Hecke WV, Kulbe KD, Ludwig R. Guidelines for the Application of NAD(P)H Regenerating Glucose Dehydrogenase in Synthetic Processes. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200959] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Oroz-Guinea I, García-Junceda E. Enzyme catalysed tandem reactions. Curr Opin Chem Biol 2013; 17:236-49. [PMID: 23490810 DOI: 10.1016/j.cbpa.2013.02.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/29/2013] [Accepted: 02/14/2013] [Indexed: 01/01/2023]
Abstract
To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a reversible process to become irreversible, to shift the equilibrium reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of different classes of organic compounds.
Collapse
Affiliation(s)
- Isabel Oroz-Guinea
- Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC, Juan de Cierva 3, 28006 Madrid, Spain.
| | | |
Collapse
|
19
|
|
20
|
Durchschein K, Wallner S, Macheroux P, Schwab W, Winkler T, Kreis W, Faber K. Nicotinamide-Dependent Ene Reductases as Alternative Biocatalysts for the Reduction of Activated Alkenes. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200776] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of (R)- and (S)-carvone. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.tetasy.2012.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Winkler CK, Tasnádi G, Clay D, Hall M, Faber K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J Biotechnol 2012; 162:381-9. [PMID: 22498437 PMCID: PMC3521962 DOI: 10.1016/j.jbiotec.2012.03.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 12/01/2022]
Abstract
Ene-reductases from the ‘Old Yellow Enzyme’ family of flavoproteins catalyze the asymmetric reduction of various α,β-unsaturated compounds at the expense of a nicotinamide cofactor. They have been applied to the synthesis of valuable enantiopure products, including chiral building blocks with broad industrial applications, terpenoids, amino acid derivatives and fragrances. The combination of these highly stereoselective biocatalysts with a cofactor recycling system has allowed the development of cost-effective methods for the generation of optically active molecules, which is strengthened by the availability of stereo-complementary enzyme homologues.
Collapse
Affiliation(s)
- Christoph K Winkler
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
23
|
Yuan TT, Chen QQ, Zhao PJ, Zeng Y, Liu XZ, Lu S. Identification of enzymes responsible for the reduction of geraniol to citronellol. NATURAL PRODUCTS AND BIOPROSPECTING 2011; 1:108-111. [PMCID: PMC4131645 DOI: 10.1007/s13659-011-0032-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2023]
Abstract
The reduction of geraniol to citronellol is the first step for the synthesis of natural phytol in the production of tocopherols and natural vitamin K. Baker’s yeast was used in the bioreduction described above as a whole-cell biocatalyst. However, the enzyme responsible for the reduction of geraniol to citronellol is not yet known. Four old yellow enzyme (OYE) genes were cloned from yeast and plants, and expressed in Escherichia coli for a high level of recombinant proteins. The recombinant protein displayed a catalytic activity of converting geraniol to citronellol as a sole product verified by GC-MS analyses. The recombinant OYE2 intact cells were found to show 3.7 and 1.9-fold higher activity than that of yeast cells and the recombinant crude extracts, respectively. Compared to the recombinant fusion enzyme, the entrokinase-cleaved enzyme displayed nearly identical activity for geraniol reduction. To our knowledge, this is the first enzyme identified to catalyze the formation of citronellol from geraniol by reducing the allylic alcohol double bond, which is normally known as inactivating group for the old yellow enzymes.
Collapse
Affiliation(s)
- Tian-Tian Yuan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- Life Science College, Southwest Forestry University, Kunming, 650224 China
| | - Qian-Qian Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Pei-Ji Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Xiao-Zhu Liu
- Life Science College, Southwest Forestry University, Kunming, 650224 China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093 China
| |
Collapse
|
24
|
Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration. Appl Microbiol Biotechnol 2011; 94:1233-41. [PMID: 22116631 DOI: 10.1007/s00253-011-3699-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/18/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Nicotinamide cofactor-dependent oxidoreductases have been widely employed during the bioproduction of varieties of useful compounds. Efficient cofactor regeneration is often required for these biotransformation reactions. Herein, we report the synthesis of an important pharmaceutical intermediate 4-hydroxy-2-butanone (4H2B) via an immobilized in situ cofactor regeneration system composed of NAD(+)-dependent glycerol dehydrogenase (GlyDH) and NAD(+)-regenerating NADH oxidase (nox). Both enzymes were immobilized on functionalized single-walled carbon nanotubes (SWCNTs) through the specific interaction between the His-tagged enzymes and the modified SWCNTs. GlyDH demonstrated ca. 100% native enzyme activity after immobilization. The GlyDH/nox ratio, pH, and amount of nicotinamide cofactor were examined to establish the optimum reaction conditions for 4H2B production. The nanoparticle-supported cofactor regeneration system become more stable and the yield of 4H2B turned out to be almost twice (37%) that of the free enzyme system after a 12-h reaction. Thus, we believe that this non-covalent specific immobilization procedure can be applied to cofactor regeneration system for bioconversions.
Collapse
|
25
|
Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Goretti M, Ponzoni C, Caselli E, Marchegiani E, Cramarossa MR, Turchetti B, Forti L, Buzzini P. Bioreduction of α,β-unsaturated ketones and aldehydes by non-conventional yeast (NCY) whole-cells. BIORESOURCE TECHNOLOGY 2011; 102:3993-3998. [PMID: 21232941 DOI: 10.1016/j.biortech.2010.12.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
The bioreduction of α,β-unsaturated ketones (ketoisophorone, 2-methyl- and 3-methyl-cyclopentenone) and aldehydes [(S)-(-)-perillaldehyde and α-methyl-cinnamaldehyde] by 23 "non-conventional" yeasts (NCYs) belonging to 21 species of the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma, and Wickerhamomyces was reported. The results highlight the potential of NCYs as whole-cell biocatalysts for selective biotransformation of electron-poor alkenes. A few NCYs exhibited extremely high (>90%) or even total ketoisophorone and 2-methyl-cyclopentenone bioconversion yields via asymmetric reduction of the conjugated CC bond catalyzed by enoate reductases. Catalytic efficiency declined after switching from ketones to aldehydes. High chemoselectivity due to low competing carbonyl reductases was also sometimes observed.
Collapse
Affiliation(s)
- Marta Goretti
- Department of Applied Biology and Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mitsukura K, Suzuki M, Tada K, Yoshida T, Nagasawa T. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase. Org Biomol Chem 2010; 8:4533-5. [DOI: 10.1039/c0ob00353k] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
|
30
|
Crystal structure of a thermostable Old Yellow Enzyme from Thermus scotoductus SA-01. Biochem Biophys Res Commun 2010; 393:426-31. [DOI: 10.1016/j.bbrc.2010.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 11/20/2022]
|
31
|
Yanto Y, Hall M, Bommarius AS. Nitroreductase from Salmonella typhimurium: characterization and catalytic activity. Org Biomol Chem 2010; 8:1826-32. [DOI: 10.1039/b926274a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
33
|
Grau MM, van der Toorn J, Otten L, Macheroux P, Taglieber A, Zilly F, Arends IW, Hollmann F. Photoenzymatic Reduction of CC Double Bonds. Adv Synth Catal 2009. [DOI: 10.1002/adsc.200900560] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Hirata T, Matsushima A, Sato Y, Iwasaki T, Nomura H, Watanabe T, Toyoda S, Izumi S. Stereospecific hydrogenation of the CC double bond of enones by Escherichia coli overexpressing an enone reductase of Nicotiana tabacum. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb Cell Fact 2008; 7:25. [PMID: 18684335 PMCID: PMC2628649 DOI: 10.1186/1475-2859-7-25] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/07/2008] [Indexed: 12/25/2022] Open
Abstract
This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii.
Collapse
Affiliation(s)
- Beate Pscheidt
- Research Centre Applied Biocatalysis GmbH, Petersgasse 14/3, 8010 Graz, Austria.
| | | |
Collapse
|
36
|
Hall M, Stueckler C, Hauer B, Stuermer R, Friedrich T, Breuer M, Kroutil W, Faber K. Asymmetric Bioreduction of Activated C=C Bonds UsingZymomonas mobilis NCR Enoate Reductase and Old Yellow Enzymes OYE 1–3 from Yeasts. European J Org Chem 2008. [DOI: 10.1002/ejoc.200701208] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Hall M, Stueckler C, Ehammer H, Pointner E, Oberdorfer G, Gruber K, Hauer B, Stuermer R, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of CC Bonds using Enoate Reductases OPR1, OPR3 and YqjM: Enzyme-Based Stereocontrol. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700458] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Expression of Two Old Yellow Enzyme Homologues from Gluconobacter oxydans and Identification of their Citral Hydrogenation Abilities. Mol Biotechnol 2007; 38:241-5. [DOI: 10.1007/s12033-007-9022-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 11/08/2007] [Indexed: 11/27/2022]
|
39
|
Chaparro-Riggers J, Rogers T, Vazquez-Figueroa E, Polizzi K, Bommarius A. Comparison of Three Enoate Reductases and their Potential Use for Biotransformations. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700074] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Hall M, Stueckler C, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of Activated Alkenes Using Cloned 12-Oxophytodienoate Reductase Isoenzymes OPR-1 and OPR-3 fromLycopersicon esculentum (Tomato): A Striking Change of Stereoselectivity. Angew Chem Int Ed Engl 2007; 46:3934-7. [PMID: 17431865 DOI: 10.1002/anie.200605168] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
41
|
Hall M, Stueckler C, Kroutil W, Macheroux P, Faber K. Asymmetric Bioreduction of Activated Alkenes Using Cloned 12-Oxophytodienoate Reductase Isoenzymes OPR-1 and OPR-3 fromLycopersicon esculentum (Tomato): A Striking Change of Stereoselectivity. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605168] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Müller A, Stürmer R, Hauer B, Rosche B. Stereospecific Alkyne Reduction: Novel Activity of Old Yellow Enzymes. Angew Chem Int Ed Engl 2007; 46:3316-8. [PMID: 17387664 DOI: 10.1002/anie.200605179] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- André Müller
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2031, Australia
| | | | | | | |
Collapse
|
43
|
Müller A, Stürmer R, Hauer B, Rosche B. Stereospecific Alkyne Reduction: Novel Activity of Old Yellow Enzymes. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200605179] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Stuermer R, Hauer B, Hall M, Faber K. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 2007; 11:203-13. [PMID: 17353140 DOI: 10.1016/j.cbpa.2007.02.025] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 02/07/2007] [Indexed: 11/28/2022]
Abstract
The asymmetric bioreduction of alkenes bearing an electron-withdrawing group using flavin-dependent enzymes from the 'old yellow enzyme' family at the expense of NAD(P)H yields the corresponding non-racemic alkanes going in hand with the creation of up to two chiral carbon centres. To avoid external cofactor recycling, this intriguing biotransformation was hitherto performed using whole microbial cells, which frequently showed insufficient stereoselectivities and/or undesired side reactions because of the action of competing enzymatic activities. Co-expression of enoate reductases with the corresponding redox enzymes for NAD(P)H recycling in a suitable host enables to overcome these drawbacks to furnish highly stereoselective and 'clean' C=C bioreductions on a preparative scale that are difficult to perform by conventional means.
Collapse
|
45
|
Müller A, Hauer B, Rosche B. Asymmetric alkene reduction by yeast old yellow enzymes and by a novelZymomonas mobilis reductase. Biotechnol Bioeng 2007; 98:22-9. [PMID: 17657768 DOI: 10.1002/bit.21415] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The genes encoding yeast old yellow enzymes (OYE 1, 2, and 3) and NAD(P)H-dependent 2-cyclohexen-1-one reductase from Zymomonas mobilis (NCR) were expressed separately in Escherichia coli. All four recombinant strains reduced the carbon double bond in alpha,beta-unsaturated alkenals and alkenones, however rates and enantio-specificities differed. Which of the two possible enantiomers was predominantly formed, was not only dependent on the choice of enzyme but also on the substrate: In addition to a dependency on methylation in alpha- or beta-position, the data of this study illustrate that firstly the E- or Z-configuration (cis- or trans-) of the carbon double-bond and secondly the remainder of the substrate molecule play roles in determining enantio-specificity. Based on the currently accepted mechanism of flavin mediated anti-hydrogenation of the carbon double bond, the data in this study may be explained by a flipped orientation of some of the substrates in the active center of OYE.
Collapse
Affiliation(s)
- André Müller
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | |
Collapse
|
46
|
Swiderska MA, Stewart JD. Stereoselective enone reductions by Saccharomyces carlsbergensis old yellow enzyme. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.06.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
van den Hemel D, Brigé A, Savvides SN, Van Beeumen J. Ligand-induced conformational changes in the capping subdomain of a bacterial old yellow enzyme homologue and conserved sequence fingerprints provide new insights into substrate binding. J Biol Chem 2006; 281:28152-61. [PMID: 16857682 DOI: 10.1074/jbc.m603946200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that Shewanella oneidensis, a Gram-negative gamma-proteobacterium with a rich arsenal of redox proteins, possesses four old yellow enzyme (OYE) homologues. Here, we report a series of high resolution crystal structures for one of these OYEs, Shewanella yellow enzyme 1 (SYE1), in its oxidized form at 1.4A resolution, which binds a molecule of PEG 400 in the active site, and in its NADH-reduced and p-hydroxybenzaldehyde- and p-hydroxyacetophenone-bound forms at 1.7A resolution. Although the overall structure of SYE1 reveals a monomeric enzyme based on the alpha(8)beta(8) barrel scaffold observed for other OYEs, the active site exhibits a unique combination of features: a strongly butterfly-bent FMN cofactor both in the oxidized and NADH-reduced forms, a collapsed and narrow active site tunnel, and a novel combination of conserved residues involved in the binding of phenolic ligands. Furthermore, we identify a second p-hydroxybenzaldehyde-binding site in a hydrophobic cleft next to the entry of the active site tunnel in the capping subdomain, formed by a restructuring of Loop 3 to an "open" conformation. This constitutes the first evidence to date for the entire family of OYEs that Loop 3 may indeed play a dynamic role in ligand binding and thus provides insights into the elusive NADH complex and into substrate binding in general. Structure-based sequence alignments indicate that the novelties we observe in SYE1 are supported by conserved residues in a number of structurally uncharacterized OYEs from the beta- and gamma-proteobacteria, suggesting that SYE1 represents a new subfamily of bacterial OYEs.
Collapse
Affiliation(s)
- Debbie van den Hemel
- Department of Biochemistry, Physiology and Microbiology, Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35, Ghent University, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
48
|
Tishkov VI, Popov VO. Protein engineering of formate dehydrogenase. ACTA ACUST UNITED AC 2006; 23:89-110. [PMID: 16546445 DOI: 10.1016/j.bioeng.2006.02.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/24/2022]
Abstract
NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) is one of the best enzymes for the purpose of NADH regeneration in dehydrogenase-based synthesis of optically active compounds. Low operational stability and high production cost of native FDHs limit their application in commercial production of chiral compounds. The review summarizes the results on engineering of bacterial and yeast FDHs aimed at improving their chemical and thermal stability, catalytic activity, switch in coenzyme specificity from NAD+ to NADP+ and overexpression in Escherichia coli cells.
Collapse
Affiliation(s)
- Vladimir I Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
49
|
|
50
|
Buque-Taboada EM, Straathof AJ, Heijnen JJ, van der Wielen LA. Substrate inhibition and product degradation during the reduction of 4-oxoisophorone by Saccharomyces cerevisiae. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|