1
|
Zhao F, Song G, Li H, Wu Y, Dong W. A near-zero-discharge recirculating aquaculture system with 3D-printed poly (lactic acid) honeycomb as solid carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176097. [PMID: 39245379 DOI: 10.1016/j.scitotenv.2024.176097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
A novel near-zero-discharge recirculating aquaculture system was successfully set up and ran for six months or above. A uniquely designed and 3D printed poly (lactic acid) (PLA) structure was applied as carbon source. The system achieved over 50 % daily nitrogen removal capability and maintained a low NO3-N level of <0.5 mg/L. Steady water quality was observed throughout the experiment period. Microbial distribution was studied and top abundant microorganisms and their general functions in carbon and nitrogen utilization were discussed. Denitrification and L-glutamate formation were identified as two main nitrogen pathways. The cooccurrence network connecting various genera and multiple functions was revealed. Subtilisin was one important PLA degrading enzymes in the system.
Collapse
Affiliation(s)
- Feng Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Guoxin Song
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hongjing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Yanlin Wu
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China; Shanghai institute of pollution control and ecological security, Shanghai 200092, China.
| |
Collapse
|
2
|
Banerjee A, Borah A, Chah CN, Dhal MK, Madhu K, Katiyar V, Sekharan S. Decoding the complex interplay of biological and chemical factors in Polylactic acid biodegradation: A systematic review. Int J Biol Macromol 2024; 282:136956. [PMID: 39489234 DOI: 10.1016/j.ijbiomac.2024.136956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Polylactic Acid is a sustainable, compostable bioplastic that requires specific geoenvironmental conditions for degradation. The complexity of managing the PLA waste has limited the scope of its seamless application. There have been a significant number of studies exploring PLA degradation. Majorly they have explored degradability as a material property with limited discussions on the fundamental factors affecting degradation. The knowledge of the influence of biotic and abiotic factors and their complex interplay is critical for enhancing PLA degradation research, specifically accelerated degradation. This understanding is necessary for PLA waste upcycling and generating industrial-scale value-added products. Using the PRISMA framework, a database of articles on PLA degradation (1974-2023) has been created with each entry being annotated with 11 critical parameters depending on the scale and scope of the research. Abiotic hydrolysis, biotic hydrolysis and assimilation of PLA were discussed in detail with information on experiment design analytical techniques and background mechanisms to achieve systematic recommendations. Enzymes responsible for PLA degradation have been categorised and catalogued. The review highlights the need for future research related to PLA degradation in terms of molecular mechanisms of enzymatic degradation, bioengineering enzymes for accelerating degradation, and mathematical models for predicting degradation kinetics in complex environmental conditions.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India
| | - Abhinav Borah
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India
| | - Charakho N Chah
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Manoj Kumar Dhal
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Kshitij Madhu
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India
| | - Vimal Katiyar
- Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India; Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India.
| | - Sreedeep Sekharan
- Department of Civil Engineering, Indian Institute of Technology, Guwahati 781039, India; Centre for Sustainable Polymers, Indian Institute of Technology, Guwahati 781039, India.
| |
Collapse
|
3
|
Shalem A, Yehezkeli O, Fishman A. Enzymatic degradation of polylactic acid (PLA). Appl Microbiol Biotechnol 2024; 108:413. [PMID: 38985324 PMCID: PMC11236915 DOI: 10.1007/s00253-024-13212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Environmental concerns arising from the increasing use of polluting plastics highlight polylactic acid (PLA) as a promising eco-friendly alternative. PLA is a biodegradable polyester that can be produced through the fermentation of renewable resources. Together with its excellent properties, suitable for a wide range of applications, the use of PLA has increased significantly over the years and is expected to further grow. However, insufficient degradability under natural conditions emphasizes the need for the exploration of biodegradation mechanisms, intending to develop more efficient techniques for waste disposal and recycling or upcycling. Biodegradation occurs through the secretion of depolymerizing enzymes, mainly proteases, lipases, cutinases, and esterases, by various microorganisms. This review focuses on the enzymatic degradation of PLA and presents different enzymes that were isolated and purified from natural PLA-degrading microorganisms, or recombinantly expressed. The review depicts the main characteristics of the enzymes, including recent advances and analytical methods used to evaluate enantiopurity and depolymerizing activity. While complete degradation of solid PLA particles is still difficult to achieve, future research and improvement of enzyme properties may provide an avenue for the development of advanced procedures for PLA degradation and upcycling, utilizing its building blocks for further applications as envisaged by circular economy principles. KEY POINTS: • Enzymes can be promisingly utilized for PLA upcycling. • Natural and recombinant PLA depolymerases and methods for activity evaluation are summarized. • Approaches to improve enzymatic degradation of PLA are discussed.
Collapse
Affiliation(s)
- Adi Shalem
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Omer Yehezkeli
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
4
|
Jiang Z, Chen X, Xue H, Li Z, Lei J, Yu M, Yan X, Cao H, Zhou J, Liu J, Zheng M, Dong W, Li Y, Cui Z. Novel polyurethane-degrading cutinase BaCut1 from Blastobotrys sp. G-9 with potential role in plastic bio-recycling. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134493. [PMID: 38696960 DOI: 10.1016/j.jhazmat.2024.134493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 ℃ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 ℃ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.
Collapse
Affiliation(s)
- Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huizhen Xue
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, PR China.
| | - Jinhui Lei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Muming Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Zhou
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Jiawei Liu
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, PR China; Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
5
|
Wang Y, Zhang W, Wang Z, Lyu S. A polylactic acid degrading lipase from Bacillus safensis: Characterization and structural analysis. Int J Biol Macromol 2024; 268:131916. [PMID: 38679264 DOI: 10.1016/j.ijbiomac.2024.131916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
A polylactic acid degrading triacylglycerol lipase (TGL) was identified from Bacillus safensis based on genome annotation and validated by real-time quantitative PCR. TGL displayed optimal activity at pH 9.0 and 55 °C. It maintained stability at pH 9.0 and temperatures 45 °C. The activity of TGL was found to benefit from the presence of potassium sodium ions, and low concentrations of Triton X-100. The TGL could erode the surface of polylactic acid films and increase its hydrophilicity. The hydrolysis products of polylactic acid by TGL were lactate monomer and dimer. TGL contains a classical catalytic triad structure of lipase (Ser77, Asp133, and His156) and an Ala-X-Ser-X-Gly sequence. Compared with some lipases produced by the same genus Bacillus, TGL is highly conserved in its amino acid sequence, mainly reflected in the amino acid residues that exercise the enzyme activity, including the catalytic activity center and the substrate binding sites.
Collapse
Affiliation(s)
- Yujun Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanting Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhanyong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; Liaoning Provincial Key Laboratory for Extreme-environmental Microbiology, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuxia Lyu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Meyer Cifuentes IE, Degenhardt J, Neumann-Schaal M, Jehmlich N, Ngugi DK, Öztürk B. Comparative biodegradation analysis of three compostable polyesters by a marine microbial community. Appl Environ Microbiol 2023; 89:e0106023. [PMID: 38014952 PMCID: PMC10734441 DOI: 10.1128/aem.01060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Biodegradable plastics can be used in applications where the end product cannot be efficiently recycled due to high levels of contaminations, e.g., food or soil. Some of these plastics have a dedicated end of life, such as composting, but their degradation in the marine environment is poorly understood. In this study we showed that marine microbial communities can degrade a range of biodegradable polymers with different physical and chemical properties and use these as a sole carbon source for growth. We have also provided insights into the degradation mechanisms using a combined metagenomic and metaproteomic approach. In addition, we have identified three new enzymes that are capable of degrading both aliphatic polymers and aliphatic-aromatic copolymers, which can be used for biotechnological applications.
Collapse
Affiliation(s)
- Ingrid E. Meyer Cifuentes
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julius Degenhardt
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - David Kamanda Ngugi
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
7
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Myburgh MW, Favaro L, van Zyl WH, Viljoen-Bloom M. Engineered yeast for the efficient hydrolysis of polylactic acid. BIORESOURCE TECHNOLOGY 2023; 378:129008. [PMID: 37011843 DOI: 10.1016/j.biortech.2023.129008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Polylactic acid (PLA) is a major contributor to the global bioplastic production capacity. However, post-consumer PLA waste is not fully degraded during non-optimal traditional organic waste treatment processes and can persist in nature for many years. Efficient enzymatic hydrolysis of PLA would contribute to cleaner, more energy-efficient, environmentally friendly waste management processes. However, high costs and a lack of effective enzyme producers curtail the large-scale application of such enzymatic systems. This study reports the recombinant expression of a fungal cutinase-like enzyme (CLE1) in the yeast Saccharomyces cerevisiae, which produced a crude supernatant that efficiently hydrolyses different types of PLA materials. The codon-optimised Y294[CLEns] strain delivered the best enzyme production and hydrolysis capabilities, releasing up to 9.44 g/L lactic acid from 10 g/L PLA films with more than 40% loss in film weight. This work highlights the potential of fungal hosts producing PLA hydrolases for future commercial applications in PLA recycling.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
9
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
10
|
Cannon JA, Reynolds TB. Synergistic Mutations Create Bacillus Subtilisin Variants with Enhanced Poly-l-Lactic Acid Depolymerization Activity. Biomacromolecules 2023; 24:1141-1154. [PMID: 36780360 DOI: 10.1021/acs.biomac.2c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Enzymatic recycling of poly-l-lactic acid (PLLA) plastic has recently become an area of interest; however, investigation of enzymatic mechanisms and engineering strategies to improve activity remains limited. In this study, we have identified a subtilisin from Bacillus pumilus that has the ability to depolymerize high-molecular-weight PLLA. We performed a comparative, mutational analysis of this enzyme with a less active homologue from Bacillus subtilis to determine residues favored for activity. Our results demonstrate that both enzymes contain residues favored for PLLA depolymerization, with the generation of several hyperactive variants. In silico modeling suggests that increases in activity are due to opening of the binding pockets and increased surface hydrophobicity. Combinations of hyperactive mutations have synergistic effects with the generation of subtilisin variants with 830- and 184-fold increases in activity for B. subtilis and B. pumilus subtilisins, respectively. One B. pumilus subtilisin variant can visibly dissolve high-molecular-weight PLLA films.
Collapse
Affiliation(s)
- Jordan A Cannon
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996, United States
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
11
|
Genome sequence analysis and characterization of Bacillus altitudinis B12, a polylactic acid- and keratin-degrading bacterium. Mol Genet Genomics 2023; 298:389-398. [PMID: 36585993 DOI: 10.1007/s00438-022-01989-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Keratin-rich wastes, mainly in the form of feathers, are recalcitrant residues generated in high amounts as by-products in chicken farms and food industry. Polylactic acid (PLA) is the second most common biodegradable polymer found in commercial plastics, which is not easily degraded by microbial activity. This work reports the 3.8-Mb genome of Bacillus altitudinis B12, a highly efficient PLA- and keratin-degrading bacterium, with potential for environmental friendly biotechnological applications in the feed, fertilizer, detergent, leather, and pharmaceutical industries. The whole genome sequence of B. altitudinis B12 revealed that this strain (which had been previously misclassified as Bacillus pumilus B12) is closely related to the B. altitudinis strains ER5, W3, and GR-8. A total of 4056 coding sequences were annotated using the RAST server, of which 2484 are core genes of the pan genome of B. altitudinis and 171 are unique to this strain. According to the sequence analysis, B. pumilus B12 has a predicted secretome of 353 proteins, among which a keratinase and a PLA depolymerase were identified by sequence analysis. The presence of these two enzymes could explain the characterized PLA and keratin biodegradation capability of the strain.
Collapse
|
12
|
Zaborowska M, Bernat K, Pszczółkowski B, Cydzik-Kwiatkowska A, Kulikowska D, Wojnowska-Baryła I. Multi-faceted analysis of thermophilic anaerobic biodegradation of poly(lactic acid)-based material. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:40-52. [PMID: 36343599 DOI: 10.1016/j.wasman.2022.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Currently, the production of bio-based polymeric materials, of which poly(lactic acid) (PLA) is the most popular, has been increasing, causing the growth of PLA waste in municipal waste. Thus, it is necessary to develop sustainable methods for treating it. Methane production, resulting from anaerobic digestion (AD), is a potential end-of-life scenario for PLA waste that needs to be investigated. To obtain high efficiency of AD, thermophilic fermentation was applied, and to overcome low rates of biodegradation, hydrothermal (HT) and alkaline (A) pretreatments were used. For a deep insight into the process, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and microscopic and microbial analyses (based on 16S rDNA) were applied. For both untreated (PLA) and pretreated (PLAHT, PLAA) samples a high maximal methane production (MP) of 453 L/kg volatile solids (VS) was obtained, almost 100 % of the theoretical methane yield from PLA. The use of pretreatment allowed shortening of the time for obtaining maximal MP, especially the hydrothermal pretreatment, which shortened the overall time of MP 1.3-fold, and methane was produced at an almost 10 % higher rate (8.35 vs 7.79 L/(kg VS·d)). However, DSC and microscopic analyses revealed that, in all cases, methane was intensively produced i) after the reduction of the molecular mass of the PLA material and ii) also when PLA pieces were not visible. This should be considered when designing the operational time for the AD process. Parallel to the gradual biodegradation of PLA, the abundances of Firmicutes, Thermotogae, and Euryarcheota increased. With PLAHT, Syntrophobacteraceae, Thermoanaerobacteraceae, and methanogens were identified as potential key thermophilic PLA biodegraders.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland.
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Bartosz Pszczółkowski
- Department of Materials and Machines Technology, Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 11, Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Dorota Kulikowska
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Słoneczna Str. 45G, Olsztyn, Poland
| |
Collapse
|
13
|
Bher A, Mayekar PC, Auras RA, Schvezov CE. Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. Int J Mol Sci 2022; 23:12165. [PMID: 36293023 PMCID: PMC9603655 DOI: 10.3390/ijms232012165] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 08/29/2023] Open
Abstract
Finding alternatives to diminish plastic pollution has become one of the main challenges of modern life. A few alternatives have gained potential for a shift toward a more circular and sustainable relationship with plastics. Biodegradable polymers derived from bio- and fossil-based sources have emerged as one feasible alternative to overcome inconveniences associated with the use and disposal of non-biodegradable polymers. The biodegradation process depends on the environment's factors, microorganisms and associated enzymes, and the polymer properties, resulting in a plethora of parameters that create a complex process whereby biodegradation times and rates can vary immensely. This review aims to provide a background and a comprehensive, systematic, and critical overview of this complex process with a special focus on the mesophilic range. Activity toward depolymerization by extracellular enzymes, biofilm effect on the dynamic of the degradation process, CO2 evolution evaluating the extent of biodegradation, and metabolic pathways are discussed. Remarks and perspectives for potential future research are provided with a focus on the current knowledge gaps if the goal is to minimize the persistence of plastics across environments. Innovative approaches such as the addition of specific compounds to trigger depolymerization under particular conditions, biostimulation, bioaugmentation, and the addition of natural and/or modified enzymes are state-of-the-art methods that need faster development. Furthermore, methods must be connected to standards and techniques that fully track the biodegradation process. More transdisciplinary research within areas of polymer chemistry/processing and microbiology/biochemistry is needed.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
- Instituto de Materiales de Misiones, CONICET-UNaM, Posadas 3300, Misiones, Argentina
| | - Pooja C. Mayekar
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
| | - Rafael A. Auras
- School of Packaging, Michigan State University, East Lansing, MI 48824, USA
| | - Carlos E. Schvezov
- Instituto de Materiales de Misiones, CONICET-UNaM, Posadas 3300, Misiones, Argentina
| |
Collapse
|
14
|
Łysik D, Deptuła P, Chmielewska S, Bucki R, Mystkowska J. Degradation of Polylactide and Polycaprolactone as a Result of Biofilm Formation Assessed under Experimental Conditions Simulating the Oral Cavity Environment. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7061. [PMID: 36295125 PMCID: PMC9604997 DOI: 10.3390/ma15207061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Polylactide (PLA) and polycaprolactone (PCL) are biodegradable and bioabsorbable thermoplastic polymers considered as promising materials for oral applications. However, any abiotic surface used, especially in areas naturally colonized by microorganisms, provides a favorable interface for microbial growth and biofilm development. In this study, we investigated the biofilm formation of C. krusei and S. mutans on the surface of PLA and PCL immersed in the artificial saliva. Using microscopic (AFM, CLSM) observations and spectrometric measurements, we assessed the mass and topography of biofilm that developed on PLA and PCL surfaces. Incubated up to 56 days in specially prepared saliva and microorganisms medium, solid polymer samples were examined for surface properties (wettability, roughness, elastic modulus of the surface layer), structure (molecular weight, crystallinity), and mechanical properties (hardness, tensile strength). It has been shown that biofilm, especially S. mutans, promotes polymer degradation. Our findings indicate the need for additional antimicrobial strategies for the effective oral applications of PLA and PCL.
Collapse
Affiliation(s)
- Dawid Łysik
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Piotr Deptuła
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Sylwia Chmielewska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Joanna Mystkowska
- Institute of Biomedical Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
| |
Collapse
|
15
|
Rampacci E, Sforna M, Dentini A, Di Matteo I, Lidano P, Capucci C, Passamonti F. Paenibacillus amylolyticus osteomyelitis in a Poodle dog: case report and literature review. J Vet Diagn Invest 2022; 34:703-708. [DOI: 10.1177/10406387221100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Paenibacilli are gram-variable, endospore-forming bacteria that occupy various ecologic niches. These microorganisms have been known to infect humans occasionally at various anatomic sites. However, in humans, as well as in other vertebrate animals, the relationship between disease and isolation of Paenibacillus spp. remains poorly understood. We report here a case of infection in an adult Poodle dog. The animal had nodules in the lungs and multifocal osteolytic expansile bone lesions. From bone, Paenibacillus amylolyticus was recovered by culture and identified by MALDI-TOF mass spectroscopy and 16S rDNA sequencing; pyogranulomatous inflammation was observed in lung and bone specimens. The microorganism was resistant to clindamycin and imipenem. Four-month treatment with amoxicillin–clavulanate resulted in clinical resolution of disease in this dog. Nevertheless, therapy for more prolonged periods should be considered because recurrent infections can occur as a result of the transition of Paenibacillus spores to vegetative cells. Disease caused by a Paenibacillus species has not been reported previously in dogs, to our knowledge.
Collapse
Affiliation(s)
- Elisa Rampacci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | | | | | - Plinio Lidano
- Ambulatorio Veterinario Il Borgo, Sansepolcro, Arezzo, Italy
| | | | | |
Collapse
|
16
|
Tamoor M, Samak NA, Jia Y, Mushtaq MU, Sher H, Bibi M, Xing J. Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution. Front Microbiol 2021; 12:777727. [PMID: 34917057 PMCID: PMC8670383 DOI: 10.3389/fmicb.2021.777727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET's carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail.
Collapse
Affiliation(s)
- Muhammad Tamoor
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Biofilm Centre, Aquatic Microbiology Department, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Umar Mushtaq
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Hassan Sher
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Maryam Bibi
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, China
| |
Collapse
|
17
|
García-Depraect O, Bordel S, Lebrero R, Santos-Beneit F, Börner RA, Börner T, Muñoz R. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products. Biotechnol Adv 2021; 53:107772. [PMID: 34015389 DOI: 10.1016/j.biotechadv.2021.107772] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The global environmental pollution by micro- and macro-plastics reveals the consequences of an extensive use of recalcitrant plastic products together with inappropriate waste management practices that fail to sufficiently recycle the broad types of conventional plastic waste. Biobased and biodegradable plastics are experiencing an uprising as their properties offer alternative waste management solutions for a more circular material economy. However, although the production of such bioplastics has advanced on scale, the end-of-life (EOL) (bio)technologies to promote circularity are lacking behind. While composting and biogas plants are the only managed EOL options today, advanced biotechnological recycling technologies for biodegradable bioplastics are still in an embryonic stage. Thus, developing efficient biotechnologies capable of transforming bioplastic waste into high-value chemical building blocks or into the constituents of the original polymer offers promising routes towards life-cycle-engineered products. This review aims at providing a comprehensive state-of-the-art overview of microbial-based processes involved in the complete lifecycle of bioplastics. The current trends in the bioplastic market, the beginning and EOL scenarios of bioplastics, and a critical discussion on the key factors and mechanisms governing microbial degradation are systematically presented. Also, a critical evaluation of terminology and international standards to quantify polymer biodegradability is provided together with the latest biotechnological recycling strategies, including the use of different pre-treatments for (bio)plastic waste. Finally, the challenges and future perspectives for the development of life-cycle-engineered biobased and biodegradable plastic products are discussed.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Tim Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland.
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
18
|
Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140315. [DOI: 10.1016/j.bbapap.2019.140315] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 01/03/2023]
|
19
|
Sun C, Li C, Tan H, Zhang Y. Enhancing the durability of poly(lactic acid) composites by nucleated modification. POLYM INT 2019. [DOI: 10.1002/pi.5837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ce Sun
- Key Laboratory of Bio‐Based Material Science and Technology, (Ministry of Education)Northeast Forestry University Harbin China
| | - Changxin Li
- Key Laboratory of Bio‐Based Material Science and Technology, (Ministry of Education)Northeast Forestry University Harbin China
| | - Haiyan Tan
- Key Laboratory of Bio‐Based Material Science and Technology, (Ministry of Education)Northeast Forestry University Harbin China
| | - Yanhua Zhang
- Key Laboratory of Bio‐Based Material Science and Technology, (Ministry of Education)Northeast Forestry University Harbin China
| |
Collapse
|
20
|
Hajighasemi M, Tchigvintsev A, Nocek B, Flick R, Popovic A, Hai T, Khusnutdinova AN, Brown G, Xu X, Cui H, Anstett J, Chernikova TN, Brüls T, Le Paslier D, Yakimov MM, Joachimiak A, Golyshina OV, Savchenko A, Golyshin PN, Edwards EA, Yakunin AF. Screening and Characterization of Novel Polyesterases from Environmental Metagenomes with High Hydrolytic Activity against Synthetic Polyesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12388-12401. [PMID: 30284819 DOI: 10.1021/acs.est.8b04252] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters. These include the metagenomic esterases MGS0156 and GEN0105, which hydrolyzed polylactic acid (PLA), polycaprolactone, as well as bis(benzoyloxyethyl)-terephthalate. With solid PLA as a substrate, both enzymes produced a mixture of lactic acid monomers, dimers, and higher oligomers as products. The crystal structure of MGS0156 was determined at 1.95 Å resolution and revealed a modified α/β hydrolase fold, with a lid domain and highly hydrophobic active site. Mutational studies of MGS0156 identified the residues critical for hydrolytic activity against both polyester and monoester substrates, with two-times higher polyesterase activity in the MGS0156 L169A mutant protein. Thus, our work identified novel, highly active polyesterases in environmental metagenomes and provided molecular insights into their activity, thereby augmenting our understanding of enzymatic polyester hydrolysis.
Collapse
Affiliation(s)
- Mahbod Hajighasemi
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Tran Hai
- School of Biological Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Julia Anstett
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | | | - Thomas Brüls
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Génomique , Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche Scientifique (CNRS), UMR8030, Génomique métabolique , Evry , France
| | - Denis Le Paslier
- Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche Scientifique (CNRS) , UMR8030, Génomique métabolique, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Génomique , Evry , France
| | - Michail M Yakimov
- Institute for Coastal Marine Environment , CNR , 98122 Messina , Italy
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Olga V Golyshina
- School of Biological Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Peter N Golyshin
- School of Biological Sciences , Bangor University , Gwynedd LL57 2UW , U.K
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , ON M5S 3E5 , Canada
| |
Collapse
|
21
|
Jeszeová L, Puškárová A, Bučková M, Kraková L, Grivalský T, Danko M, Mosnáčková K, Chmela Š, Pangallo D. Microbial communities responsible for the degradation of poly(lactic acid)/poly(3-hydroxybutyrate) blend mulches in soil burial respirometric tests. World J Microbiol Biotechnol 2018; 34:101. [DOI: 10.1007/s11274-018-2483-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/16/2018] [Indexed: 12/01/2022]
|
22
|
Sriyapai P, Chansiri K, Sriyapai T. Isolation and Characterization of Polyester-Based Plastics-Degrading Bacteria from Compost Soils. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718020157] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Zumstein MT, Kohler HPE, McNeill K, Sander M. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4358-4367. [PMID: 28140581 DOI: 10.1021/acs.est.6b06060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biodegradable polyesters have the potential to replace nondegradable, persistent polymers in numerous applications and thereby alleviate plastic accumulation in the environment. Herein, we present an analytical approach to study enzymatic hydrolysis of polyesters, the key step in their overall biodegradation process. The approach is based on embedding fluorescein dilaurate (FDL), a fluorogenic ester substrate, into the polyester matrix and on monitoring the enzymatic cohydrolysis of FDL to fluorescein during enzymatic hydrolysis of the polyester. We validated the approach against established techniques using FDL-containing poly(butylene adipate) films and Fusarium solani cutinase (FsC). Implemented on a microplate reader platform, the FDL-based approach enabled sensitive and high-throughput analysis of the enzymatic hydrolysis of eight aliphatic polyesters by two fungal esterases (FsC and Rhizopus oryzae lipase) at different temperatures. While hydrolysis rates for both enzymes increased with decreasing differences between the polyester melting temperatures and the experimental temperatures, this trend was more pronounced for the lipase than the cutinase. These trends in rates could be ascribed to a combination of temperature-dependent polyester chain flexibility and accessibility of the enzyme active site. The work highlights the capability of the FDL-based approach to be utilized in both screening and mechanistic studies of enzymatic polyester hydrolysis.
Collapse
Affiliation(s)
| | - Hans-Peter E Kohler
- Environmental Biochemistry Group; Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) , 8600 Dübendorf, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
24
|
Popovic A, Hai T, Tchigvintsev A, Hajighasemi M, Nocek B, Khusnutdinova AN, Brown G, Glinos J, Flick R, Skarina T, Chernikova TN, Yim V, Brüls T, Paslier DL, Yakimov MM, Joachimiak A, Ferrer M, Golyshina OV, Savchenko A, Golyshin PN, Yakunin AF. Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci Rep 2017; 7:44103. [PMID: 28272521 PMCID: PMC5341072 DOI: 10.1038/srep44103] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022] Open
Abstract
Metagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalytic residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools.
Collapse
Affiliation(s)
- Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Tran Hai
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Anatoly Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Mahbod Hajighasemi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Julia Glinos
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | | | - Veronica Yim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Thomas Brüls
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut de Génomique, Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche Scientifique (CNRS), UMR8030, Génomique métabolique, Evry, France
| | - Denis Le Paslier
- Université de d'Evry Val d'Essonne (UEVE), Centre National de la Recherche, Scientifique (CNRS), UMR8030, Génomique métabolique, Commissariat à l'Energie, Atomique et aux Energies Alternatives (CEA), Direction de la Recherche, Fondamentale, Institut de Génomique, Evry, France
| | | | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | - Olga V Golyshina
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| |
Collapse
|
25
|
Muroi F, Tachibana Y, Soulenthone P, Yamamoto K, Mizuno T, Sakurai T, Kobayashi Y, Kasuya KI. Characterization of a poly(butylene adipate- co -terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Hu X, Gao Z, Wang Z, Su T, Yang L, Li P. Enzymatic degradation of poly(butylene succinate) by cutinase cloned from Fusarium solani. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu X, Cui H, Hai T, Joachimiak A, Golyshin PN, Savchenko A, Edwards EA, Yakunin AF. Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases. Biomacromolecules 2016; 17:2027-39. [PMID: 27087107 DOI: 10.1021/acs.biomac.6b00223] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, which is a leading candidate for the replacement of traditional petroleum-based polymers. Since the global production of PLA is quickly growing, there is an urgent need for the development of efficient recycling technologies, which will produce lactic acid instead of CO2 as the final product. After screening 90 purified microbial α/β-hydrolases, we identified hydrolytic activity against emulsified PLA in two uncharacterized proteins, ABO2449 from Alcanivorax borkumensis and RPA1511 from Rhodopseudomonas palustris. Both enzymes were also active against emulsified polycaprolactone and other polyesters as well as against soluble α-naphthyl and p-nitrophenyl monoesters. In addition, both ABO2449 and RPA1511 catalyzed complete or extensive hydrolysis of solid PLA with the production of lactic acid monomers, dimers, and larger oligomers as products. The crystal structure of RPA1511 was determined at 2.2 Å resolution and revealed a classical α/β-hydrolase fold with a wide-open active site containing a molecule of polyethylene glycol bound near the catalytic triad Ser114-His270-Asp242. Site-directed mutagenesis of both proteins demonstrated that the catalytic triad residues are important for the hydrolysis of both monoester and polyester substrates. We also identified several residues in RPA1511 (Gln172, Leu212, Met215, Trp218, and Leu220) and ABO2449 (Phe38 and Leu152), which were not essential for activity against soluble monoesters but were found to be critical for the hydrolysis of PLA. Our results indicate that microbial carboxyl esterases can efficiently hydrolyze various polyesters making them attractive biocatalysts for plastics depolymerization and recycling.
Collapse
Affiliation(s)
- Mahbod Hajighasemi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw P Nocek
- The Bioscience Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Xiaohui Xu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Tran Hai
- School of Biological Sciences, University of Bangor , Gwynedd LL57 2UW, U.K
| | - Andrzej Joachimiak
- The Bioscience Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Peter N Golyshin
- School of Biological Sciences, University of Bangor , Gwynedd LL57 2UW, U.K
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
28
|
Application of Chitinous Materials in Production and Purification of a Poly(l-lactic acid) Depolymerase from Pseudomonas tamsuii TKU015. Polymers (Basel) 2016; 8:polym8030098. [PMID: 30979189 PMCID: PMC6432605 DOI: 10.3390/polym8030098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/02/2022] Open
Abstract
The management of fishery residues and plastics is considered to be a vital strategy for conserving resources and maintaining the quality of the environment. Poly(l-lactic acid) (PLA) is a commercially promising, renewable, and biodegradable plastic. In this study, a PLA depolymerase was produced in a squid pen powder (SPP) and recycled plastic waste (PLA powder)-containing medium by Pseudomonas tamsuii TKU015, a bacterial strain isolated from Taiwanese soil. This PLA depolymerase had a molecular weight of 58 kDa and was purified to homogeneity from the supernatant of a TKU015 culture. The optimum pH of TKU015 PLA depolymerase is 10, and the optimal temperature of the enzyme is 60 °C. In addition to PLA, TKU015 PLA depolymerase degraded fibrinogen and tributyrin, but did not hydrolyze casein, triolein, and poly(β-hydroxybutyrate). Taken together, these data demonstrate that P. tamsuii TKU015 produces a PLA depolymerase to utilize SPP and polylactide as carbon/nitrogen sources.
Collapse
|
29
|
Kumar S, Maiti P. Controlled biodegradation of polymers using nanoparticles and its application. RSC Adv 2016. [DOI: 10.1039/c6ra08641a] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlled biodegradation mechanism has been revealed using different nanoparticles which eventually regulate pH of media.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| | - Pralay Maiti
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221 005
- India
| |
Collapse
|
30
|
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 2016; 9:22-34. [PMID: 26275154 PMCID: PMC4720405 DOI: 10.1111/1751-7915.12309] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53,000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Wolfgang R Streit
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße 18, D-22609, Hamburg, Germany
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| |
Collapse
|
31
|
Penkhrue W, Khanongnuch C, Masaki K, Pathom-Aree W, Punyodom W, Lumyong S. Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World J Microbiol Biotechnol 2015; 31:1431-42. [PMID: 26135516 DOI: 10.1007/s11274-015-1895-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Forty agricultural soils were collected from Chiang Mai and Lampang provinces in northern Thailand. Bacteria, actinomycetes and fungi were isolated and screened for their ability to degrade polylactic acid (PLA), polycaprolactone (PCL) and poly(butylene succinate) (PBS) by the agar diffusion method. Sixty-seven actinomycetes, seven bacteria and five fungal isolates were obtained. The majority of actinomycetes were Streptomyces based on morphological characteristic, chemotaxonomy and 16S rRNA gene data. Seventy-nine microorganisms were isolated from 40 soil samples. Twenty-six isolates showed PLA-degradation (32.9 %), 44 isolates showed PBS-degradation (55.7 %) and 58 isolates showed PCL-degradation (73.4 %). Interestingly, 16 isolates (20.2 %) could degrade all three types of bioplastics used in this study. The Amycolatopsis sp. strain SCM_MK2-4 showed the highest enzyme activity for both PLA and PCL, 0.046 and 0.023 U/mL, respectively. Moreover, this strain produced protease, esterase and lipase on agar plates. Approximately, 36.7 % of the PLA film was degraded by Amycolatopsis sp. SCM_MK2-4 after 7 days of cultivation at 30 °C in culture broth.
Collapse
Affiliation(s)
- Watsana Penkhrue
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand,
| | | | | | | | | | | |
Collapse
|
32
|
Yamamoto-Tamura K, Hiradate S, Watanabe T, Koitabashi M, Sameshima-Yamashita Y, Yarimizu T, Kitamoto H. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils. AMB Express 2015; 5:10. [PMID: 25852987 PMCID: PMC4384995 DOI: 10.1186/s13568-014-0088-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/20/2014] [Indexed: 11/10/2022] Open
Abstract
The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.
Collapse
|
33
|
Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R, Hajighasemi M, Egorova O, Somody JC, Tchigvintsev D, Khusnutdinova A, Chernikova TN, Golyshina OV, Yakimov MM, Savchenko A, Golyshin PN, Jaeger KE, Yakunin AF. The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 2014; 99:2165-78. [PMID: 25194841 DOI: 10.1007/s00253-014-6038-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 01/26/2023]
Abstract
Most of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization. The purified metagenomic esterases exhibited high activity against α-naphthyl and p-nitrophenyl esters with different chain lengths. All five esterases retained high activity at 5 °C indicating that they are cold-adapted enzymes. The activity of MGS0010 increased more than two times in the presence of up to 3.5 M NaCl or KCl, whereas the other four metagenomic esterases were inhibited to various degrees by these salts. The purified enzymes showed different sensitivities to inhibition by solvents and detergents, and the activities of MGS0010, MGS0105 and MGS0109 were stimulated three to five times by the addition of glycerol. Screening of purified esterases against 89 monoester substrates revealed broad substrate profiles with a preference for different esters. The metagenomic esterases also hydrolyzed several polyester substrates including polylactic acid suggesting that they can be used for polyester depolymerization. Thus, esterases from marine metagenomes are cold-adapted enzymes exhibiting broad biochemical diversity reflecting the environmental conditions where they evolved.
Collapse
Affiliation(s)
- Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Walczak M, Richert A, Burkowska-But A. The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. J Ind Microbiol Biotechnol 2014; 41:1719-24. [PMID: 25189811 PMCID: PMC4201754 DOI: 10.1007/s10295-014-1505-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022]
Abstract
The present study was aimed at investigating bactericidal properties of polylactide (PLA) films containing three different polyhexamethylene guanidine hydrochloride (PHMG) derivatives and effect of the derivatives on extracellular hydrolytic enzymes and intracellular dehydrogenases. All PHMG derivatives had a slightly stronger bactericidal effect on Staphylococcus aureus than on E. coli but only PHMG granular polyethylene wax (at the concentration of at least 0.6 %) has a bactericidal effect. PHMG derivatives introduced into PLA affected the activity of microbial hydrolases to a small extent. This means that the introduction of PHMG derivatives into PLA will not reduce its enzymatic biodegradation significantly. On the other hand, PHMG derivatives introduced into PLA strongly affected dehydrogenases activity in S. aureus than in E. coli.
Collapse
Affiliation(s)
- Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environment Protection, Nicholaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | | | | |
Collapse
|
35
|
Husárová L, Pekařová S, Stloukal P, Kucharzcyk P, Verney V, Commereuc S, Ramone A, Koutny M. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid). Int J Biol Macromol 2014; 71:155-62. [PMID: 24811902 DOI: 10.1016/j.ijbiomac.2014.04.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/07/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol(-1) was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes.
Collapse
Affiliation(s)
- Lucie Husárová
- Tomas Bata University in Zlín, Centre of Polymer Systems, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; Tomas Bata University in Zlín, Faculty of Technology, Department of Environmental Protection Engineering, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Silvie Pekařová
- Tomas Bata University in Zlín, Faculty of Technology, Department of Environmental Protection Engineering, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Petr Stloukal
- Tomas Bata University in Zlín, Centre of Polymer Systems, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; Tomas Bata University in Zlín, Faculty of Technology, Department of Environmental Protection Engineering, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Pavel Kucharzcyk
- Tomas Bata University in Zlín, Centre of Polymer Systems, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Vincent Verney
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, BP 80026, F-63171 Aubiere, France
| | - Sophie Commereuc
- Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
| | - Audrey Ramone
- Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
| | - Marek Koutny
- Tomas Bata University in Zlín, Centre of Polymer Systems, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic; Tomas Bata University in Zlín, Faculty of Technology, Department of Environmental Protection Engineering, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic.
| |
Collapse
|
36
|
Shah AA, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 2014; 98:3437-47. [DOI: 10.1007/s00253-014-5558-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/13/2023]
|
37
|
Hanphakphoom S, Maneewong N, Sukkhum S, Tokuyama S, Kitpreechavanich V. Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. J GEN APPL MICROBIOL 2014; 60:13-22. [DOI: 10.2323/jgam.60.13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Shah AA, Eguchi T, Mayumi D, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T. Purification and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2012.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Rapid and simple colorimetric assay for detecting the enzymatic degradation of biodegradable plastic films. J Biosci Bioeng 2013; 115:111-4. [DOI: 10.1016/j.jbiosc.2012.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 11/23/2022]
|
40
|
Shinozaki Y, Morita T, Cao XH, Yoshida S, Koitabashi M, Watanabe T, Suzuki K, Sameshima-Yamashita Y, Nakajima-Kambe T, Fujii T, Kitamoto HK. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Appl Microbiol Biotechnol 2012; 97:2951-9. [DOI: 10.1007/s00253-012-4188-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 11/29/2022]
|
41
|
Kitamoto HK, Shinozaki Y, Cao XH, Morita T, Konishi M, Tago K, Kajiwara H, Koitabashi M, Yoshida S, Watanabe T, Sameshima-Yamashita Y, Nakajima-Kambe T, Tsushima S. Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express 2011; 1:44. [PMID: 22126328 PMCID: PMC3293741 DOI: 10.1186/2191-0855-1-44] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/29/2011] [Indexed: 11/10/2022] Open
Abstract
The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.
Collapse
|
42
|
Different enantioselectivity of two types of poly(lactic acid) depolymerases toward poly(l-lactic acid) and poly(d-lactic acid). Polym Degrad Stab 2011. [DOI: 10.1016/j.polymdegradstab.2011.03.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Wang Z, Wang Y, Guo Z, Li F, Chen S. Purification and characterization of poly(L
-lactic acid) depolymerase from Pseudomonas
sp. strain DS04-T. POLYM ENG SCI 2010. [DOI: 10.1002/pen.21857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Affiliation(s)
- Fusako Kawai
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
45
|
|
46
|
Identification and characterization of novel poly(dl-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 2008; 79:743-50. [DOI: 10.1007/s00253-008-1477-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 03/27/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
|
47
|
Li F, Wang S, Liu W, Chen G. Purification and characterization of poly(L-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis. FEMS Microbiol Lett 2008; 282:52-8. [PMID: 18355279 DOI: 10.1111/j.1574-6968.2008.01109.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polylactide or poly(l-lactic acid) (PLA) is a commercially promising material for use as a renewable and biodegradable plastic. Three novel PLA-degrading enzymes, named PLAase I, II and III, were purified to homogeneity from the culture supernatant of an effective PLA-degrading bacterium, Amycolatopsis orientalis ssp. orientalis. The molecular masses of these three PLAases as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 24.0, 19.5 and 18.0 kDa, with the pH optima being 9.5, 10.5 and 9.5, respectively. The optimal temperature for the enzyme activities was 50-60 degrees C. All the purified enzymes could degrade high-molecular-weight PLA film as well as casein, and the PLA-degrading activities were strongly inhibited by serine protease inhibitors such as phenylmethylsulfonyl fluoride and aprotinin, but were not susceptive to chymostatin and pepstatin. Taken together, these data demonstrated that A. orientalis ssp. orientalis produces multiple serine-like proteases to utilize extracellular polylactide as a sole carbon source.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
48
|
Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 2006; 72:244-51. [PMID: 16823551 DOI: 10.1007/s00253-006-0488-1] [Citation(s) in RCA: 298] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 11/30/2022]
Abstract
Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as alpha-chymotrypsin, trypsin, and elastase could also degrade PLA.
Collapse
Affiliation(s)
- Yutaka Tokiwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
| | | |
Collapse
|
49
|
Masaki K, Kamini NR, Ikeda H, Iefuji H. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol 2005; 71:7548-50. [PMID: 16269800 PMCID: PMC1287645 DOI: 10.1128/aem.71.11.7548-7550.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A purified lipase from the yeast Cryptococcus sp. strain S-2 exhibited remote homology to proteins belonging to the cutinase family rather than to lipases. This enzyme could effectively degrade the high-molecular-weight compound polylactic acid, as well as other biodegradable plastics, including polybutylene succinate, poly (epsilon-caprolactone), and poly(3-hydroxybutyrate).
Collapse
Affiliation(s)
- Kazuo Masaki
- Environmental Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan.
| | | | | | | |
Collapse
|