1
|
Yaman D, Averhoff B. Identification of subcomplexes and protein-protein interactions in the DNA transporter of Thermus thermophilus HB27. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184363. [PMID: 38909880 DOI: 10.1016/j.bbamem.2024.184363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus comprises at least 16 competence proteins. Recently we found that the outer membrane (OM) competence protein PilW interacts with the secretin channel, which guides type IV pili (T4P) and potential DNA transporter pseudopili through the OM. Here we have used biochemical techniques to study the interactions of cytoplasmic, inner membrane (IM) and OM components of the DNA transporter in T. thermophilus. We report that PilW is part of a heteropolymeric complex comprising of the cytoplasmic PilM protein, IM proteins PilN, PilO, PilC and the secretin PilQ. Co-purification studies revealed that PilO directly interacts with PilW. In vitro affinity co-purification studies using His-tagged PilC led to the detection of PilC-, PilW-, PilN- and PilO-containing complexes. PilO was identified as direct interaction partner of the polytopic IM protein PilC. PilC was also found to directly interact with the cytoplasmic T4P disassembly ATPase PilT1 thereby triggering PilT1 ATPase activity. This, together with the detection of heteropolymeric PilC complexes which contain PilT1 and the pilins PilA2, PilA4 and PilA5 is in line with the hypothesis that PilC connects the depolymerization ATPase to the base of the pili possibly allowing energy transduction for disassembly of the pilins.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
2
|
Blesa A, Sánchez-Costa M, Berenguer J. The PulE ATPase is required for twitching motility and DNA donation during Thermus thermophilus transjugation. Int Microbiol 2024:10.1007/s10123-024-00598-4. [PMID: 39325340 DOI: 10.1007/s10123-024-00598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Thermus thermophilus can acquire DNA through natural competence and through transjugation, a mechanism that involves a two-step process of DNA secretion (push) and DNA internalization (pull) between mating cells of related species. The natural competence apparatus (NCA) is required in the recipient mate for the pull step. However, how the DNA exits of the donor cell is only partially known. The putative DNA translocase TdtA, encoded in mobile genetic element ICETh1 of T. thermophilus HB27, was shown to be required for DNA donation as reported by (Blesa et al. 2017a). This ring-shaped hexameric ATPase binds to the membrane and likely interacts with yet unknown secretory components that allow the extrusion of DNA through the membrane; thus, a genetic screening to identify additional putative secretory components was performed. Here, we describe that mutants in gene TT_C1844, which encodes a putative AAA-ATPase named PulE, do not synthesize the recently described "narrow" type 4 pili required for twitching motility and made up of the major PilA5 pilin. Concomitantly, pulE mutants also exhibited DNA donation defects during transjugation, suggesting a role of narrow pili in the donation process. However, single pilA5 null mutants still function as DNA donors in transjugation experiments, so we conclude that the need for PulE in transjugation is independent of its role in narrow pili synthesis and twitching motility.
Collapse
Affiliation(s)
- Alba Blesa
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal S/N, 28040, Madrid, Spain.
| | - Mercedes Sánchez-Costa
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Nicolás Cabrera 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
3
|
Khan IU, Saqib M, Amin A, Manzoor S, Ahmed I, Liu RR, Jiao JY, Zhi XY, Li WJ. Phylogenomic analyses and comparative genomic studies of Thermus strains isolated from Tengchong and Tibet Hot Springs, China. Antonie Van Leeuwenhoek 2024; 117:103. [PMID: 39042225 DOI: 10.1007/s10482-024-02001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Genus Thermus is the main focus of researcher among the thermophiles. Members of this genus are the inhabitants of both natural and artificial thermal environments. We performed phylogenomic analyses and comparative genomic studies to unravel the genomic diversity among the strains belonging to the genus Thermus in geographically different thermal springs. Sixteen Thermus strains were isolated and sequenced from hot springs, Qucai hot springs in Tibet and Tengchong hot springs in Yunnan, China. 16S rRNA gene based phylogeny and phylogenomic analyses based on concatenated set of 971 Orthologous Protein Families (supermatrix and gene content methods) revealed a mixed distribution of the Thermus strains. Whole genome based phylogenetic analysis showed, all 16 Thermus strains belong to five species; Thermus oshimai (YIM QC-2-109, YIM 1640, YIM 1627, 77359, 77923, 77838), Thermus antranikianii (YIM 73052, 77412, 77311, 71206), Thermus brokianus (YIM 73518, 71318, 72351), Thermus hydrothermalis (YIM 730264 and 77927) and one potential novel species 77420 forming clade with Thermus thalpophilus SYSU G00506T. Although the genomes of different strains of Thermus of same species were highly similar in their metabolic pathways, but subtle differences were found. CRISPR loci were detected through genome-wide screening, which showed that Thermus isolates from two different thermal locations had well developed defense system against viruses and adopt similar strategy for survival. Additionally, comparative genome analysis screened competence loci across all the Thermus genomes which could be helpful to acquire DNA from environment. In the present study it was found that Thermus isolates use two mechanism of incomplete denitrification pathway, some Thermus strains produces nitric oxide while others nitrious oxide (dinitrogen oxide), which show the heterotrophic lifestyle of Thermus genus. All isolated organisms encoded complete pathways for glycolysis, tricarboxylic acid and pentose phosphate. Calvin Benson Bassham cycle genes were identified in genomes of T. oshimai and T. antranikianii strains, while genomes of all T. brokianus strains and organism 77420 were lacking. Arsenic, cadmium and cobalt-zinc-cadmium resistant genes were detected in genomes of all sequenced Thermus strains. Strains 77,420, 77,311, 73,518, 77,412 and 72,351 genomes were found harboring genes for siderophores production. Sox gene clusters were identified in all sequenced genomes, except strain YIM 730264, suggesting a mode of chemolithotrophy. Through the comparative genomic analysis, we also identified 77420 as the genome type species and its validity as novel organism was confirmed by whole genome sequences comparison. Although isolate 77420 had 99.0% 16S rRNA gene sequence similarity with T. thalpophilus SYSU G00506T but based on ANI 95.86% (Jspecies) and digital DDH 68.80% (GGDC) values differentiate it as a potential novel species. Similarly, in the phylogenomic tree, the novel isolate 77,420 forming a separate branch with their closest reference type strain T. thalpophilus SYSU G00506T.
Collapse
Affiliation(s)
- Inam Ullah Khan
- Faculty of Veterinary and Animal Sciences, Institute of Microbiology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, 29050, Pakistan
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Muhammad Saqib
- Department of Zoology, Gomal University, Tank Campus, 29050, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Arshia Amin
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 45500, Pakistan
| | - Sadia Manzoor
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Iftikhar Ahmed
- Institute of Microbial Culture Collection of Pakistan (IMCCP), National Agricultural Research Centre (NARC), Park Road, Islamabad, 45500, Pakistan
| | - Rui-Rui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao-Yang Zhi
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, 830011, People's Republic of China.
| |
Collapse
|
4
|
Kirchner L, Averhoff B. DNA binding by pilins and their interaction with the inner membrane platform of the DNA transporter in Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183818. [PMID: 34774498 DOI: 10.1016/j.bbamem.2021.183818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The natural transformation system of Thermus thermophilus has become a model system for studies of the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter in T. thermophilus is functionally linked to type IV pili (T4P) and the major pilin PilA4 plays an essential role in both systems. However, T4P are dispensable for natural transformation. In addition to pilA4, T. thermophilus has a gene cluster encoding the three additional pilins PilA1-PilA3; deletion of the cluster abolished natural transformation but retained T4P biogenesis. In this study, we investigated the roles of single pilins PilA1, PilA2 and PilA3 in natural transformation by mutant studies. These studies revealed that each of these pilins is essential for natural transformation. Two of the pilins, PilA1 and PilA2, were found to bind dsDNA. PilA1 and PilA3 were detected in the inner membrane (IM) but not in the outer membrane (OM) whereas PilA2 was present in both membranes. All three pilins where absent in pilus fractions. This suggests that the pilins form a short DNA binding pseudopilus anchored in the IM. PilA1 was found to bind to the IM assembly platform of the DNA transporter via PilM and PilO. These data are in line with the hypothesis that a DNA binding pseudopilus is connected via an IM platform to the cytosolic motor ATPase PilF.
Collapse
Affiliation(s)
- Lennart Kirchner
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
5
|
Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophiles 2021; 25:425-436. [PMID: 34542714 PMCID: PMC8578077 DOI: 10.1007/s00792-021-01242-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.
Collapse
|
6
|
Zhang Q, Yu S, Wang Q, Yang M, Ge F. Quantitative Proteomics Reveals the Protein Regulatory Network of Anabaena sp. PCC 7120 under Nitrogen Deficiency. J Proteome Res 2021; 20:3963-3976. [PMID: 34270261 DOI: 10.1021/acs.jproteome.1c00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anabaena sp. PCC 7120 (Anabaena 7120) is a photoautotrophic filamentous cyanobacterium capable of fixing atmospheric nitrogen. It is a model organism used for studying cell differentiation and nitrogen fixation. Under nitrogen deficiency, Anabaena 7120 forms specialized heterocysts capable of nitrogen fixation. However, the molecular mechanisms involved in the cyanobacterial adaptation to nitrogen deficiency are not well understood. Here, we employed a label-free quantitative proteomic strategy to systematically investigate the nitrogen deficiency response of Anabaena 7120 at different time points. In total, 363, 603, and 669 proteins showed significant changes in protein abundance under nitrogen deficiency for 3, 12, and 24 h, respectively. With mapping onto metabolic pathways, we revealed proteomic perturbation and regulation of carbon and nitrogen metabolism in response to nitrogen deficiency. Functional analysis confirmed the involvement of nitrogen stress-responsive proteins in biological processes, including nitrogen fixation, photosynthesis, energy and carbon metabolism, and heterocyst development. The expression of 10 proteins at different time points was further validated by using multiple reaction monitoring assays. In particular, many dysregulated proteins were found to be time-specific and involved in heterocyst development, providing new candidates for future functional studies in this model cyanobacterium. These results provide novel insights into the molecular mechanisms of nitrogen stress responses and heterocyst development in Anabaena 7120.
Collapse
Affiliation(s)
- Qi Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shengchao Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
7
|
Yaman D, Averhoff B. Functional dissection of structural regions of the Thermus thermophilus competence protein PilW: Implication in secretin complex stability, natural transformation and pilus functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183666. [PMID: 34143999 DOI: 10.1016/j.bbamem.2021.183666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023]
Abstract
Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2/ΔpilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW∆2-40, pilW∆50-150, pilW∆163-216 and pilW∆216-292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
8
|
Schirmacher AM, Hanamghar SS, Zedler JAZ. Function and Benefits of Natural Competence in Cyanobacteria: From Ecology to Targeted Manipulation. Life (Basel) 2020; 10:E249. [PMID: 33105681 PMCID: PMC7690421 DOI: 10.3390/life10110249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/03/2023] Open
Abstract
Natural competence is the ability of a cell to actively take up and incorporate foreign DNA in its own genome. This trait is widespread and ecologically significant within the prokaryotic kingdom. Here we look at natural competence in cyanobacteria, a group of globally distributed oxygenic photosynthetic bacteria. Many cyanobacterial species appear to have the genetic potential to be naturally competent, however, this ability has only been demonstrated in a few species. Reasons for this might be due to a high variety of largely uncharacterised competence inducers and a lack of understanding the ecological context of natural competence in cyanobacteria. To shed light on these questions, we describe what is known about the molecular mechanisms of natural competence in cyanobacteria and analyse how widespread this trait might be based on available genomic datasets. Potential regulators of natural competence and what benefits or drawbacks may derive from taking up foreign DNA are discussed. Overall, many unknowns about natural competence in cyanobacteria remain to be unravelled. A better understanding of underlying mechanisms and how to manipulate these, can aid the implementation of cyanobacteria as sustainable production chassis.
Collapse
Affiliation(s)
| | | | - Julie A. Z. Zedler
- Matthias Schleiden Institute for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (A.M.S.); (S.S.H.)
| |
Collapse
|
9
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
10
|
Structure and Properties of a Natural Competence-Associated Pilin Suggest a Unique Pilus Tip-Associated DNA Receptor. mBio 2019; 10:mBio.00614-19. [PMID: 31186316 PMCID: PMC6561018 DOI: 10.1128/mbio.00614-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Natural competence is the term used to describe the uptake of "naked" extracellular DNA by bacteria; it plays a significant role in horizontal genetic exchange. It is associated with type IV pili, and specialized competence pili mediate DNA uptake. Here, we show that the crystal structure of a competence-associated protein from Thermus thermophilus, ComZ, consists of a type II secretion pseudopilin-like domain, with a large β-solenoid domain inserted into the β-sheet of the pilin-like fold. ComZ binds with high affinity to another competence-associated pilin, PilA2, which lies adjacent to the comZ gene in the genome. The crystal structure of PilA2 revealed a similar type II secretion pseudopilin-like fold, with a small subdomain; docking simulations predicted that PilA2 binds between the pseudopilin-like and β-solenoid domains of ComZ. Electrophoretic shift analysis and DNase protection studies were used to show that ComZ alone and the ComZ/PilA2 complex are able to bind DNA. Protection against reductive dimethylation was used in combination with mass spectrometry and site-directed mutagenesis to identify two lysine residues in ComZ which are involved in DNA binding. They are located between the two domains in ComZ, on the opposite side from the predicted PilA2 binding site. These results suggest a model in which PilA2 assists ComZ in forming the competence pilus tip and DNA binds to the side of the fiber. The results demonstrate how a type IV pilin can be adapted to a specific function by domain insertion and provide the first structural insights into a tip-located competence pilin.IMPORTANCE Thermus thermophilus is a thermophilic bacterium which is capable of natural transformation, the uptake of external DNA with high efficiency. DNA uptake is thought to be mediated by a competence-associated pilus, which binds the DNA substrate and mediates its transfer across the outer membrane and periplasm. Here, we describe the structural and functional analysis of two pilins which are known to be essential for DNA uptake, ComZ and PilA2. ComZ adopts an unusual structure, incorporating a large β-solenoid domain into the pilin structural framework. We argue on structural grounds that this structure cannot readily be accommodated into the competence pilus fiber unless it is at the tip. We also show that ComZ binds DNA and identify two lysine residues which appear to be important for DNA binding. These results suggest a model in which ComZ and PilA2 form a tip-associated DNA receptor which mediates DNA uptake.
Collapse
|
11
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Kruse K, Salzer R, Averhoff B. The traffic ATPase PilF interacts with the inner membrane platform of the DNA translocator and type IV pili from Thermus thermophilus. FEBS Open Bio 2018; 9:4-17. [PMID: 30652069 PMCID: PMC6325625 DOI: 10.1002/2211-5463.12548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022] Open
Abstract
A major driving force for the adaptation of bacteria to changing environments is the uptake of naked DNA from the environment by natural transformation, which allows the acquisition of new capabilities. Uptake of the high molecular weight DNA is mediated by a complex transport machinery that spans the entire cell periphery. This DNA translocator catalyzes the binding and splitting of double‐stranded DNA and translocation of single‐stranded DNA into the cytoplasm, where it is recombined with the chromosome. The thermophilic bacterium Thermus thermophilus exhibits the highest transformation frequencies reported and is a model system to analyze the structure and function of this macromolecular transport machinery. Transport activity is powered by the traffic ATPase PilF, a soluble protein that forms hexameric complexes. Here, we demonstrate that PilF physically binds to an inner membrane assembly platform of the DNA translocator, comprising PilMNO, via the ATP‐binding protein PilM. Binding to PilMNO or PilMN stimulates the ATPase activity of PilF ~ 2‐fold, whereas there is no stimulation when binding to PilM or PilN alone. A PilMK26A variant defective in ATP binding still binds PilF and, together with PilN, stimulates PilF‐mediated ATPase activity. PilF is unique in having three conserved GSPII (general secretory pathway II) domains (A–C) at its N terminus. Deletion analyses revealed that none of the GSPII domains is essential for binding PilMN, but GSPIIC is essential for PilMN‐mediated stimulation of ATP hydrolysis by PilF. Our data suggest that PilM is a coupling protein that physically and functionally connects the soluble motor ATPase PilF to the DNA translocator via the PilMNO assembly platform.
Collapse
Affiliation(s)
- Kerstin Kruse
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| | - Ralf Salzer
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany.,Present address: Structural Studies Division Medical Research Council - Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave Cambridge CB2 OQH UK
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics Institute of Molecular Biosciences Goethe University Frankfurt Germany
| |
Collapse
|
13
|
Functional dissection of the three N-terminal general secretory pathway domains and the Walker motifs of the traffic ATPase PilF from Thermus thermophilus. Extremophiles 2018; 22:461-471. [PMID: 29464394 DOI: 10.1007/s00792-018-1008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 01/25/2023]
Abstract
The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.
Collapse
|
14
|
The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet 2017; 13:e1006669. [PMID: 28282376 PMCID: PMC5365140 DOI: 10.1371/journal.pgen.1006669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/24/2017] [Accepted: 03/04/2017] [Indexed: 11/19/2022] Open
Abstract
In addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation). While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, the pushing step of transjugation remains to be characterized. Here we have searched for hypothetical DNA translocases putatively involved in the pushing step of transjugation. Among candidates encoded by T. thermophilus HB27, the TdtA protein was found to be required for DNA pushing but not for DNA pulling during transjugation, without affecting other cellular processes. Purified TdtA shows ATPase activity and oligomerizes as hexamers with a central opening that can accommodate double-stranded DNA. The tdtA gene was found to belong to a mobile 14 kbp-long DNA element inserted within the 3′ end of a tRNA gene, flanked by 47 bp direct repeats. The insertion also encoded a homolog of bacteriophage site-specific recombinases and actively self-excised from the chromosome at high frequency to form an apparently non-replicative circular form. The insertion also encoded a type II restriction endonuclease and a NurA-like nuclease, whose activities were required for efficient transjugation. All these data support that TdtA belongs to a new type of Integrative and Conjugative Element which promotes the generalized and efficient transfer of genetic traits that could facilitate its co-selection among bacterial populations. Transjugation is a new type of horizontal gene transfer process in which a donor cell pushes out genomic DNA upon cell contact and a recipient cell pulls this DNA inside by natural transformation. Here we describe TdtA, a DNA translocase of the pushing system of T. thermophilus, which is encoded within ICEth1, a new class of Integrative and Conjugative Element whose presence leads to generalized cell-to-cell transfer of any gene marker, circumventing the Argonaute surveillance system that controls access of extracellular DNA acquired by transformation.
Collapse
|
15
|
Mancl JM, Black WP, Robinson H, Yang Z, Schubot FD. Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus. Structure 2016; 24:1886-1897. [PMID: 27667690 DOI: 10.1016/j.str.2016.08.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 12/12/2022]
Abstract
Type IV pili (T4P) mediate bacterial motility and virulence. The PilB/GspE family ATPases power the assembly of T4P and type 2 secretion systems. We determined the structure of the ATPase region of PilB (PilBATP) in complex with ATPγS to provide a model of a T4P assembly ATPase and a view of a PilB/GspE family hexamer at better than 3-Å resolution. Spatial positioning and conformations of the protomers suggest a mechanism of force generation. All six PilBATP protomers contain bound ATPγS. Two protomers form a closed conformation poised for ATP hydrolysis. The other four molecules assume an open conformation but separate into two pairs with distinct active-site accessibilities. We propose that one pair represents the post-hydrolysis phase while the other pair appears poised for ADP/ATP exchange. Collectively, the data suggest that T4P assembly is powered by coordinating concurrent substrate binding with ATP hydrolysis across the PilB hexamer.
Collapse
Affiliation(s)
- Jordan M Mancl
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Wesley P Black
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA
| | - Florian D Schubot
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, 125 Life Sciences 1 (MC 0910), 970 Washington Street Southwest, Blacksburg, VA 24061, USA.
| |
Collapse
|
16
|
Whole Genome Comparison of Thermus sp. NMX2.A1 Reveals Principle Carbon Metabolism Differences with Closest Relation Thermus scotoductus SA-01. G3-GENES GENOMES GENETICS 2016; 6:2791-7. [PMID: 27412985 PMCID: PMC5015936 DOI: 10.1534/g3.116.032953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genome sequencing of the yellow-pigmented, thermophilic bacterium Thermus sp. NMX2.A1 resulted in a 2.29 Mb draft genome that encodes for 2312 proteins. The genetic relationship between various strains from the genus Thermus was assessed based on phylogenomic analyses using a concatenated set of conserved proteins. The resulting phylogenetic tree illustrated that Thermus sp. NMX2 A.1 clusters together with Thermus scotoductus SA-01, despite being isolated from vastly different geographical locations. The close evolutionary relationship and metabolic parallels between the two strains has previously been recognized; however, neither strain’s genome data were available at that point in time. Genomic comparison of the Thermus sp. NMX2.A1 and T. scotoductus SA-01, as well as other closely related Thermus strains, revealed a high degree of synteny at both the genomic and proteomic level, with processes such as denitrification and natural cell competence appearing to be conserved. However, despite this high level of similarity, analysis revealed a complete, putative Calvin–Benson–Bassham (CBB) cycle in NMX2.A1 that is absent in SA-01. Analysis of horizontally transferred gene islands provide evidence that NMX2 selected these genes due to pressure from its HCO3- rich environment, which is in stark contrast to that of the deep subsurface isolated SA-01.
Collapse
|
17
|
Karuppiah V, Thistlethwaite A, Derrick JP. Structures of type IV pilins from Thermus thermophilus demonstrate similarities with type II secretion system pseudopilins. J Struct Biol 2016; 196:375-384. [PMID: 27612581 PMCID: PMC5131608 DOI: 10.1016/j.jsb.2016.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
Abstract
Type IV pilins are proteins which form polymers that extend from the surface of the bacterial cell; they are involved in mediating a wide variety of functions, including adhesion, motility and natural competence. Here we describe the determination of the crystal structures of three type IVa pilins proteins from the thermophile Thermus thermophilus. They form part of a cluster of pilus-like proteins within the genome; our results show that one, Tt1222, is very closely related to the main structural type IV pilin, PilA4. The other two, Tt1218 and Tt1219, also adopt canonical pilin-like folds but, interestingly, are most closely related to the structures of the type II secretion system pseudopilins, EpsI/GspI and XcpW/GspJ. GspI and GspJ have been shown to form a complex with another pseudopilin, GspK, and this heterotrimeric complex is known to play a key role in initiating assembly of a pseudopilus which is thought to drive the secretion process. The structural similarity of Tt1218 and Tt1219 to GspI and GspJ suggests that they might work in a similar way, to deliver functions associated with type IV pili in T. thermophilus, such as natural competence.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Angela Thistlethwaite
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK
| | - Jeremy P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
18
|
Salzer R, D'Imprima E, Gold VAM, Rose I, Drechsler M, Vonck J, Averhoff B. Topology and Structure/Function Correlation of Ring- and Gate-forming Domains in the Dynamic Secretin Complex of Thermus thermophilus. J Biol Chem 2016; 291:14448-56. [PMID: 27226590 DOI: 10.1074/jbc.m116.724153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/06/2022] Open
Abstract
Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique βββαβ fold is essential for the formation of gate 2. Furthermore, we identified four βαββα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.
Collapse
Affiliation(s)
- Ralf Salzer
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Edoardo D'Imprima
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vicki A M Gold
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Ilona Rose
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Moritz Drechsler
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| | - Janet Vonck
- the Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beate Averhoff
- From Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main and
| |
Collapse
|
19
|
Gold VAM, Salzer R, Averhoff B, Kühlbrandt W. Structure of a type IV pilus machinery in the open and closed state. eLife 2015; 4. [PMID: 25997099 PMCID: PMC4463427 DOI: 10.7554/elife.07380] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 01/20/2023] Open
Abstract
Proteins of the secretin family form large macromolecular complexes, which assemble in the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P molecular machine in the open and the closed state. Comparison reveals a major conformational change whereby the N-terminal domains of the central secretin PilQ shift by ∼30 Å, and two periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of the assembled pilus. DOI:http://dx.doi.org/10.7554/eLife.07380.001 Gram-negative bacteria can cause serious diseases in humans, such as cholera and bacterial meningitis. These bacteria are surrounded by two membranes: an inner membrane and an outer membrane. Proteins called secretins are components of several large molecular complexes that are embedded within the outer membrane. Some secretin-containing complexes form pores in the bacterial membranes and allow molecules to pass in or out of the cell. Some secretins also form part of the machinery that allow Gram-negative bacteria to grow fibre-like structures called type IV pili. These pili help bacteria that cause infections to move and stick to host cells, where they can also trigger massive changes in the host cells' architecture. Multiple copies of a secretin protein called PilQ form a channel in the outer membrane of the bacteria that allows a type IV pilus to grow out of the surface of the cell. The pilus can then hook the bacteria onto surfaces and other cells. There is evidence to suggest the type IV pilus machinery is involved in the uptake of DNA from other bacteria, an important but poorly understood process that has contributed to the spread of multi-drug resistance. Now, Gold et al. have used a cutting-edge technique called ‘electron cryo-tomography’ to analyse the three-dimensional structure of the machinery that builds the type IV pili in the membranes of a bacterium called Thermus thermophilus. This analysis revealed that, similar to many other channel complexes, the PilQ channel can be ‘open’ or ‘closed’. When pili are absent, the channel is closed, but the channel opens when pili are present. Further analysis also revealed the structure of an assembled pilus. Next, Gold et al. studied the open state of the type IV pilus in more detail and observed that a region of each of the PilQ proteins moves a considerable distance to make way for the pilus to enter the central pore. These results will pave the way for future studies of type IV pili and other secretin-containing complexes and underpin efforts to investigate new drug targets to combat bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.07380.002
Collapse
Affiliation(s)
- Vicki A M Gold
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Salzer R, Kern T, Joos F, Averhoff B. The Thermus thermophilus comEA/comEC operon is associated with DNA binding and regulation of the DNA translocator and type IV pili. Environ Microbiol 2015; 18:65-74. [PMID: 25727469 DOI: 10.1111/1462-2920.12820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Timo Kern
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Friederike Joos
- Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt am Main, 60438, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Lewis DL, Notey JS, Chandrayan SK, Loder AJ, Lipscomb GL, Adams MWW, Kelly RM. A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles 2014; 19:269-81. [PMID: 25472011 DOI: 10.1007/s00792-014-0712-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.
Collapse
Affiliation(s)
- Derrick L Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, EB-1,911 Partners Way, Raleigh, NC, 27695-7905, US
| | | | | | | | | | | | | |
Collapse
|
22
|
Noncanonical cell-to-cell DNA transfer in Thermus spp. is insensitive to argonaute-mediated interference. J Bacteriol 2014; 197:138-46. [PMID: 25331432 DOI: 10.1128/jb.02113-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer drives the rapid evolution of bacterial populations. Classical processes that promote the lateral flow of genetic information are conserved throughout the prokaryotic world. However, some species have nonconserved transfer mechanisms that are not well known. This is the case for the ancient extreme thermophile Thermus thermophilus. In this work, we show that T. thermophilus strains are capable of exchanging large DNA fragments by a novel mechanism that requires cell-to-cell contacts and employs components of the natural transformation machinery. This process facilitates the bidirectional transfer of virtually any DNA locus but favors by 10-fold loci found in the megaplasmid over those in the chromosome. In contrast to naked DNA acquisition by transformation, the system does not activate the recently described DNA-DNA interference mechanism mediated by the prokaryotic Argonaute protein, thus allowing the organism to distinguish between DNA transferred from a mate and exogenous DNA acquired from unknown hosts. This Argonaute-mediated discrimination may be tentatively viewed as a strategy for safe sharing of potentially "useful" traits by the components of a given population of Thermus spp. without increasing the genome sizes of its individuals.
Collapse
|
23
|
Kumwenda B, Litthauer D, Reva O. Analysis of genomic rearrangements, horizontal gene transfer and role of plasmids in the evolution of industrial important Thermus species. BMC Genomics 2014; 15:813. [PMID: 25257245 PMCID: PMC4180962 DOI: 10.1186/1471-2164-15-813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 09/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. RESULTS Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. CONCLUSION Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.
Collapse
Affiliation(s)
- Benjamin Kumwenda
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| | - Derek Litthauer
- />Department of Microbial Biochemical and Food Biotechnology, University of Free State, Bloemfontein, South Africa
| | - Oleg Reva
- />Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Salzer R, Herzberg M, Nies DH, Joos F, Rathmann B, Thielmann Y, Averhoff B. Zinc and ATP binding of the hexameric AAA-ATPase PilF from Thermus thermophilus: role in complex stability, piliation, adhesion, twitching motility, and natural transformation. J Biol Chem 2014; 289:30343-30354. [PMID: 25202014 DOI: 10.1074/jbc.m114.598656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The traffic AAA-ATPase PilF is essential for pilus biogenesis and natural transformation of Thermus thermophilus HB27. Recently, we showed that PilF forms hexameric complexes containing six zinc atoms coordinated by conserved tetracysteine motifs. Here we report that zinc binding is essential for complex stability. However, zinc binding is neither required for pilus biogenesis nor natural transformation. A number of the mutants did not exhibit any pili during growth at 64 °C but still were transformable. This leads to the conclusion that type 4 pili and the DNA translocator are distinct systems. At lower growth temperatures (55 °C) the zinc-depleted multiple cysteine mutants were hyperpiliated but defective in pilus-mediated twitching motility. This provides evidence that zinc binding is essential for the role of PilF in pilus dynamics. Moreover, we found that zinc binding is essential for complex stability but dispensable for ATPase activity. In contrast to many polymerization ATPases from mesophilic bacteria, ATP binding is not required for PilF complex formation; however, it significantly increases complex stability. These data suggest that zinc and ATP binding increase complex stability that is important for functionality of PilF under extreme environmental conditions.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University, 06120 Halle-Wittenberg, Germany
| | - Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin Luther University, 06120 Halle-Wittenberg, Germany
| | - Friederike Joos
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany, and
| | - Barbara Rathmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Yvonne Thielmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany,.
| |
Collapse
|
25
|
Salzer R, Kern T, Joos F, Averhoff B. Environmental factors affecting the expression of type IV pilus genes as well as piliation of Thermus thermophilus. FEMS Microbiol Lett 2014; 357:56-62. [PMID: 24935261 DOI: 10.1111/1574-6968.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
The thermophilic bacterium Thermus thermophilus HB27 is known for its highly efficient natural transformation system, which has become a model system to study the structure and function of DNA transporter in thermophilic bacteria. The DNA transporter is functionally linked to type IV pili (T4P), which are essential for twitching motility and adhesion to solid surfaces. However, the pilus structures themselves are dispensable for natural transformation. Here, we report that the cellular mRNA levels of the major structural subunit of the T4P, PilA4, are regulated by environmental factors. Growth of T. thermophilus in minimal medium or low temperature (55 °C) leads to a significant increase in pilA4 transcripts. In contrast, the transcript levels of the minor pilin pilA1 as well as other T4P genes are nearly unaffected. The elevated pilA4 mRNA levels are accompanied by an increase in piliation of the cells but not by elevated natural transformation frequencies. Hyperpiliation leads to increased adhesion to plastic surfaces. The increased cell-surface interactions are suggested to represent an adaptive response to temperature stress and may be advantageous for survival of T. thermophilus.
Collapse
Affiliation(s)
- Ralf Salzer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
26
|
Type IV pilus biogenesis, twitching motility, and DNA uptake in Thermus thermophilus: discrete roles of antagonistic ATPases PilF, PilT1, and PilT2. Appl Environ Microbiol 2013; 80:644-52. [PMID: 24212586 DOI: 10.1128/aem.03218-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural transformation has a large impact on lateral gene flow and has contributed significantly to the ecological diversification and adaptation of bacterial species. Thermus thermophilus HB27 has emerged as the leading model organism for studies of DNA transporters in thermophilic bacteria. Recently, we identified a zinc-binding polymerization nucleoside triphosphatase (NTPase), PilF, which is essential for the transport of DNA through the outer membrane. Here, we present genetic evidence that PilF is also essential for the biogenesis of pili. One of the most challenging questions was whether T. thermophilus has any depolymerization NTPase acting as a counterplayer of PilF. We identified two depolymerization NTPases, PilT1 (TTC1621) and PilT2 (TTC1415), both of which are required for type IV pilus (T4P)-mediated twitching motility and adhesion but dispensable for natural transformation. This suggests that T4P dynamics are not required for natural transformation. The latter finding is consistent with our suggestion that in T. thermophilus, T4P and natural transformation are linked but distinct systems.
Collapse
|
27
|
van Wolferen M, Ajon M, Driessen AJM, Albers SV. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions. Extremophiles 2013; 17:545-63. [PMID: 23712907 DOI: 10.1007/s00792-013-0552-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/12/2013] [Indexed: 01/24/2023]
Abstract
Transfer of DNA has been shown to be involved in genome evolution. In particular with respect to the adaptation of bacterial species to high temperatures, DNA transfer between the domains of bacteria and archaea seems to have played a major role. In addition, DNA exchange between similar species likely plays a role in repair of DNA via homologous recombination, a process that is crucial under DNA damaging conditions such as high temperatures. Several mechanisms for the transfer of DNA have been described in prokaryotes, emphasizing its general importance. However, until recently, not much was known about this process in prokaryotes growing in highly thermophilic environments. This review describes the different mechanisms of DNA transfer in hyperthermophiles, and how this may contribute to the survival and adaptation of hyperthermophilic archaea and bacteria to extreme environments.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Many Gram-negative bacteria contain specific systems for uptake of foreign DNA, which play a critical role in the acquisition of antibiotic resistance. The TtPilF (PilF ATPase from Thermus thermophilus) is required for high transformation efficiency, but its mechanism of action is unknown. In the present study, we show that TtPilF is able to bind to both DNA and RNA. The structure of TtPilF was determined by cryoelectron microscopy in the presence and absence of the ATP analogue p[NH]ppA (adenosine 5'-[β,γ-imido]triphosphate), at 10 and 12 Å (1 Å=0.1 nm) resolutions respectively. It consists of two distinct N- and C-terminal regions, separated by a short stem-like structure. Binding of p[NH]ppA induces structural changes in the C-terminal domains, which are transmitted via the stem to the N-terminal domains. Molecular models were generated for the apoenzyme and p[NH]ppA-bound states in the C-terminal regions by docking of a model based on a crystal structure from a closely related enzyme. Analysis of DNA binding by electron microscopy, using gold labelling, localized the binding site to the N-terminal domains. The results suggest a model in which DNA uptake by TtPilF is powered by ATP hydrolysis, causing conformational changes in the C-terminal domains, which are transmitted via the stem to take up DNA into the cell.
Collapse
|
29
|
Papaneophytou CP, Papi RM, Pantazaki AA, Kyriakidis DA. Flagellin gene (fliC) of Thermus thermophilus HB8: characterization of its product and involvement to flagella assembly and microbial motility. Appl Microbiol Biotechnol 2012; 94:1265-77. [DOI: 10.1007/s00253-012-3913-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/29/2022]
|
30
|
Burkhardt J, Vonck J, Langer JD, Salzer R, Averhoff B. Unusual N-terminal ααβαββα fold of PilQ from Thermus thermophilus mediates ring formation and is essential for piliation. J Biol Chem 2012; 287:8484-94. [PMID: 22253437 DOI: 10.1074/jbc.m111.334912] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA translocators of natural transformation systems are complex systems critical for the uptake of free DNA and provide a powerful mechanism for adaptation to changing environmental conditions. In natural transformation machineries, outer membrane secretins are suggested to form a multimeric pore for the uptake of external DNA. Recently, we reported on a novel structure of the DNA translocator secretin complex, PilQ, in Thermus thermophilus HB27 comprising a stable cone and cup structure and six ring structures with a large central channel. Here, we report on structural and functional analyses of a set of N-terminal PilQ deletion derivatives in T. thermophilus HB27. We identified 136 N-terminal residues exhibiting an unusual ααβαββα fold as a ring-building domain. Deletion of this domain had a dramatic effect on twitching motility, adhesion, and piliation but did not abolish natural transformation. These findings provide clear evidence that the pilus structures of T. thermophilus are not essential for natural transformation. The truncated complex was not affected in inner and outer membrane association, indicating that the 136 N-terminal residues are not essential for membrane targeting. Analyses of complex formation of the truncated PilQ monomers revealed that the region downstream of residue 136 is required for multimerization, and the region downstream of residue 207 is essential for monomer stability. Possible implications of our findings for the mechanism of DNA uptake are discussed.
Collapse
Affiliation(s)
- Janin Burkhardt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
31
|
Gounder K, Brzuszkiewicz E, Liesegang H, Wollherr A, Daniel R, Gottschalk G, Reva O, Kumwenda B, Srivastava M, Bricio C, Berenguer J, van Heerden E, Litthauer D. Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01. BMC Genomics 2011; 12:577. [PMID: 22115438 PMCID: PMC3235269 DOI: 10.1186/1471-2164-12-577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 11/24/2011] [Indexed: 11/13/2022] Open
Abstract
Background Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. Results The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle. Conclusions The genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.
Collapse
Affiliation(s)
- Kamini Gounder
- BioPAD Metagenomics Platform, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Taylor MP, van Zyl L, Tuffin IM, Leak DJ, Cowan DA. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts. Microb Biotechnol 2011; 4:438-48. [PMID: 21310009 PMCID: PMC3815256 DOI: 10.1111/j.1751-7915.2010.00246.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose-derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other 'valuable bioproduct' synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process.
Collapse
Affiliation(s)
- M P Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Modderdam Road, Bellville 7535, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
33
|
Burkhardt J, Vonck J, Averhoff B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J Biol Chem 2011; 286:9977-84. [PMID: 21285351 DOI: 10.1074/jbc.m110.212688] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretins are a family of large bacterial outer membrane protein complexes mediating the transport of complex structures, such as type IV pili, DNA and filamentous phage, or various proteins, such as extracellular enzymes and pathogenicity determinants. PilQ of the thermophilic bacterium Thermus thermophilus HB27 is a member of the secretin family required for natural transformation. Here we report the isolation, structural, and functional analyses of a unique PilQ from T. thermophilus. Native PAGE, gel filtration chromatography, and electrophoretic mobility shift analyses indicated that PilQ forms a macromolecular homopolymeric complex that binds dsDNA. Electron microscopy showed that the PilQ complex is 15 nm wide and 34 nm long and consists of an extraordinary stable "cone" and "cup" structure and five ring structures with a large central channel. Moreover, the electron microscopic images together with secondary structure analyses combined with structural data of type II protein secretion system and type III protein secretion system secretins suggest that the individual rings are formed by conserved domains of alternating α-helices and β-sheets. The unprecedented length of the PilQ complex correlated well with the distance between the inner and outer membrane of T. thermophilus. Indeed, PilQ was found immunologically in both membranes, indicating that the PilQ complex spans the entire cell periphery of T. thermophilus. This is consistent with the hypothesis that PilQ accommodates a PilA4 comprising pseudopilus mediating DNA transport across the outer membrane and periplasmic space in a single-step process.
Collapse
Affiliation(s)
- Janin Burkhardt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Strasse 9, D-60438 Frankfurt/Main, Germany
| | | | | |
Collapse
|
34
|
Identification and characterization of a unique, zinc-containing transport ATPase essential for natural transformation in Thermus thermophilus HB27. Extremophiles 2011; 15:191-202. [PMID: 21210168 DOI: 10.1007/s00792-010-0343-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Thermus thermophilus is a model strain to unravel the molecular basis of horizontal gene transfer in hot environments. Previous genetic studies led to the identification of a macromolecular transport machinery mediating DNA uptake in an energy-dependent manner. Here, we have addressed how the transporter is energized. Inspection of the genome sequence revealed four putative transport (AAA) ATPases but only the deletion of one, PilF, led to a transformation defect. PilF is similar to transport ATPases of type IV and type II secretions systems but has a unique N-terminal sequence that carries a triplicated GSPII domain. To characterize PilF biochemically it was produced in Escherichia coli and purified. The recombinant protein displayed NTPase activity with a preference for ATP. Gel filtration analyses combined with dynamic light scattering demonstrated that PilF is monodispersed in solution and forms a complex of 590 ± 30 kDa, indicating a homooligomer of six subunits. It contains a tetracysteine motif, previously shown to bind Zn(2+) in related NTPases. Using atomic absorption spectroscopy, indeed Zn(2+) was detected in the enzyme, but in contrast to all known zinc-binding traffic NTPases only one zinc atom was bound to the hexamer. Deletion of the four cysteine residues led to a loss of Zn(2+). Nevertheless, the mutant protein retained ATPase activity and hexameric complex formation.
Collapse
|
35
|
Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus. BMC Microbiol 2010; 10:295. [PMID: 21083931 PMCID: PMC3000849 DOI: 10.1186/1471-2180-10-295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/18/2010] [Indexed: 01/31/2023] Open
Abstract
Background The mglA gene from the bacterium Myxococcus xanthus encodes a 22kDa protein related to the Ras superfamily of monomeric GTPases. MglA is required for the normal function of A-motility (adventurous), S-motility (social), fruiting body morphogenesis, and sporulation. MglA and its homologs differ from all eukaryotic and other prokaryotic GTPases because they have a threonine (Thr78) in place of the highly conserved aspartate residue of the consensus PM3 (phosphate-magnesium binding) region. To identify residues critical for MglA function or potential protein interactions, and explore the function of Thr78, the phenotypes of 18 mglA mutants were characterized. Results Nine mutants, with mutations predicted to alter residues that bind the guanine base or coordinate magnesium, did not produce detectable MglA. As expected, these mutants were mot- dev- because MglA is essential for these processes. Of the remaining nine mutants, seven showed a wild-type distribution pattern for MglA but fell into two categories with regard to function. Five of the seven mutants exhibited mild phenotypes, but two mutants, T78D and P80A, abolished motility and development. The localization pattern of MglA was abolished in two mutants that were mot- spo- and dev-. These two mutants were predicted to alter surface residues at Asp52 and Thr54, which suggests that these residues are critical for proper localization and may define a protein interaction site. Improving the consensus match with Ras at Thr78 abolished function of MglA. Only the conservative serine substitution was tolerated at this position. Merodiploid constructs revealed that a subset of alleles, including mglAD52A, were dominant and also illustrated that changing the balance of MglA and its co-transcribed partner, MglB, affects A-motility. Conclusion Our results suggest that GTP binding is critical for stability of MglA because MglA does not accumulate in mutants that cannot bind GTP. The threonine in PM3 of MglA proteins represents a novel modification of the highly conserved GTPase consensus at this position. The requirement for a hydroxyl group at this position may indicate that MglA is subject to modification under certain conditions. Proper localization of MglA is critical for both motility and development and likely involves protein interactions mediated by residues Asp52 and Thr54.
Collapse
|
36
|
Averhoff B, Müller V. Exploring research frontiers in microbiology: recent advances in halophilic and thermophilic extremophiles. Res Microbiol 2010; 161:506-14. [DOI: 10.1016/j.resmic.2010.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 11/16/2022]
|
37
|
Schwarzenlander C, Haase W, Averhoff B. The role of single subunits of the DNA transport machinery of Thermus thermophilus HB27 in DNA binding and transport. Environ Microbiol 2009; 11:801-8. [PMID: 19396940 DOI: 10.1111/j.1462-2920.2008.01801.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermus thermophilus HB27 is well known for its extraordinary trait of high frequencies of natural transformation, which is considered a major mechanism of horizontal gene transfer. We show that the DNA translocator of T. thermophilus binds and transports DNA from members of all three domains. These results, together with the data obtained from genome comparisons, suggest that the DNA translocator of T. thermophilus has a major impact in adaptation of Thermus to thermal stress conditions and interdomain DNA transfer in extreme hot environments. DNA transport in T. thermophilus is mediated by a macromolecular transport machinery that consists of at least 16 subunits and spans the cytoplasmic membrane and the entire cell periphery. Here, we have addressed the role of single subunits in DNA binding and transport. PilQ is involved in DNA binding, ComEA, PilF and PilA4 are involved in transport of DNA through the outer membrane and PilM, PilN, PilO, PilA1-3, PilC and ComEC are essential for the transport of DNA through the thick cell wall layers and/or through the inner membrane. These data are discussed in the light of the subcellular localization of the proteins. A topological model for DNA transport across the cell wall is presented.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
38
|
Averhoff B. Shuffling genes around in hot environments: the unique DNA transporter ofThermus thermophilus. FEMS Microbiol Rev 2009; 33:611-26. [DOI: 10.1111/j.1574-6976.2008.00160.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Johnsborg O, Eldholm V, Håvarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 2007; 158:767-78. [PMID: 17997281 DOI: 10.1016/j.resmic.2007.09.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/04/2007] [Accepted: 09/21/2007] [Indexed: 02/02/2023]
Abstract
Studies show that gene acquisition through natural transformation has contributed significantly to the adaptation and ecological diversification of several bacterial species. Relatively little is still known, however, about the prevalence and phylogenetic distribution of organisms possessing this property. Thus, whether natural transformation only benefits a limited number of species or has a large impact on lateral gene flow in nature remains a matter of speculation. Here we will review the most recent advances in our understanding of the phenomenon and discuss its possible biological functions.
Collapse
Affiliation(s)
- Ola Johnsborg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | | | | |
Collapse
|
40
|
Saarimaa C, Peltola M, Raulio M, Neu TR, Salkinoja-Salonen MS, Neubauer P. Characterization of adhesion threads of Deinococcus geothermalis as type IV pili. J Bacteriol 2006; 188:7016-21. [PMID: 16980504 PMCID: PMC1595522 DOI: 10.1128/jb.00608-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus geothermalis E50051 forms tenuous biofilms on paper machine surfaces. Field emission electron microscopy analysis revealed peritrichous appendages which mediated cell-to-surface and cell-to-cell interactions but were absent in planktonically grown cells. The major protein component of the extracellular extract of D. geothermalis had an N-terminal sequence similar to the fimbrial protein pilin annotated in the D. geothermalis DSM 11300 draft sequence. It also showed similarity to the type IV pilin sequence of D. radiodurans and several gram-negative pathogenic bacteria. Other proteins in the extract had N-terminal sequences identical to D. geothermalis proteins with conservative motifs for serine proteases, metallophosphoesterases, and proteins whose function is unknown. Periodic acid-Schiff staining for carbohydrates indicated that these extracellular proteins may be glycosylated. A further confirmation for the presence of glycoconjugates on the cell surface was obtained by confocal laser scanning imaging of living D. geothermalis cells stained with Amaranthus caudatus lectin, which specifically binds to galactose residues. The results indicate that the thread-like appendages of D. geothermalis E50051 are glycosylated type IV pili, bacterial attachment organelles which have thus far not been described for the genus Deinococcus.
Collapse
Affiliation(s)
- C Saarimaa
- Bioprocess Engineering Laboratory, Department of Process and Environmental Engineering, University of Oulu, P.O. Box 4300, FI-90014 Oulun Yliopisto, Finland
| | | | | | | | | | | |
Collapse
|
41
|
Schwarzenlander C, Averhoff B. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:4210-8. [PMID: 16939619 DOI: 10.1111/j.1742-4658.2006.05416.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | | |
Collapse
|
42
|
Brüggemann H, Chen C. Comparative genomics of Thermus thermophilus: Plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 2006; 124:654-61. [PMID: 16713647 DOI: 10.1016/j.jbiotec.2006.03.043] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 02/01/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The bacterium Thermus thermophilus grows at temperatures up to 85 degrees C and is equipped with thermostable enzymes of biotechnological interest. The recently decoded genomes of two strains of T. thermophilus, HB27 and HB8, each composed of a chromosome and a megaplasmid, must certainly encode specific strategies to encounter the thermophile challenge. Here, a genome comparison was undertaken to distinguish common functions from the flexible gene pool, which gave some clues about the biological traits involved in a thermophile lifestyle. The chromosomes were highly conserved, with about 100 strain-specific genes probably reflecting adaptations to the corresponding biological niche, such as metabolic specialities and distinct cell surface determinates including type IV pili. The two megaplasmids showed an elevated plasticity. Upon comparison and re-examination of their gene content, both megaplasmids seem to be implicated in assisting thermophilic growth: a large portion of their genes are apparently involved in DNA repair functions. About 30 plasmid-encoded genes exhibit sequence and domain composition similarity to a predicted DNA repair system specific for thermophilic Archaea and bacteria. Moreover, the plasmid-encoded carotenoid biosynthesis gene cluster is interlocked with genes involved in UV-induced DNA damage repair. This illustrates the importance of DNA protection and repair at elevated growth temperatures.
Collapse
Affiliation(s)
- Holger Brüggemann
- Institut Pasteur, Department of Genomes and Genetics, Unité Genomics of Microbial Pathogens, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
43
|
Rumszauer J, Schwarzenlander C, Averhoff B. Identification, subcellular localization and functional interactions of PilMNOWQ and PilA4 involved in transformation competency and pilus biogenesis in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:3261-72. [PMID: 16857013 DOI: 10.1111/j.1742-4658.2006.05335.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural transformation system of the thermophilic bacterium Thermus thermophilus HB27 comprises at least 16 distinct competence proteins encoded by seven distinct loci. In this article, we present for the first time biochemical analyses of the Thermus thermophilus competence proteins PilMNOWQ and PilA4, and demonstrate that the pilMNOWQ genes are each essential for natural transformation. We identified three different forms of PilA4, one with an apparent molecular mass of 14 kDa, which correlates with that of the deduced protein, an 18-kDa form and a 23-kDa form; the last was found to be glycosylated. We demonstrate that PilM, PilN and PilO are located in the inner membrane, whereas PilW, PilQ and PilA4 are located in the inner and outer membranes. These data show that PilMNOWQ and PilA4 are components of a DNA translocator structure that spans the inner and outer membranes. We further show that PilA4 and PilQ both copurify with pilus structures. Possible functions of PilQ and PilA4 in DNA translocation and in pilus biogenesis are discussed. Comparative mutant studies revealed that mutations in either pilW or pilQ significantly affect the location of the other protein in the outer membrane. Furthermore, no PilA4 was present in the outer membranes of these mutants. From these findings, we conclude that the abilities of PilW, PilQ and PilA4 to stably localize or accumulate in the outer membrane fraction are strongly dependent on one another, which is in accord with an outer membrane DNA translocator complex comprising PilW, PilQ, and PilA4.
Collapse
Affiliation(s)
- Judit Rumszauer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Germany
| | | | | |
Collapse
|
44
|
|
45
|
Nakasugi K, Neilan BA. Identification of pilus-like structures and genes in Microcystis aeruginosa PCC7806. Appl Environ Microbiol 2005; 71:7621-5. [PMID: 16269818 PMCID: PMC1287722 DOI: 10.1128/aem.71.11.7621-7625.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four putative type IV pilus genes from the toxic, naturally transformable Microcystis aeruginosa PCC7806 were identified. Three of these genes were clustered in an arrangement which is identical to that from other cyanobacterial genomes. Type IV pilus-like appendages were also observed by electron microscopy.
Collapse
Affiliation(s)
- Kenlee Nakasugi
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
46
|
Bakaletz LO, Baker BD, Jurcisek JA, Harrison A, Novotny LA, Bookwalter JE, Mungur R, Munson RS. Demonstration of Type IV pilus expression and a twitching phenotype by Haemophilus influenzae. Infect Immun 2005; 73:1635-43. [PMID: 15731063 PMCID: PMC1064948 DOI: 10.1128/iai.73.3.1635-1643.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae is considered a nonmotile organism that expresses neither flagella nor type IV pili, although H. influenzae strain Rd possesses a cryptic pilus locus. We demonstrate here that the homologous gene cluster pilABCD in an otitis media isolate of nontypeable H. influenzae strain 86-028NP encodes a surface appendage that is highly similar, structurally and functionally, to the well-characterized subgroup of bacterial pili known as type IV pili. This gene cluster includes a gene (pilA) that likely encodes the major subunit of the heretofore uncharacterized H. influenzae-expressed type IV pilus, a gene with homology to a type IV prepilin peptidase (pilD) as well as two additional uncharacterized genes (pilB and pilC). A second gene cluster (comABCDEF) was also identified by homology to other pil or type II secretion system genes. When grown in chemically defined medium at an alkaline pH, strain 86-028NP produces approximately 7-nm-diameter structures that are near polar in location. Importantly, these organisms exhibit twitching motility. A mutation in the pilA gene abolishes both expression of the pilus structure and the twitching phenotype, whereas a mutant lacking ComE, a Pseudomonas PilQ homologue, produced large appendages that appeared to be membrane bound and terminated in a slightly bulbous tip. These latter structures often showed a regular pattern of areas of constriction and expansion. The recognition that H. influenzae possesses a mechanism for twitching motility will likely profoundly influence our understanding of H. influenzae-induced diseases of the respiratory tract and their sequelae.
Collapse
Affiliation(s)
- Lauren O Bakaletz
- Department of Pediatrics, Columbus Children's Research Institute, Center for Microbial Pathogenesis, The Ohio State University College of Medicine and Public Health, 700 Children's Dr., Columbus, OH 43205-2696, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Inês Chen
- Public Health Research Institute, Newark, New Jersey 07103, USA
| | | |
Collapse
|
48
|
Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ. The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 2004; 22:547-53. [PMID: 15064768 DOI: 10.1038/nbt956] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/18/2004] [Indexed: 11/09/2022]
Abstract
Thermus thermophilus HB27 is an extremely thermophilic, halotolerant bacterium, which was originally isolated from a natural thermal environment in Japan. This organism has considerable biotechnological potential; many thermostable proteins isolated from members of the genus Thermus are indispensable in research and in industrial applications. We present here the complete genome sequence of T. thermophilus HB27, the first for the genus Thermus. The genome consists of a 1,894,877 base pair chromosome and a 232,605 base pair megaplasmid, designated pTT27. The 2,218 identified putative genes were compared to those of the closest relative sequenced so far, the mesophilic bacterium Deinococcus radiodurans. Both organisms share a similar set of proteins, although their genomes lack extensive synteny. Many new genes of potential interest for biotechnological applications were found in T. thermophilus HB27. Candidates include various proteases and key enzymes of other fundamental biological processes such as DNA replication, DNA repair and RNA maturation.
Collapse
Affiliation(s)
- Anke Henne
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lombo T, Takaya N, Miyazaki J, Gotoh K, Nishiyama M, Kosuge T, Nakamura A, Hoshino T. Functional analysis of the small subunit of the putative homoaconitase fromPyrococcus horikoshiiin theThermuslysine biosynthetic pathway. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09498.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|