1
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
2
|
Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd Allah EF. Understanding and Designing the Strategies for the Microbe-Mediated Remediation of Environmental Contaminants Using Omics Approaches. Front Microbiol 2018; 9:1132. [PMID: 29915565 PMCID: PMC5994547 DOI: 10.3389/fmicb.2018.01132] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/24/2022] Open
Abstract
Rapid industrialization and population explosion has resulted in the generation and dumping of various contaminants into the environment. These harmful compounds deteriorate the human health as well as the surrounding environments. Current research aims to harness and enhance the natural ability of different microbes to metabolize these toxic compounds. Microbial-mediated bioremediation offers great potential to reinstate the contaminated environments in an ecologically acceptable approach. However, the lack of the knowledge regarding the factors controlling and regulating the growth, metabolism, and dynamics of diverse microbial communities in the contaminated environments often limits its execution. In recent years the importance of advanced tools such as genomics, proteomics, transcriptomics, metabolomics, and fluxomics has increased to design the strategies to treat these contaminants in ecofriendly manner. Previously researchers has largely focused on the environmental remediation using single omics-approach, however the present review specifically addresses the integrative role of the multi-omics approaches in microbial-mediated bioremediation. Additionally, we discussed how the multi-omics approaches help to comprehend and explore the structural and functional aspects of the microbial consortia in response to the different environmental pollutants and presented some success stories by using these approaches.
Collapse
Affiliation(s)
- Muneer A Malla
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University, Sagar, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University, Sagar, India
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Watershed-scale fungal community characterization along a pH gradient in a subsurface environment cocontaminated with uranium and nitrate. Appl Environ Microbiol 2014; 80:1810-20. [PMID: 24389927 DOI: 10.1128/aem.03423-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize fungal communities in a subsurface environment cocontaminated with uranium and nitrate at the watershed scale and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution, and diversity of fungi in subsurface groundwater samples were determined using quantitative and semiquantitative molecular techniques, including quantitative PCR of eukaryotic small-subunit rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from the subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH <4.5) conditions. Fungal isolates recovered from subsurface sediments, including cultures of the genus Coniochaeta, which were detected in abundance in pyrosequence libraries of site groundwater samples, were shown to reduce nitrate to nitrous oxide. Denitrifying fungal isolates recovered from the site were classified and found to be distributed broadly within the phylum Ascomycota and within a single genus of the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.
Collapse
|
4
|
Systems biology approach to bioremediation. Curr Opin Biotechnol 2012; 23:483-90. [DOI: 10.1016/j.copbio.2012.01.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/28/2012] [Indexed: 11/21/2022]
|
5
|
Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS One 2012; 7:e35964. [PMID: 22574130 PMCID: PMC3344838 DOI: 10.1371/journal.pone.0035964] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/28/2012] [Indexed: 11/18/2022] Open
Abstract
Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g−1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.
Collapse
Affiliation(s)
| | - Jeremy A. Dodsworth
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Christian A. Ross
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Everett L. Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Amanda J. Williams
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Austin I. McDonald
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Jeff R. Havig
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bougon N, Aquilina L, Molénat J, Marie D, Delettre Y, Chancerel E, Vandenkoornhuyse P. Influence of depth and time on diversity of free-living microbial community in the variably saturated zone of a granitic aquifer. FEMS Microbiol Ecol 2012; 80:98-113. [PMID: 22146085 DOI: 10.1111/j.1574-6941.2011.01273.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 11/04/2011] [Accepted: 11/27/2011] [Indexed: 11/27/2022] Open
Abstract
We investigated the temporal and vertical changes in the microbial communities related to hydrological variations an aquifer (Brittany, France). Five water samplings were carried out, spanning three hydrological cycles in the variably and the permanently saturated zones. Seasonal variations in the major anion concentrations (NO3 -, SO4 2- and Cl(-) ) indicated that different physical processes occurred during the recharge process in the two zones. The variably saturated zone is mainly dominated by diffusion and advection processes from the soil, whereas the permanently saturated zone is controlled by moderate advective transfer from the variably saturated zone. Bacterial diversity was investigated by flow cytometry, 16S rRNA and narG genes analyses. Part of this diversity was new in that 6 of the 27 16S rRNA gene sequence phylotypes were unknown even at the class or phylum level. The narG gene analysis did not reveal any clear variation in time or depth within the nitrate reducers' community. In contrast, 16S rRNA gene analyses showed modifications of community composition that could be related to the hydrologic and chemical contrast between the two zones. It was concluded that the physical processes of water transfer could influence bacterial diversity at the soil-aquifer interface.
Collapse
Affiliation(s)
- Nolwenn Bougon
- Université Rennes 1-CNRS UMR 6118 Géosciences, Campus de Beaulieu, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Chandler DP, Kukhtin A, Mokhiber R, Knickerbocker C, Ogles D, Rudy G, Golova J, Long P, Peacock A. Monitoring microbial community structure and dynamics during in situ U(VI) bioremediation with a field-portable microarray analysis system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:5516-5522. [PMID: 20560650 DOI: 10.1021/es1006498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The objective of this study was to develop and validate a simple, field-portable, microarray system for monitoring microbial community structure and dynamics in groundwater and subsurface environments, using samples representing site status before acetate injection, during Fe-reduction, in the transition from Fe- to SO(4)(2-)-reduction, and into the SO(4)(2-)-reduction phase. Limits of detection for the array are approximately 10(2)-10(3) cell equivalents of DNA per reaction. Sample-to-answer results for the field deployment were obtained in 4 h. Retrospective analysis of 50 samples showed the expected progression of microbial signatures from Fe- to SO(4)(2-) -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R(2) = 0.84). Microarray results were in concordance with quantitative PCR data, aqueous chemistry, site lithology, and the expected microbial community response, indicating that the field-portable microarray is an accurate indicator of microbial presence and response to in situ remediation of a uranium-contaminated site.
Collapse
|
8
|
Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl Environ Microbiol 2010; 76:3244-54. [PMID: 20305024 DOI: 10.1128/aem.03069-09] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria), and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. rRNA gene analyses coupled with physiological and genomic analyses suggest that bacteria from the genus Rhodanobacter are a diverse population of denitrifiers that are circumneutral to moderately acidophilic, with a high relative abundance in areas of the acidic source zone at the OR-IFRC site. Based on genome analysis, Rhodanobacter species contain two nitrite reductase genes and have not been detected in functional-gene surveys of denitrifying bacteria at the OR-IFRC site. Nitrite and nitrous oxide reductase gene sequences were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation and genomic and metagenomic data is essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifiers. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.
Collapse
|
9
|
Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME JOURNAL 2010; 4:660-72. [PMID: 20182523 DOI: 10.1038/ismej.2009.154] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ( approximately 50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying gamma- and beta-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.
Collapse
|
10
|
Luo H, Shen L, Yin H, Li Q, Chen Q, Luo Y, Liao L, Qiu G, Liu X. Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray. Can J Microbiol 2009; 55:587-98. [PMID: 19483787 DOI: 10.1139/w08-158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al.
Collapse
Affiliation(s)
- Hailang Luo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Van Nostrand JD, Wu WM, Wu L, Deng Y, Carley J, Carroll S, He Z, Gu B, Luo J, Criddle CS, Watson DB, Jardine PM, Marsh TL, Tiedje JM, Hazen TC, Zhou J. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ Microbiol 2009; 11:2611-26. [DOI: 10.1111/j.1462-2920.2009.01986.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Waldron PJ, Wu L, Van Nostrand JD, Schadt CW, He Z, Watson DB, Jardine PM, Palumbo AV, Hazen TC, Zhou J. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3529-3534. [PMID: 19544850 DOI: 10.1021/es803423p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, titrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between differentwells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.
Collapse
Affiliation(s)
- Patricia J Waldron
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Madden AS, Palumbo AV, Ravel B, Vishnivetskaya TA, Phelps TJ, Schadt CW, Brandt CC. Donor-dependent extent of uranium reduction for bioremediation of contaminated sediment microcosms. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:53-60. [PMID: 19141795 DOI: 10.2134/jeq2008.0071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 micromol L(-1) d(-1)). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.
Collapse
Affiliation(s)
- Andrew S Madden
- Oak Ridge National Lab., Biosciences Division, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Qiu GZ, Wan MX, Qian L, Huang ZY, Liu K, Liu XD, Shi WY, Yang Y. Archaeal diversity in acid mine drainage from Dabaoshan Mine, China. J Basic Microbiol 2008; 48:401-9. [PMID: 18702068 DOI: 10.1002/jobm.200800002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three acid mine drainage (AMD) samples collected from Dabaoshan Mine (Guangdong Province, China) were studied. In addition to physicochemical analyses, the diversity and community structures of the archaeal communities in these samples were described at the genetic level by amplified ribosomal DNA restriction analysis (ARDRA). Nine different ARDRA patterns were obtained from 146 clones and were studied as operational taxonomic units (OTUs), which were re-amplified and sequenced. Sequence data and phylogenetic analysis showed that most of the clones belonged to the Thermoplasmatales, and that archaea belonging to the Sulfolobales were absent. Only 1 OTU attributed to Ferroplasma was found and was observed to be abundant in all 3 samples. Eight OTUs were related to 2 new undefined groups in the Thermoplasmatales. Of the 8 OTUs, the clones in 2 similar units were isolated from samples collected from an abandoned sulfide mine (Huelva, Spain) and those in 5 similar units were isolated from samples collected from a closed copper mine (Tonglushan, China). These diversities were characterized by the reciprocal of Simpson's index (1/D) and correlated with the concentrations of ferrous ions and toxic ions in the AMD samples. The high temperature of the sampling sites was one of the factors that could explain why archaea belonging to the Thermoplasmatales were abundant in the analyzed AMD samples while those belonging to the Sulfolobales were absent.
Collapse
Affiliation(s)
- Guan-Zhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Botton S, van Heusden M, Parsons JR, Smidt H, van Straalen N. Resilience of Microbial Systems Towards Disturbances. Crit Rev Microbiol 2008; 32:101-12. [PMID: 16850561 DOI: 10.1080/10408410600709933] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper we aim at summarizing the current definitions of resilience in systems ecology with particular attention towards microbial systems. The recent advances of biomolecular techniques have provided scientists with new tools to investigate these systems in greater detail and with higher resolution. Therefore existing concepts and hypotheses have been revisited and discussed with respect to their applicability for ecosystems ruled by microbial processes. This review has also led to some reflections on the suitability of the term "resilience" as a general goal in environmental policies.
Collapse
Affiliation(s)
- S Botton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Weiss JV, Cozzarelli IM. Biodegradation in contaminated aquifers: incorporating microbial/molecular methods. GROUND WATER 2008; 46:305-322. [PMID: 18194318 DOI: 10.1111/j.1745-6584.2007.00409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In order to evaluate natural attenuation in contaminated aquifers, there has been a recent recognition that a multidisciplinary approach, incorporating microbial and molecular methods, is required. Observed decreases in contaminant mass and identified footprints of biogeochemical reactions are often used as evidence of intrinsic bioremediation, but characterizing the structure and function of the microbial populations at contaminated sites is needed. In this paper, we review the experimental approaches and microbial methods that are available as tools to evaluate the controls on microbially mediated degradation processes in contaminated aquifers. We discuss the emerging technologies used in biogeochemical studies and present a synthesis of recent studies that serve as models of integrating microbiological approaches with more traditional geochemical and hydrogeologic approaches in order to address important biogeochemical questions about contaminant fate.
Collapse
Affiliation(s)
- Johanna V Weiss
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | | |
Collapse
|
17
|
Molecular diversity of 16S rRNA and gyrB genes in copper mines. Arch Microbiol 2007; 189:101-10. [PMID: 17957354 DOI: 10.1007/s00203-007-0298-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 06/23/2007] [Accepted: 08/04/2007] [Indexed: 10/22/2022]
Abstract
The molecular diversities of the microbial communities from four sites impacted by acid mine drainage (AMD) at Dexing Copper Mine in Jiangxi province of China were studied using 16S rRNA sequences and gyrB sequences. Of the four sampled sites, each habitat exhibited distinct geochemical characteristics and the sites were linked geographically allowing us to correlate microbial community structure to geochemical characteristics. In the present study, we examined the molecular diversity of 16S rRNA and gyrB genes from water at these sites using a PCR-based cloning approach. We found that the microbial community appears to be composed primarily of Proteobacteria, Acidobacteria, Actinobacteria, Nitrospira, Firmicutes, Chlorella and unknown phylotypes. Of clones affiliated with Nitrospira, Leptospirillum ferrooxidans, Leptospirillum ferriphilum and Leptospirillum group III were all detected. Principal-component analysis (PCA) revealed that the distribution of the microbial communities was influenced greatly by geochemical characteristics. The overall PCA profiles showed that the sites with similar geochemical characteristics had more similar microbial community structures. Moreover, our results also indicated that gyrB sequence analysis may be very useful for differentiating very closely related species in the study of microbial communities.
Collapse
|
18
|
Pontes DS, Lima-Bittencourt CI, Chartone-Souza E, Amaral Nascimento AM. Molecular approaches: advantages and artifacts in assessing bacterial diversity. J Ind Microbiol Biotechnol 2007; 34:463-73. [PMID: 17476541 DOI: 10.1007/s10295-007-0219-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Bacteria account for a major proportion of Earth's biological diversity. They play essential roles in quite diverse environments and there has been an increasing interest in bacterial biodiversity. Research using novel and efficient tools to identify and characterize bacterial communities has been the key for elucidating biological activities with potential for industrial application. The current approach used for defining bacterial species is based on phenotypic and genomic properties. Traditional and novel DNA-based molecular methods are improving our knowledge of bacterial diversity in nature. Advances in molecular biology have been important for studies of diversity, considerably improving our knowledge of morphological, physiological, and ecological features of bacterial taxa. DNA-DNA hybridization, which has been used for many years, is still considered the golden standard for bacteria species identification. PCR-based methods investigating 16S rRNA gene sequences, and other approaches, such as the metagenome, have been used to study the physiology and diversity of bacteria and to identify novel genes with potential pharmaceutical and other biotechnological applications. We examined the advantages and limitations of molecular methods currently used to analyze bacterial diversity; these are mainly based on the 16S rRNA gene. These methods have allowed us to examine microorganisms that cannot be cultivated by routine methods and have also been useful for phylogenetic studies. We also considered the importance of improvements in microbe culture techniques and how we can combine different methods to allow a more appropriate assessment of bacterial diversity and to determine their real potential for industrial applications.
Collapse
Affiliation(s)
- Daniela Santos Pontes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Belo Horizonte, CEP 31.270-901, MG, Brazil
| | | | | | | |
Collapse
|
19
|
Akob DM, Mills HJ, Kostka JE. Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiol Ecol 2007; 59:95-107. [PMID: 17233747 DOI: 10.1111/j.1574-6941.2006.00203.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.
Collapse
Affiliation(s)
- Denise M Akob
- Department of Oceanography, Florida State University, Tallahassee, FL 32306-4470, USA
| | | | | |
Collapse
|
20
|
Hannig M, Braker G, Dippner J, Jürgens K. Linking denitrifier community structure and prevalent biogeochemical parameters in the pelagial of the central Baltic Proper (Baltic Sea). FEMS Microbiol Ecol 2006; 57:260-71. [PMID: 16867144 DOI: 10.1111/j.1574-6941.2006.00116.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The oxic-anoxic interface of the water column of the Gotland Basin (central Baltic Sea) is characterised by defined biogeochemical gradients and is hypothesised to be a zone of pronounced denitrification. Our aim was to analyse the composition and distribution of pelagic denitrifying microorganisms in relation to the physico-chemical gradients in the water column. PCR-amplified nirS genes--coding for dissimilatory nitrite reductase--were analysed as functional markers by terminal restriction fragment length polymorphism and cloning. The overall nirS diversity was low, with the lowest levels found at the oxic-anoxic interface. Only a few terminal restriction fragments dominated the denitrifier communities throughout the water column, and these could be assigned to several new Baltic Sea clusters that were revealed by phylogenetic analysis. The novel clusters were separated in two groups corresponding to the oxygen concentrations within specific layers of the water column. Gradients of prevalent biogeochemical parameters (H(2)S, NH(4) (+), NO(3) (-) and O(2)) largely determined the composition of the nirS-type denitrifier communities within the water column of the Gotland Basin.
Collapse
Affiliation(s)
- Michael Hannig
- Baltic Sea Research Institute Warnemünde, Seestrasse 15, 18119 Rostock, Germany.
| | | | | | | |
Collapse
|
21
|
Chandler DP, Jarrell AE, Roden ER, Golova J, Chernov B, Schipma MJ, Peacock AD, Long PE. Suspension array analysis of 16S rRNA from Fe- and SO(4)2- reducing bacteria in uranium-contaminated sediments undergoing bioremediation. Appl Environ Microbiol 2006; 72:4672-87. [PMID: 16820459 PMCID: PMC1489301 DOI: 10.1128/aem.02858-05] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 16S rRNA-targeted tunable bead array was developed and used in a retrospective analysis of metal- and sulfate-reducing bacteria in contaminated subsurface sediments undergoing in situ U(VI) bioremediation. Total RNA was extracted from subsurface sediments and interrogated directly, without a PCR step. Bead array validation studies with total RNA derived from 24 isolates indicated that the behavior and response of the 16S rRNA-targeted oligonucleotide probes could not be predicted based on the primary nucleic acid sequence. Likewise, signal intensity (absolute or normalized) could not be used to assess the abundance of one organism (or rRNA) relative to the abundance of another organism (or rRNA). Nevertheless, the microbial community structure and dynamics through time and space and as measured by the rRNA-targeted bead array were consistent with previous data acquired at the site, where indigenous sulfate- and iron-reducing bacteria and near neighbors of Desulfotomaculum were the organisms that were most responsive to a change in injected acetate concentrations. Bead array data were best interpreted by analyzing the relative changes in the probe responses for spatially and temporally related samples and by considering only the response of one probe to itself in relation to a background (reference) environmental sample. By limiting the interpretation of the data in this manner and placing it in the context of supporting geochemical and microbiological analyses, we concluded that ecologically relevant and meaningful information can be derived from direct microarray analysis of rRNA in uncharacterized environmental samples, even with the current analytical uncertainty surrounding the behavior of individual probes on tunable bead arrays.
Collapse
Affiliation(s)
- Darrell P Chandler
- Argonne National Laboratory, 9700 South Cass Avenue, Building 202, A-249, Argonne, IL 60439, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC, Keller M. Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 2006; 72:3291-301. [PMID: 16672469 PMCID: PMC1472342 DOI: 10.1128/aem.72.5.3291-3301.2006] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using phi29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and "clusters of orthologous groups" (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible. The reported SSU rRNA sequences and library clone end sequences are listed with their respective GenBank accession numbers, DQ 404590 to DQ 404652, DQ 404654 to DQ 404938, and DX 385314 to DX 389173.
Collapse
|
23
|
Schryver JC, Brandt CC, Pfiffner SM, Palumbo AV, Peacock AD, White DC, McKinley JP, Long PE. Application of nonlinear analysis methods for identifying relationships between microbial community structure and groundwater geochemistry. MICROBIAL ECOLOGY 2006; 51:177-88. [PMID: 16435170 DOI: 10.1007/s00248-004-0137-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 12/12/2004] [Indexed: 05/06/2023]
Abstract
The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.
Collapse
Affiliation(s)
- Jack C Schryver
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Anderson RT. DOE genomics: Applications toin situ subsurface bioremediation. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/rem.20110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Wiatrowski HA, Barkay T. Monitoring of microbial metal transformations in the environment. Curr Opin Biotechnol 2005; 16:261-8. [PMID: 15961026 DOI: 10.1016/j.copbio.2005.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 04/01/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
The biotransformation of metals is an exciting, developing strategy to treat metal contamination, especially in environments that are not accessible to other remediation technologies. However, our ability to benefit from these strategies hinges on our ability to monitor these transformations in the environment. This involves monitoring metals in both solid and aqueous samples, distinguishing between different chemical states, and obtaining information on the activities of specific microbial taxa in communities that inhabit the treated site. Accomplishing these goals requires cooperation among scientists from various disciplines and would benefit from both new, innovative approaches and the tailoring of established methods to control metal mobility in the environment.
Collapse
Affiliation(s)
- Heather A Wiatrowski
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
26
|
Scow KM, Hicks KA. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 2005; 16:246-53. [PMID: 15961025 DOI: 10.1016/j.copbio.2005.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.
Collapse
Affiliation(s)
- Kate M Scow
- Land, Air and Water Resources, University of California, 1 Shields Avenue Davis, California 95616, USA
| | | |
Collapse
|