1
|
Parrott DL, Baxter BK. Fungi of Great Salt Lake, Utah, USA: a spatial survey. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1438347. [PMID: 39347460 PMCID: PMC11427377 DOI: 10.3389/ffunb.2024.1438347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024]
Abstract
The natural system at Great Salt Lake, Utah, USA was augmented by the construction of a rock-filled railroad causeway in 1960, creating two lakes at one site. The north arm is sequestered from the mountain snowmelt inputs and thus became saturated with salts (250-340 g/L). The south arm is a flourishing ecosystem with moderate salinity (90-190 g/L) and a significant body of water for ten million birds on the avian flyways of the western US who engorge themselves on the large biomass of brine flies and shrimp. The sediments around the lake shores include calcium carbonate oolitic sand and clay, and further away from the saltwater margins, a zone with less saline soil. Here a small number of plants can thrive, including Salicornia and Sueda species. At the north arm at Rozel Point, halite crystals precipitate in the salt-saturated lake water, calcium sulfate precipitates to form gypsum crystals embedded in the clay, and high molecular weight asphalt seeps from the ground. It is an ecosystem with gradients and extremes, and fungi are up to the challenge. We have collected data on Great Salt Lake fungi from a variety of studies and present them here in a spatial survey. Combining knowledge of cultivation studies as well as environmental DNA work, we discuss the genera prevalent in and around this unique ecosystem. A wide diversity of taxa were found in multiple microniches of the lake, suggesting significant roles for these genera: Acremonium, Alternaria, Aspergillus, Cladosporium, Clydae, Coniochaeta, Cryptococcus, Malassezia, Nectria, Penicillium, Powellomyces, Rhizophlyctis, and Wallemia. Considering the species present and the features of Great Salt Lake as a terminal basin, we discuss of the possible roles of the fungi. These include not only nutrient cycling, toxin mediation, and predation for the ecosystem, but also roles that would enable other life to thrive in the water and on the shore. Many genera that we discovered may help other organisms in alleviating salinity stress, promoting growth, or affording protection from dehydration. The diverse taxa of Great Salt Lake fungi provide important benefits for the ecosystem.
Collapse
Affiliation(s)
| | - Bonnie K. Baxter
- Great Salt Lake Institute, Westminster University, Salt Lake
City, UT, United States
| |
Collapse
|
2
|
Xu P, Shu L, Yang Y, Kumar S, Tripathi P, Mishra S, Qiu C, Li Y, Wu Y, Yang Z. Microbial agents obtained from tomato straw composting effectively promote tomato straw compost maturation and improve compost quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115884. [PMID: 38154152 DOI: 10.1016/j.ecoenv.2023.115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Appropriate management of agricultural organic waste (AOW) presents a significant obstacle in the endeavor to attain sustainable agricultural development. The proper management of AOW is a necessity for sustainable agricultural development. This can be done skillfully by incorporating microbial agents in the composting procedure. In this study, we isolated relevant bacteria strains from tomato straw AOW, which demonstrated efficient degradation of lignocellulose without any antagonistic effects in them. These strains were then combined to create a composite microbial agent called Zyco Shield (ZS). The performance of ZS was compared with a commercially effective microorganism (EM) and a control CK. The results indicate that the ZS treatment significantly prolonged the elevated temperature phase of the tomato straw pile, showing considerable degradation of lignocellulosic material. This substantial degradation did not happen in the EM and CK treatments. Moreover, there was a temperature rise of 4-6 ℃ in 2 days of thermophilic phase, which was not the case in the EM and CK treatments. Furthermore, the inoculation of ZS substantially enhanced the degradation of organic waste derived from tomato straw. This method increased the nutrient content of the resulting compost and elevated the enzymatic activity of lignocellulose-degrading enzymes, while reducing the urease enzyme activity within the pile. The concentrations of NH4+-N and NO3--N showed increases of (2.13% and 47.51%), (14.81% and 32.17%) respectively, which is again very different from the results of the EM and CK treatments. To some extent, the alterations observed in the microbial community and the abundance of functional microorganisms provide indirect evidence supporting the fact that the addition of ZS microbial agent facilitates the composting process of tomato straw. Moreover, we confirmed the degradation process of tomato straw through X-ray diffraction, Fourier infrared spectroscopy, and by scanning electron microscopy to analyze the role of ZS microbial inoculum composting. Consequently, reinoculation compost strains improves agricultural waste composting efficiency and enhances product quality.
Collapse
Affiliation(s)
- Peng Xu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luolin Shu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sunil Kumar
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Priyanka Tripathi
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Sita Mishra
- Colleges of Sciences and Engineering, University of Tasmania, Launceston Campus, Private Bag 51, Hobart, TAS 7001, Australia
| | - Chun Qiu
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Li
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongjun Wu
- School of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenchao Yang
- School of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Degois J, Simon X, Clerc F, Bontemps C, Leblond P, Duquenne P. One-year follow-up of microbial diversity in bioaerosols emitted in a waste sorting plant in France. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:257-268. [PMID: 33310602 DOI: 10.1016/j.wasman.2020.11.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Bioaerosols emitted in waste sorting plants (WSP) can induce some adverse health effects on the workers such as rhinitis, asthma and hypersensitivity pneumonitis. The composition of these bioaerosols is scarcely known and most of the time assessed using culture-dependent methods. Due to the well-known limitations of cultural methods, these biodiversity measurements underestimate the actual microbial taxon richness. The aim of the study was to assess the airborne microbial biodiversity by using a sequencing method in a French waste sorting plant (WSP) for one year and to investigate the main factors of variability of this biodiversity. Static sampling was performed in five areas in the plant and compared to an indoor reference (IR), using closed-face cassettes (10 L.min-1) with polycarbonate membranes, every month for one year. Environmental data was measured (temperature, relative humidity). After DNA extraction, microbial biodiversity was assessed by means of sequencing. Bacterial genera Staphylococcus, Streptococcus, Prevotella, Lactococcus, Lactobacillus, Pseudomonas and fungal genera Wallemia, Cladosporium, Debaryomyces, Penicillium, Alternaria were the most predominant airborne microorganisms. Microbial biodiversity was different in the plant compared to the IR and seemed to be influenced by the season.
Collapse
Affiliation(s)
- Jodelle Degois
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Xavier Simon
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Frédéric Clerc
- Department of pollutant metrology, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Philippe Duquenne
- Department of process engineering, Institut National de Recherche et de Sécurité (INRS), Vandœuvre-lès-Nancy 54500, France.
| |
Collapse
|
4
|
Park R, Dzialo MC, Spaepen S, Nsabimana D, Gielens K, Devriese H, Crauwels S, Tito RY, Raes J, Lievens B, Verstrepen KJ. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. MICROBIOME 2019; 7:147. [PMID: 31699144 PMCID: PMC6839111 DOI: 10.1186/s40168-019-0748-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 05/20/2023]
Abstract
House flies (Musca domestica) are widespread, synanthropic filth flies commonly found on decaying matter, garbage, and feces as well as human food. They have been shown to vector microbes, including clinically relevant pathogens. Previous studies have demonstrated that house flies carry a complex and variable prokaryotic microbiota, but the main drivers underlying this variability and the influence of habitat on the microbiota remain understudied. Moreover, the differences between the external and internal microbiota and the eukaryotic components have not been examined. To obtain a comprehensive view of the fly microbiota and its environmental drivers, we sampled over 400 flies from two geographically distinct countries (Belgium and Rwanda) and three different environments-farms, homes, and hospitals. Both the internal as well as external microbiota of the house flies were studied, using amplicon sequencing targeting both bacteria and fungi. Results show that the house fly's internal bacterial community is very diverse yet relatively consistent across geographic location and habitat, dominated by genera Staphylococcus and Weissella. The external bacterial community, however, varies with geographic location and habitat. The fly fungal microbiota carries a distinct signature correlating with the country of sampling, with order Capnodiales and genus Wallemia dominating Belgian flies and genus Cladosporium dominating Rwandan fly samples. Together, our results reveal an intricate country-specific pattern for fungal communities, a relatively stable internal bacterial microbiota and a variable external bacterial microbiota that depends on geographical location and habitat. These findings suggest that vectoring of a wide spectrum of environmental microbes occurs principally through the external fly body surface, while the internal microbiome is likely more limited by fly physiology.
Collapse
Affiliation(s)
- Rahel Park
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Maria C Dzialo
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Stijn Spaepen
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Donat Nsabimana
- Biology Department, School of Science, College of Science and technology, University of Rwanda, RN1, Butare, Rwanda
| | - Kim Gielens
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Herman Devriese
- Safety, Health & Environment Department, UZ Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam Crauwels
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860, Sint-Katelijne Waver, Belgium
| | - Raul Y Tito
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Bioinformatics and (eco-)systems biology lab, Department of Microbiology and Immunology, Rega institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jeroen Raes
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium
- Bioinformatics and (eco-)systems biology lab, Department of Microbiology and Immunology, Rega institute, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart Lievens
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Campus De Nayer, Fortsesteenweg 30A, 2860, Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001, Leuven, Belgium.
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium.
- Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, 3001, Leuven, Belgium.
| |
Collapse
|
5
|
Skalski JH, Limon JJ, Sharma P, Gargus MD, Nguyen C, Tang J, Coelho AL, Hogaboam CM, Crother TR, Underhill DM. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog 2018; 14:e1007260. [PMID: 30235351 PMCID: PMC6147580 DOI: 10.1371/journal.ppat.1007260] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022] Open
Abstract
The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.
Collapse
Affiliation(s)
- Joseph H. Skalski
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jose J. Limon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Purnima Sharma
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Matthew D. Gargus
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jie Tang
- Genomics Core, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ana Lucia Coelho
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Timothy R. Crother
- Division of Pediatric Infectious Diseases, Department of Medicine, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
6
|
The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018; 6:microorganisms6020046. [PMID: 29883408 PMCID: PMC6027281 DOI: 10.3390/microorganisms6020046] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
The fungal genus Wallemia of the order Wallemiales (Wallemiomycotina, Basidiomycota) comprises the most xerotolerant, xerophilic and also halophilic species worldwide. Wallemia spp. are found in various osmotically challenged environments, such as dry, salted, or highly sugared foods, dry feed, hypersaline waters of solar salterns, salt crystals, indoor and outdoor air, and agriculture aerosols. Recently, eight species were recognized for the genus Wallemia, among which four are commonly associated with foods: W. sebi, W. mellicola, W. muriae and W. ichthyophaga. To date, only strains of W. sebi, W. mellicola and W. muriae have been reported to be related to human health problems, as either allergological conditions (e.g., farmer’s lung disease) or rare subcutaneous/cutaneous infections. Therefore, this allergological and infective potential, together with the toxins that the majority of Wallemia spp. produce even under saline conditions, defines these fungi as filamentous food-borne pathogenic fungi.
Collapse
|
7
|
Canfora L, Malusà E, Tkaczuk C, Tartanus M, Łabanowska B, Pinzari F. Development of a method for detection and quantification of B. brongniartii and B. bassiana in soil. Sci Rep 2016; 6:22933. [PMID: 26975931 PMCID: PMC4791642 DOI: 10.1038/srep22933] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/25/2016] [Indexed: 11/30/2022] Open
Abstract
A culture independent method based on qPCR was developed for the detection and quantification of two fungal inoculants in soil. The aim was to adapt a genotyping approach based on SSR (Simple Sequence Repeat) marker to a discriminating tracing of two different species of bioinoculants in soil, after their in-field release. Two entomopathogenic fungi, Beauveria bassiana and B. brongniartii, were traced and quantified in soil samples obtained from field trials. These two fungal species were used as biological agents in Poland to control Melolontha melolontha (European cockchafer), whose larvae live in soil menacing horticultural crops. Specificity of SSR markers was verified using controls consisting of: i) soil samples containing fungal spores of B. bassiana and B. brongniartii in known dilutions; ii) the DNA of the fungal microorganisms; iii) soil samples singly inoculated with each fungus species. An initial evaluation of the protocol was performed with analyses of soil DNA and mycelial DNA. Further, the simultaneous detection and quantification of B. bassiana and B. brongniartii in soil was achieved in field samples after application of the bio-inoculants. The protocol can be considered as a relatively low cost solution for the detection, identification and traceability of fungal bio-inoculants in soil.
Collapse
Affiliation(s)
- L. Canfora
- Council for Agricultural Research and Economics - Research Centre for the Soil-Plant System, Via della Navicella 2-4, 00184 Rome, Italy
| | - E. Malusà
- Council for Agricultural Research and Economics - Research Centre for the Soil-Plant System, Via della Navicella 2-4, 00184 Rome, Italy
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - C. Tkaczuk
- Department of Plant Protection and Breeding, Siedlce University of Natural Sciences and Humanities, Prusa 14 Street, 08-110 Siedlce, Poland
| | - M. Tartanus
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - B.H. Łabanowska
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - F. Pinzari
- Council for Agricultural Research and Economics - Research Centre for the Soil-Plant System, Via della Navicella 2-4, 00184 Rome, Italy
- Life Science Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| |
Collapse
|
8
|
Jančič S, Nguyen HDT, Frisvad JC, Zalar P, Schroers HJ, Seifert KA, Gunde-Cimerman N. A Taxonomic Revision of the Wallemia sebi Species Complex. PLoS One 2015; 10:e0125933. [PMID: 26017053 PMCID: PMC4446336 DOI: 10.1371/journal.pone.0125933] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Wallemia sebi is a xerophilic food- and air-borne fungus. The name has been used for strains that prevail in cold, temperate and tropical climates. In this study, multi-locus phylogenetic analyses, using the internal transcribed spacer (ITS) regions, DNA replication licensing factor (MCM7), pre-rRNA processing protein (TSR1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2) and a new marker 3´-phosphoadenosine-5´-phosphatase (HAL2), confirmed the previous hypothesis that W. sebi presents a complex of at least four species. Here, we confirm and apply the phylogenetic analyses based species hypotheses from a companion study to guide phenotypic assessment of W. sebi like strains from a wide range of substrates, climates and continents allowed the recognition of W. sebi sensu stricto and three new species described as W. mellicola, W. Canadensis, and W. tropicalis. The species differ in their conidial size, xerotolerance, halotolerance, chaotolerance, growth temperature regimes, extracellular enzyme activity profiles, and secondary metabolite patterns. A key to all currently accepted Wallemia species is provided that allow their identification on the basis of physiological, micromorphological and culture characters.
Collapse
Affiliation(s)
- Sašo Jančič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Hai D. T. Nguyen
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jens C. Frisvad
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Keith A. Seifert
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
- Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| |
Collapse
|
9
|
Jančič S, Zalar P, Kocev D, Schroers HJ, Džeroski S, Gunde-Cimerman N. Halophily reloaded: new insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-015-0333-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Méheust D, Le Cann P, Reboux G, Millon L, Gangneux JP. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol 2013; 40:248-60. [PMID: 23586944 DOI: 10.3109/1040841x.2013.777687] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Indoor fungal contamination has been associated with a wide range of adverse health effects, including infectious diseases, toxic effects and allergies. The diversity of fungi contributes to the complex role that they play in indoor environments and human diseases. Molds have a major impact on public health, and can cause different consequences in hospitals, homes and workplaces. This review presents the methods used to assess fungal contamination in these various environments, and discusses advantages and disadvantages for each method in consideration with different health risks. Air, dust and surface sampling strategies are compared, as well as the limits of various methods are used to detect and quantify fungal particles and fungal compounds. In addition to conventional microscopic and culture approaches, more recent chemical, immunoassay and polymerase chain reaction (PCR)-based methods are described. This article also identifies common needs for future multidisciplinary research and development projects in this field, with specific interests on viable fungi and fungal fragment detections. The determination of fungal load and the detection of species in environmental samples greatly depend on the strategy of sampling and analysis. Quantitative PCR was found useful to identify associations between specific fungi and common diseases. The next-generation sequencing methods may afford new perspectives in this area.
Collapse
|
11
|
Kaushik R, Balasubramanian R. Discrimination of viable from non-viable gram-negative bacterial pathogens in airborne particles using propidium monoazide-assisted qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:237-243. [PMID: 23428754 DOI: 10.1016/j.scitotenv.2013.01.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 12/12/2012] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
The presence of bacterial pathogens in airborne particulate matter (PM) has been of considerable concern from the public health standpoint. Conventional culture-based methods are tedious, time consuming and are unable to quantify stressed viable but non-culturable (VBNC) populations of these pathogens. This study reports the optimization, validation and application of a new and rapid quantitative method for enumeration of four live potential Gram-negative bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Aeromonas hydrophila) in PM of biomass burning origin. This method makes use of an intercalating dye (propidium monoazide, PMA) in conjunction with real-time PCR (qPCR) analysis following DNA extraction from PM samples for distinguishing viable from non-viable potential bacterial pathogens. This method was not affected by the complex matrix of the environmental samples, nor by any PCR inhibition effects. The number of viable pathogens ranged from 0 to 8×10(4) gene copies/m(3) in PM. With the exception of A. hydrophilia, all the three pathogens were found to be present in PM. The correlation between the counts obtained using the PMA-qPCR (modified qPCR) and those from the culture-based method was very high with R(2)~1.0 and p value<0.0001.
Collapse
Affiliation(s)
- Rajni Kaushik
- Singapore-Delft Water Alliance, National University of Singapore, Singapore 117576, Singapore
| | | |
Collapse
|
12
|
Dollive S, Peterfreund GL, Sherrill-Mix S, Bittinger K, Sinha R, Hoffmann C, Nabel CS, Hill DA, Artis D, Bachman MA, Custers-Allen R, Grunberg S, Wu GD, Lewis JD, Bushman FD. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 2012; 13:R60. [PMID: 22759449 PMCID: PMC4053730 DOI: 10.1186/gb-2012-13-7-r60] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/03/2012] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic microorganisms are important but understudied components of the human microbiome. Here we present a pipeline for analysis of deep sequencing data on single cell eukaryotes. We designed a new 18S rRNA gene-specific PCR primer set and compared a published rRNA gene internal transcribed spacer (ITS) gene primer set. Amplicons were tested against 24 specimens from defined eukaryotes and eight well-characterized human stool samples. A software pipeline https://sourceforge.net/projects/brocc/ was developed for taxonomic attribution, validated against simulated data, and tested on pyrosequence data. This study provides a well-characterized tool kit for sequence-based enumeration of eukaryotic organisms in human microbiome samples.
Collapse
|
13
|
Han T, Nazarenko Y, Lioy PJ, Mainelis G. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. INDOOR AIR 2011; 21:110-20. [PMID: 21204982 PMCID: PMC4027968 DOI: 10.1111/j.1600-0668.2010.00685.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
UNLABELLED We recently developed an electrostatic precipitator with superhydrophobic surface (EPSS), which collects particles into a 10- to 40-μl water droplet allowing achievement of very high concentration rates (defined as the ratio of particle concentration in the collection liquid vs. the airborne particle concentration per time unit) when sampling airborne bacteria. Here, we analyzed the performance of this sampler when collecting three commonly found fungal spores--Cladosporium cladosporioides, Penicillium melinii, and Aspergillus versicolor--under different operating conditions. We also adapted adenosine triphosphate (ATP)-based bioluminescence for the analysis of collection efficiency and the concentration rates. The collection efficiency ranged from 10 to 36% at a sampling flow rate of 10 l/min when the airborne fungal spore concentration was approximately 10(5)-10(6) spores/m(3) resulting in concentration rates in the range of 1 × 10(5)-3 × 10(5)/min for a 10-μl droplet. The collection efficiency was inversely proportional to the airborne spore concentration and it increased to above 60% for common ambient spore concentrations, e.g., 10(4)-10(5) spores/m(3). The spore concentrations determined by the ATP-based method were not statistically different from those determined by microscopy and allowed us to analyze spore concentrations that were too low to be reliably detected by microscopy. PRACTICAL IMPLICATIONS The new electrostatic precipitator with superhydrophobic surface (EPSS) collects airborne fungal spores into small water droplets (10 and 40 μl) allowing achievement of concentration rates that are higher than those of most currently available bioaerosol samplers. Biosamplers with high concentration rates enable detection of low ambient aerial bioaerosol concentrations in various environments, including indoors air, and would be useful for improved exposure assessment. A successful adaptation of the adenosine triphosphate (ATP)-based bioluminescence assay for the quantification of fungal spores from a specific species enables fast sample analysis in laboratory investigations. This rapid assay could be especially useful when investigating the performance of biological samplers as a function of multiple operational parameters.
Collapse
Affiliation(s)
- T. Han
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Y. Nazarenko
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| | - P. J. Lioy
- Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
- RWJMS-UMDNJ, Piscataway, NJ, USA
| | - G. Mainelis
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Xerophilic fungal genus Wallemia: Bioactive inhabitants of marine solar salterns and salty food. ZBORNIK MATICE SRPSKE ZA PRIRODNE NAUKE 2011. [DOI: 10.2298/zmspn1120007z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Wallemia is a genus of cosmopolitan xerophilic fungi, frequently involved in
food spoilage of particularly sweet, salty, and dried food. Until recently,
only a single species, Wallemia sebi, was recognized in the genus. When a
large group of strains globally collected in salterns and other different
ecological niches was analyzed on the level of physiological, morphological
and molecular characteristics, a new basidiomycetous class, Wallemiomycetes,
covering an order of Wallemiales was proposed and three Wallemia species were
recognized: W. ichthyophaga, W. sebi and W. muriae. Wallemia ichthyophaga was
recognized as the most halophilic eukaryote known, thus representing an
appropriate eukaryotic model for in depth studies of adaptation to
hypersaline conditions. Our preliminary studies indicated that all three
Wallemia species synthesized a yet undescribed haemolytic compound under,
surprisingly, low water activity conditions. Due to the taxonomic status w
hich was unrevealed only recently, there were so far no reports on the
production of any bioactive compounds by the three newly described species.
The article aims to present the taxonomy, ecology, physiology and so far
described molecular mechanisms of adaptations to life at low water activity,
as well as bioactive potential of the genus Wallemia, a phylogenetically
ancient taxon and a taxonomic maverick within Basidiomycota.
Collapse
|
15
|
Perrott P, Smith G, Ristovski Z, Harding R, Hargreaves M. A nested real-time PCR assay has an increased sensitivity suitable for detection of viruses in aerosol studies. J Appl Microbiol 2009; 106:1438-47. [DOI: 10.1111/j.1365-2672.2008.04119.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Dungan RS, Leytem AB. Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0043-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Wen Z, Yu L, Yang W, Wang J, Zhao J, Li N, Lu J, Li J. Detection of viral aerosols by use of real-time quantitative PCR. AEROBIOLOGIA 2009; 25:65-73. [PMID: 32214624 PMCID: PMC7087933 DOI: 10.1007/s10453-009-9110-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 01/09/2009] [Indexed: 05/14/2023]
Abstract
PCR quantification is regarded as one of the most promising techniques for real-time identification of bio-aerosols. We have, therefore, validated a QPCR assay for quantification of a viral aerosol sample using the double-stranded DNA-binding dye SYBR green I, an economical alternative for quantification of target microorganisms. To achieve this objective we used mycobacteriophage D29 as model organism. Phage D29 aerosol was produced in an aerosol cabinet and then collected by use of an AGI liquid sampler. A standard curve was created by use of purified genomic DNA from the phage in liquid culture of known concentration measured by titration. To prevent false-positive results caused by formation of primer-dimers, an additional data-acquisition step was added to the three-step QPCR procedure; the new technique was called four-step QPCR. The standard curve was then used to quantify the total amount of phage D29 in liquid culture and aerosol samples. For liquid culture samples there was no significant difference (P > 0.05) between results from quantification of the virus using double-agar culture and QPCR. For aerosol samples, however, the result determined by the QPCR method was significantly (P < 0.05) higher than that from the double-agar culture method. The four-step SYBR green I QPCR method is a quick quantitative method for mycobacteriophage D29 aerosol. We believe that QPCR using SYBR green I dye will be an economical method for detection of airborne bio-aerosols.
Collapse
Affiliation(s)
- Zhanbo Wen
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Long Yu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Wenhui Yang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Jie Wang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Jianjun Zhao
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Na Li
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Jianchun Lu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| | - Jinsong Li
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071 Beijing, People’s Republic of China
| |
Collapse
|
18
|
Halstensen AS. Species-specific fungal DNA in airborne dust as surrogate for occupational mycotoxin exposure? Int J Mol Sci 2008; 9:2543-2558. [PMID: 19330091 PMCID: PMC2635655 DOI: 10.3390/ijms9122543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/29/2022] Open
Abstract
Possible health risks associated with occupational inhalation of mycotoxin-containing dust remain largely unknown, partly because methods for mycotoxin detection are not sensitive enough for the small dust masses obtained by personal sampling, which is needed for inhalable exposure measurements. Specific and sensitive PCR detection of fungi with mycotoxin-producing potential seem to be a good surrogate for occupational exposure measurements that include all fungal structures independent of morphology and cultivability. Results should, however, be interpreted with caution due to variable correlations with mycotoxin concentrations.
Collapse
Affiliation(s)
- Anne Straumfors Halstensen
- National Institute of Occupational Health, Department of Chemical and Biological Working Environment, Gydasvei 8, Pb. 8149 Dep., N-0033 Oslo, Norway E-Mail:
; Tel. +47-23-19-53-38; Fax: +47-23-19-52-06
| |
Collapse
|
19
|
Lee J, Jang J, Akin D, Savran CA, Bashir R. Real-time detection of airborne viruses on a mass-sensitive device. APPLIED PHYSICS LETTERS 2008; 93:13901. [PMID: 19529841 PMCID: PMC2682748 DOI: 10.1063/1.2956679] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/19/2008] [Indexed: 05/25/2023]
Abstract
We present real-time detection of airborne Vaccinia viruses using quartz crystal microbalance (QCM) in an integrated manner. Vaccinia viruses were aerosolized and neutralized using an electrospray aerosol generator, transported into the QCM chamber, and captured by a QCM crystal. The capture of the viruses on the QCM crystal resulted in frequency shifts proportional to the number of viruses. The capture rate varied linearly with the concentration of initial virus suspensions (8.5x10(8)-8.5x10(10) particlesml) at flow rates of 2.0 and 1.1 lmin. This work demonstrates the general potential of mass sensitive detection of nanoscale biological entities in air.
Collapse
|
20
|
Savazzini F, Longa CMO, Pertot I, Gessler C. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. J Microbiol Methods 2008; 73:185-94. [PMID: 18375004 DOI: 10.1016/j.mimet.2008.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/11/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
Abstract
Trichoderma (Hypocreales, Ascomycota) is a widespread genus in nature and several Trichoderma species are used in industrial processes and as biocontrol agents against crop diseases. It is very important that the persistence and spread of microorganisms released on purpose into the environment are accurately monitored. Real-time PCR methods for genus/species/strain identification of microorganisms are currently being developed to overcome the difficulties of classical microbiological and enzymatic methods for monitoring these populations. The aim of the present study was to develop and validate a specific real-time PCR-based method for detecting Trichoderma atroviride SC1 in soil. We developed a primer and TaqMan probe set constructed on base mutations in an endochitinase gene. This tool is highly specific for the detection and quantification of the SC1 strain. The limits of detection and quantification calculated from the relative standard deviation were 6000 and 20,000 haploid genome copies per gram of soil. Together with the low throughput time associated with this procedure, which allows the evaluation of many soil samples within a short time period, these results suggest that this method could be successfully used to trace the fate of T. atroviride SC1 applied as an open-field biocontrol agent.
Collapse
Affiliation(s)
- Federica Savazzini
- SafeCrop Centre - Istituto Agrario San Michele all'Adige, 38010 San Michele AA Trento, Italy.
| | | | | | | |
Collapse
|
21
|
Subcutaneous phaeohyphomycosis caused by Wallemia sebi in an immunocompetent host. J Clin Microbiol 2008; 46:1129-31. [PMID: 18174296 DOI: 10.1128/jcm.01920-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a case of subcutaneous phaeohyphomycosis due to Wallemia sebi in a 43-year-old-female, the first case reported since 1950. The lesion presented as a nonhealing ulcer on the dorsum of the left foot. Diagnosis was based on histological demonstration of the fungus and its recovery in culture.
Collapse
|
22
|
Pietarinen VM, Rintala H, Hyvärinen A, Lignell U, Kärkkäinen P, Nevalainen A. Quantitative PCR analysis of fungi and bacteria in building materials and comparison to culture-based analysis. ACTA ACUST UNITED AC 2008; 10:655-63. [DOI: 10.1039/b716138g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Niessen L. PCR-based diagnosis and quantification of mycotoxin-producing fungi. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 54:81-138. [PMID: 18291305 DOI: 10.1016/s1043-4526(07)00003-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi which have toxicologically relevant effects on vertebrates if administered in small doses via a natural route. In order to improve food safety and to protect consumers from harmful contaminants, the presence of fungi with the potential to produce such compounds must be checked at critical control points during the production of agricultural commodities as well as during the process of food and feed preparation. Polymerase chain reaction (PCR)-based diagnosis has been applied as an alternative assay replacing cumbersome and time-consuming microbiological and chemical methods for the detection and identification of the most serious toxin producers in the fungal genera Fusarium, Aspergillus, and Penicillium. The current chapter covers the numerous PCR-based assays which have been published since the first description of the use of this technology to detect Aspergillus flavus biosynthesis genes in 1996.
Collapse
Affiliation(s)
- Ludwig Niessen
- Technische Universität München, Lehrstuhl für Technische Mikrobiologie, Weihenstephaner Steig 16, D-85350 Freising, Germany
| |
Collapse
|
24
|
Stanley NJ, Kuehn TH, Kim SW, Raynor PC, Anantharaman S, Ramakrishnan MA, Goyal SM. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers. ACTA ACUST UNITED AC 2008; 10:474-81. [DOI: 10.1039/b719316e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Jørgensen C, Leser TD. Estimating amplification efficiency improves multiplex real-time PCR quantification of Bacillus licheniformis and Bacillus subtilis spores in animal feed. J Microbiol Methods 2006; 68:588-95. [PMID: 17184861 DOI: 10.1016/j.mimet.2006.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/08/2006] [Accepted: 11/08/2006] [Indexed: 11/30/2022]
Abstract
A multiplex real-time PCR assay was developed for absolute quantification in animal feed of Bacillus subtilis CH201 and Bacillus licheniformis CH200 spores, which constitute the viable component of the microbial growth promoter, BioPlus 2B. Spores were lysed using a bead-beating protocol. DNA was extracted and purified from the lysates with the Qiagen DNeasy Plant Kit. Two standard curves for absolute quantification were made and tested. Standard curve-1 was made from feed samples spiked with BioPlus 2B, while standard curve-2 was made from serially diluted DNA extracted from BioPlus 2B powder. Feed samples supplemented with BioPlus 2B were quantified using both standard curves. The detection limit of the assay was 10(4) CFU g(-1) of feed. The amplification efficiency (Eff) of each PCR was determined using the LinRegPCR software and Eff differences between individual samples and standards were corrected for. When compared to plate counts, standard curve-1 slightly under-estimated the number of spores (mean=-2.47% of plate counts). A spore density-dependent Eff was found, and Eff for standard curve-1 could not be determined. Standard curve-2 over-estimated spore numbers when not corrected for individual Eff (mean=+5.46% of plate counts). Standard curve-2 Eff was independent (Eff(mean)=1.96) of spore density. The assay quantified the numbers of spores in feed samples very similar to plate counts (mean=+0.47% of plate counts), when standard curve-2 was used and individual Eff was accounted for.
Collapse
Affiliation(s)
- Christel Jørgensen
- Chr. Hansen A/S, Corporate Research, Department of Health Functionality, 10-12 Boege Alle, DK-2970 Hoersholm, Denmark
| | | |
Collapse
|
26
|
Pneumopathies d'hypersensibilité et exposition aux moisissures et actinomycètes de l'environnement. J Mycol Med 2006. [DOI: 10.1016/j.mycmed.2006.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Matheny PB, Gossmann JA, Zalar P, Kumar TA, Hibbett DS. Resolving the phylogenetic position of the Wallemiomycetes: an enigmatic major lineage of Basidiomycota. ACTA ACUST UNITED AC 2006. [DOI: 10.1139/b06-128] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wallemiomycetes includes three species of molds from the genus Wallemia . These fungi are adapted to environments of high osmotic stress, contaminate various foods, cause respiratory disease, and have an unusual mode of asexual reproduction. Wallemia was recently proposed as a new class based on 18S ribosomal RNA gene sequences to accommodate the isolated position of the clade in the Basidiomycota. We analyzed the phylogenetic position of the Wallemiomycetes using 3451 nucleotide characters of the 18S, 25S, and 5.8S ribosomal RNA genes and 1282 amino acid positions of rpb1, rpb2, and tef1 nuclear protein-coding genes across 91 taxa. Different gene regions and methods of phylogenetic inference produce mildly conflicting placements of the Wallemiomycetes. Parsimony analyses of nrDNA data suggest that the Wallemiomycetes is an early diverging lineage of Basidiomycota, occupying a basal position near the Entorrhizomycetidae. Ultrastructural data, some Bayesian analyses, and amino acid sequences suggest the Wallemiomycetes may be the sister group of the Agaricomycotina or Ustilaginomycotina. The combined gene tree supports the Wallemiomycetes as a lineage basal to a core clade of Pucciniomycotina, Ustilaginomycotina, and Agaricomycotina with robust measures of branch support. This study reinforces the isolated position of Wallemia in the Basidiomycota using molecular data from six nuclear genes. In total, five major lineages of Basidiomycota are recognized: the Agaricomycotina, Ustilaginomycotina, Pucciniomycotina, Entorrhizomycetidae, and the Wallemiomycetes.
Collapse
Affiliation(s)
- P. Brandon Matheny
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - Jasmin A. Gossmann
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - Polona Zalar
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - T.K. Arun Kumar
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| | - David S. Hibbett
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
- Department of Mycology, Institute of Ecology, Evolution and Diversity, J.W. Goethe-University Frankfurt, Siesmayerstrasse 71-73, 60323 Frankfurt/Main, Germany
- Biology Department, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
- Department of Botany, University of Calicut, Kerala 673635, India
| |
Collapse
|
28
|
Halstensen AS, Nordby KC, Klemsdal SS, Elen O, Clasen PE, Eduard W. Toxigenic Fusarium spp. as determinants of trichothecene mycotoxins in settled grain dust. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2006; 3:651-9. [PMID: 17015401 DOI: 10.1080/15459620600987431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Trichothecenes are immunosuppressive mycotoxins produced mainly by Fusarium spp. and often are detected as natural contaminants of grain and other agricultural products. Exposure to trichothecenes through inhalation during grain work may represent possible health risks for grain farmers. We aimed, therefore, to investigate the level of Fusarium spp. and trichothecenes in settled grain dust collected during work on 92 Norwegian farms. Mycotoxins were determined by gas chromatography-mass spectrometry, whereas the Fusarium spp. were identified and quantified both by species-specific semiquantitative polymerase chain reaction (PCR) and by cultivation. All potential trichothecene-producing molds in the grain dust were quantified using a PCR assay specific for tri5, the gene coding for trichodiene synthase that catalyzes the first step in the trichothecene biosynthesis. We performed correlation analysis between mold-DNA and mycotoxins to assess whether the PCR-detected DNA could be used as indicators of the mycotoxins. The methodological problem of detecting small amounts of airborne mycotoxins during grain work may then be avoided. Whereas the trichothecene-producing Fusarium species in grain dust could not be identified or quantified to a sufficient extent by cultivation, all investigated Fusarium spp. could be specifically detected by PCR and quantified from the DNA agarose gel band intensities. Furthermore, we observed a strong correlation between the trichothecenes HT-2 toxin (HT-2) or T-2 toxin (T-2) and DNA specific for tri5 (r = 0.68 for HT-2 and r = 0.50 for T-2; p < 0.001), F. langsethiae (r = 0.77 for HT-2 and r = 0.59 for T-2; p < 0.001), or F. poae (r = 0.41 for HT-2 and r = 0.35 for T-2; p < 0.001). However, only a moderate correlation was observed between the trichothecene deoxynivalenol (DON) and the combination of its producers, F. culmorum and F. graminearum (r = 0.24, p = 0.02), and no significant correlation was observed between DON and tri5. PCR clearly improved the detection of toxigenic Fusaria as potential sources of health risks for farmers inhaling grain dust during work, but the use of Fusarium-DNA as indicators for trichothecenes should be used cautiously.
Collapse
|
29
|
Halstensen AS, Nordby KC, Eduard W, Klemsdal SS. Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. ACTA ACUST UNITED AC 2006; 8:1235-41. [PMID: 17133280 DOI: 10.1039/b609840a] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.
Collapse
Affiliation(s)
- Anne Straumfors Halstensen
- National Institute of Occupational Health, Dept of Chemical and Biological Working Environment, N-0033 Oslo, Norway.
| | | | | | | |
Collapse
|
30
|
Peccia J, Hernandez M. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2006; 40:3941-3961. [PMID: 32288550 PMCID: PMC7108281 DOI: 10.1016/j.atmosenv.2006.02.029] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 02/18/2006] [Accepted: 02/18/2006] [Indexed: 05/19/2023]
Abstract
The quantity, identity, and distribution of biomass in indoor and outdoor aerosols are poorly described. This is not consistent with the current understanding of atmospheric chemistry or the microbiological characterization of aquatic and terrestrial environments. This knowledge gap is due to both difficulties in applying contemporary microbiological techniques to the low biomass concentrations present in aerosols, and the traditional reliance of aerosol researchers on culture-based techniques-the quantitative limitations and ecological biases of which have been well-documented and are now avoided in other environmental matrices. This article reviews the emergence of the polymerase chain reaction (PCR) as a nonculture-based method to determine the identity, distribution, and abundance of airborne microorganisms. To encourage the use of PCR-based techniques by a broad spectrum of aerosol researchers, emphasis is given to the critical, aerosol specific method issues of sample processing, DNA extraction, and PCR inhibition removal. These methods are synthesized into a generalized procedure for the PCR-based study of microbial aerosols-equally applicable to both indoor and outdoor aerosol environments.
Collapse
Affiliation(s)
- Jordan Peccia
- Department of Chemical Engineering, Environmental Engineering Program, Yale University, New Haven, CT 06520, USA
- Corresponding author. Tel.: +1 203 432 4385; fax: +1 203 432 4387.
| | - Mark Hernandez
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado-Boulder, Boulder, CO 80309, USA
| |
Collapse
|
31
|
Pujol M, Badosa E, Manceau C, Montesinos E. Assessment of the environmental fate of the biological control agent of fire blight, Pseudomonas fluorescens EPS62e, on apple by culture and real-time PCR methods. Appl Environ Microbiol 2006; 72:2421-7. [PMID: 16597940 PMCID: PMC1449005 DOI: 10.1128/aem.72.4.2421-2427.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The colonization of apple blossoms and leaves by Pseudomonas fluorescens EPS62e was monitored in greenhouse and field trials using cultivable cell counting and real-time PCR. The real-time PCR provided a specific quantitative method for the detection of strain EPS62e. The detection level was around 10(2) cells g (fresh weight)(-1) and the standard curve was linear within a 5-log range. EPS62e actively colonized flowers reaching values from 10(7) to 10(8) cells per blossom. In apple flowers, no significant differences were observed between population levels obtained by real-time PCR and plating, suggesting that viable but nonculturable (VBNC) cells and residual nondegraded DNA were not present. In contrast, on apple leaves, where cultivable populations of EPS62e decreased with time, significant differences were observed between real-time PCR and plating. These differences indicate the presence of VBNC cells or nondegraded DNA after cell death. Therefore, the EPS62e population was under optimal conditions during the colonization of flowers but it was stressed and poorly survived on leaves. It was concluded that for monitoring this biological control agent, the combined use of cultivable cell count and real-time PCR is necessary.
Collapse
Affiliation(s)
- Marta Pujol
- Institute of Food and Agricultural Technology-CIDSAV-CeRTA, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | | | | | | |
Collapse
|
32
|
Zeng QY, Westermark SO, Rasmuson-Lestander A, Wang XR. Detection and quantification of Cladosporium in aerosols by real-time PCR. ACTA ACUST UNITED AC 2005; 8:153-60. [PMID: 16395473 DOI: 10.1039/b509515h] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cladosporium is one of the most common airborne molds found in indoor and outdoor environments. Cladosporium spores are important aeroallergens, and prolonged exposure to elevated spore concentrations can provoke chronic allergy and asthma. To accurately quantify the levels of Cladosporium in indoor and outdoor environments, two real-time PCR systems were developed in this study. The two real-time PCR systems are highly specific and sensitive for Cladosporium detection even in a high background of other fungal DNAs. These methods were employed to quantify Cladosporium in aerosols of five different indoor environments. The investigation revealed a high spore concentration of Cladosporium (10(7) m(-3)) in a cow barn that accounted for 28-44% of the airborne fungal propagules. In a countryside house that uses firewood for heating and in a paper and pulp factory, Cladosporium was detected at 10(4) spores m(-3), which accounted for 2-6% of the fungal propagules in the aerosols. The concentrations of Cladosporium in these three indoor environments far exceeded the medical borderline level (3000 spores m(-3)). In a power station and a fruit and vegetable storage, Cladosporium was found to be a minor component in the aerosols, accounted for 0.01-0.1% of the total fungal propagules. These results showed that monitoring Cladosporium in indoor environments is more important than in outdoor environments from the public health point of view. Cladosporium may not be the dominant fungi in some indoor environments, but its concentration could still be exceeding the threshold value for clinical significance. The methods developed in this study could facilitate accurate detection and quantification of Cladosporium for public health related risk assessment.
Collapse
Affiliation(s)
- Qing-Yin Zeng
- National Institute for Working Life, SE-90713, Umeå, Sweden
| | | | | | | |
Collapse
|