1
|
Michalska-Smith M, Schlatter DC, Pombubpa N, Castle SC, Grandy AS, Borer ET, Seabloom EW, Kinkel LL. Plant community richness and foliar fungicides impact soil Streptomyces inhibition, resistance, and resource use phenotypes. Front Microbiol 2024; 15:1452534. [PMID: 39435438 PMCID: PMC11491370 DOI: 10.3389/fmicb.2024.1452534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/23/2024] Open
Abstract
Plants serve as critical links between above- and below-ground microbial communitites, both influencing and being influenced by microbes in these two realms. Below-ground microbial communities are expected to respond to soil resource environments, which are mediated by the roots of plants that can, in turn, be influenced by the above-ground community of foliar endophytes. For instance, diverse plant communities deposit more, and more diverse, nutrients into the soil, and this deposition is often increased when foliar pathogens are removed. Differences in soil resources can alter soil microbial composition and phenotypes, including inhibitory capacity, resource use, and antibiotic resistance. In this work, we consider plots differing in plant richness and application of foliar fungicide, evaluating consequences on soil resource levels and root-associated Streptomyces phenotypes. Soil carbon, nitrogen, phosphorus, potassium, and organic matter were greater in samples from polyculture than monoculture, yet this increase was surprisingly offset when foliar fungal communities were disrupted. We find that Streptomyces phenotypes varied more between richness plots-with the Streptomyces from polyculture showing lower inhibitory capacity, altered resource-use profiles, and greater antibiotic resistance-than between subplots with/without foliar fungicide. Where foliar fungicide affected phenotypes, it did so differently in polyculture than in monoculture, for instance decreasing niche width and overlap in monoculture while increasing them in polyculture. No differences in phenotype were correlated with soil nutrient levels, suggesting the need for further research looking more closely at soil resource diversity and particular compounds that were found to differ between treatments.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS) Plant Science Research Unit, St. Paul, MN, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Sarah C. Castle
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - A. Stuart Grandy
- Center for Biogeochemistry and Microbial Ecology (Soil BioME), University of New Hampshire, Durham, NC, United States
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NC, United States
| | - Elizabeth T. Borer
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Eric W. Seabloom
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
| | - Linda L. Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
2
|
Kopecky J, Kamenik Z, Omelka M, Novotna J, Stefani T, Sagova-Mareckova M. Phylogenetically related soil actinomycetes distinguish isolation sites by their metabolic activities. FEMS Microbiol Ecol 2023; 99:fiad139. [PMID: 37935470 DOI: 10.1093/femsec/fiad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/24/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Soil environments are inhabited by microorganisms adapted to its diversified microhabitats. The metabolic activity of individual strains/populations reflects resources available at a particular spot, quality of which may not comply with broad soil characteristics. To explore the potential of individual strains to adapt to particular micro-niches of carbon sources, a set of 331 Actinomycetia strains were collected at ten sites differing in vegetation, soil pH, organic matter content and quality. The strains were isolated on the same complex medium with neutral pH and their metabolites analyzed by UHPLC and LC-MS/MS in spent cultivation medium (metabolic profiles). For all strains, their metabolic profiles correlated with soil pH and organic matter content of the original sites. In comparison, strains phylogeny based on either 16S rRNA or the beta-subunit of DNA-dependent RNA polymerase (rpoB) genes was partially correlated with soil organic matter content but not soil pH at the sites. Antimicrobial activities of strains against Kocuria rhizophila, Escherichia coli, and Saccharomyces cerevisiae were both site- and phylogeny-dependent. The precise adaptation of metabolic profiles to overall sites characteristics was further supported by the production of locally specific bioactive metabolites and suggested that carbon resources represent a significant selection pressure connected to specific antibiotic activities.
Collapse
Affiliation(s)
- Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Zdenek Kamenik
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marek Omelka
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 186 75 Prague, Czechia
| | - Jitka Novotna
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, 161 06 Prague, Czechia
| | - Tommaso Stefani
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Czech Acad Sci, 142 20 Prague, Czechia
| | - Marketa Sagova-Mareckova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Prague, Czechia
| |
Collapse
|
3
|
Wang Y, Ma L, Liu Z, Chen J, Song H, Wang J, Cui H, Yang Z, Xiao S, Liu K, An L, Chen S. Microbial interactions play an important role in regulating the effects of plant species on soil bacterial diversity. Front Microbiol 2022; 13:984200. [PMID: 36187969 PMCID: PMC9521175 DOI: 10.3389/fmicb.2022.984200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Plant species and microbial interactions have significant impacts on the diversity of bacterial communities. However, few studies have explored interactions among these factors, such the role of microbial interactions in regulating the effects of plant species on soil bacterial diversity. We assumed that plant species not only affect bacterial community diversity directly, but also influence bacterial community diversity indirectly through changing microbial interactions. Specifically, we collected soil samples associated with three different plant species, one evergreen shrub (Rhododendron simsii) and the other two deciduous shrubs (Dasiphora fruticosa and Salix oritrepha). Soil bacterial community composition and diversity were examined by high-throughput sequencing. Moreover, soil bacterial antagonistic interactions and soil edaphic characteristics were evaluated. We used structural equation modeling (SEM) to disentangle and compare the direct effect of different plant species on soil bacterial community diversity, and their indirect effects through influence on soil edaphic characteristics and microbial antagonistic interactions. The results showed that (1) Plant species effects on soil bacterial diversity were significant; (2) Plant species effects on soil microbial antagonistic interactions were significant; and (3) there was not only a significant direct plant species effect on bacterial diversity, but also a significant indirect effect on bacterial diversity through influence on microbial antagonistic interactions. Our study reveals the difference among plant species in their effects on soil microbial antagonistic interactions and highlights the vital role of microbial interactions on shaping soil microbial community diversity.
Collapse
Affiliation(s)
- Yajun Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lan Ma
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxian Song
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Jiajia Wang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hanwen Cui
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Sa Xiao
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Kun Liu
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Lizhe An
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Cobos R, Ibañez A, Diez-Galán A, Calvo-Peña C, Ghoreshizadeh S, Coque JJR. The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070840. [PMID: 35406820 PMCID: PMC9003034 DOI: 10.3390/plants11070840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 05/13/2023]
Abstract
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies.
Collapse
Affiliation(s)
- Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Alba Diez-Galán
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Seyedehtannaz Ghoreshizadeh
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
| | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (R.C.); (A.I.); (A.D.-G.); (C.C.-P.); (S.G.)
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
- Correspondence: ; Tel.: +34-987291811
| |
Collapse
|
5
|
Wang YF, Chen P, Wang FH, Han WX, Qiao M, Dong WX, Hu CS, Zhu D, Chu HY, Zhu YG. The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. ENVIRONMENT INTERNATIONAL 2022; 161:107133. [PMID: 35149447 DOI: 10.1016/j.envint.2022.107133] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Long-term fertilization is known to impact the biodiversity and community structures of soil organisms, which are responsible for multiple soil ecosystem functions (multifunctionality). However the relationship between the alterations of soil organisms and ecosystem multifunctionality remains unclear, especially in the case of long-term fertilization. To explore the contribution of soil organismal biodiversity and community structures to ecosystem multifunctionality, we took soil samples from a nearly 25-year field fertilization experiment. Organic matter significantly improved the soil ecosystem multifunctionality. Ecosystem multifunctionality was found to be closely linked to the biodiversity and communities of soil organisms within the major ecological clustering of soil organisms (Module 1) according to the trophic co-occurrence network, rather than the entire community of soil organisms. This indicated that ecological clusters of soil organisms within the network were critical in maintaining soil ecosystem multifunctionality. The application of organic fertilization could enrich specialized soil organisms and increase interactions of soil organisms in the ecological cluster. As a result, our findings emphasize the role of ecological clusters in the soil organismal co-occurrence network in controlling soil multifunctionality after long-term fertilization, presenting a novel perspective on the link between soil biodiversity and ecosystem multifunctionality.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Peng Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Feng-Hua Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China
| | - Wan-Xue Han
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wen-Xu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Chun-Sheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hai-Yan Chu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
6
|
Gonzalo M, Deveau A, Aigle B. Inhibitions Dominate but Stimulations and Growth Rescues Are Not Rare Among Bacterial Isolates from Grains of Forest Soil. MICROBIAL ECOLOGY 2020; 80:872-884. [PMID: 32879989 DOI: 10.1007/s00248-020-01579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Soil is a complex environment made of multiple microhabitats in which a wide variety of microorganisms co-exist and interact to form dynamic communities. While the abiotic factors that regulate the structure of these communities are now quite well documented, our knowledge of how bacteria interact with each other within these communities is still insufficient. Literature reveals so far contradictory results and is mainly focused on antagonistic interactions. To start filling this gap, we isolated 35 different bacterial isolates from grains of soil assuming that, at this scale, these bacteria would have been likely interacting in their natural habitat. We tested pairwise interactions between all isolates from each grain and scored positive and negative interactions. We compared the effects of simultaneous versus delayed co-inoculations, allowing or not to a strain to modify first its environment. One hundred fifty-seven interactions, either positive or negative, were recorded among the 525 possible one's. Members of the Bacillus subtilis, Pseudomonas and Streptomyces genera were responsible for most inhibitions, while positive interactions occurred between isolates of the Bacillales order and only in delayed inoculation conditions. Antagonist isolates had broad spectral abilities to acquire nutrients from organic and inorganic matter, while inhibited isolates tended to have little potentials. Despite an overall domination of antagonistic interactions (87%), a third of the isolates were able to stimulate or rescue the growth of other isolates, suggesting that cooperation between bacteria may be underestimated.
Collapse
Affiliation(s)
- Milena Gonzalo
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
- Université de Lorraine, INRAE , DynAMic, F-54000, Nancy, France
| | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France.
| | - Bertrand Aigle
- Université de Lorraine, INRAE , DynAMic, F-54000, Nancy, France.
| |
Collapse
|
7
|
Hamid ME, Reitz T, Joseph MRP, Hommel K, Mahgoub A, Elhassan MM, Buscot F, Tarkka M. Diversity and geographic distribution of soil streptomycetes with antagonistic potential against actinomycetoma-causing Streptomyces sudanensis in Sudan and South Sudan. BMC Microbiol 2020; 20:33. [PMID: 32050891 PMCID: PMC7017484 DOI: 10.1186/s12866-020-1717-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Production of antibiotics to inhibit competitors affects soil microbial community composition and contributes to disease suppression. In this work, we characterized whether Streptomyces bacteria, prolific antibiotics producers, inhibit a soil borne human pathogenic microorganism, Streptomyces sudanensis. S. sudanensis represents the major causal agent of actinomycetoma - a largely under-studied and dreadful subcutaneous disease of humans in the tropics and subtropics. The objective of this study was to evaluate the in vitro S. sudanensis inhibitory potential of soil streptomycetes isolated from different sites in Sudan, including areas with frequent (mycetoma belt) and rare actinomycetoma cases of illness. RESULTS Using selective media, 173 Streptomyces isolates were recovered from 17 sites representing three ecoregions and different vegetation and ecological subdivisions in Sudan. In total, 115 strains of the 173 (66.5%) displayed antagonism against S. sudanensis with different levels of inhibition. Strains isolated from the South Saharan steppe and woodlands ecoregion (Northern Sudan) exhibited higher inhibitory potential than those strains isolated from the East Sudanian savanna ecoregion located in the south and southeastern Sudan, or the strains isolated from the Sahelian Acacia savanna ecoregion located in central and western Sudan. According to 16S rRNA gene sequence analysis, isolates were predominantly related to Streptomyces werraensis, S. enissocaesilis, S. griseostramineus and S. prasinosporus. Three clusters of isolates were related to strains that have previously been isolated from human and animal actinomycetoma cases: SD524 (Streptomyces sp. subclade 6), SD528 (Streptomyces griseostramineus) and SD552 (Streptomyces werraensis). CONCLUSION The in vitro inhibitory potential against S. sudanensis was proven for more than half of the soil streptomycetes isolates in this study and this potential may contribute to suppressing the abundance and virulence of S. sudanensis. The streptomycetes isolated from the mycetoma free South Saharan steppe ecoregion show the highest average inhibitory potential. Further analyses suggest that mainly soil properties and rainfall modulate the structure and function of Streptomyces species, including their antagonistic activity against S. sudanensis.
Collapse
Affiliation(s)
- Mohamed E Hamid
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- Department of Clinical Microbiology and Parasitology/ College of Medicine, King Khalid University, PO Box 641, Abha, 61314, Saudi Arabia
- Department of Preventive Medicine, Faculty of Veterinary Science, University of Khartoum, Khartoum, Sudan
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- German Centre of Integrative Biodiversity Research (iDiv), Halle - Jena - Leipzig, Germany
| | - Martin R P Joseph
- Department of Clinical Microbiology and Parasitology/ College of Medicine, King Khalid University, PO Box 641, Abha, 61314, Saudi Arabia
| | - Kerstin Hommel
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
| | - Adil Mahgoub
- Department of Preventive Medicine, Faculty of Veterinary Science, University of Khartoum, Khartoum, Sudan
| | - Mogahid M Elhassan
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taibah University, Medina, Saudi Arabia
| | - François Buscot
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany
- German Centre of Integrative Biodiversity Research (iDiv), Halle - Jena - Leipzig, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle, Germany.
- German Centre of Integrative Biodiversity Research (iDiv), Halle - Jena - Leipzig, Germany.
| |
Collapse
|
8
|
Inhibitory interaction networks among coevolved Streptomyces populations from prairie soils. PLoS One 2019; 14:e0223779. [PMID: 31671139 PMCID: PMC6822729 DOI: 10.1371/journal.pone.0223779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022] Open
Abstract
Soil microbes live within highly complex communities, where community composition, function, and evolution are the product of diverse interactions among community members. Analysis of the complex networks of interactions within communities has the potential to shed light on community stability, functioning, and evolution. However, we have little understanding of the variation in interaction networks among coevolved soil populations. We evaluated networks of antibiotic inhibitory interactions among sympatric Streptomyces communities from prairie soil. Inhibition networks differed significantly in key network characteristics from expectations under null models, largely reflecting variation among Streptomyces in the number of sympatric populations that they inhibited. Moreover, networks of inhibitory interactions within Streptomyces communities differed significantly from each other, suggesting unique network structures among soil communities from different locations. Analyses of tri-partite interactions (triads) showed that some triads were significantly over- or under- represented, and that communities differed in ‘preferred’ triads. These results suggest that local processes generate distinct structures among sympatric Streptomyces inhibition networks in soil. Understanding the properties of microbial interaction networks that generate competitive and functional capacities of soil communities will shed light on the ecological and coevolutionary history of sympatric populations, and provide a foundation for more effective management of inhibitory capacities of soil microbial communities.
Collapse
|
9
|
Dundore-Arias JP, Felice L, Dill-Macky R, Kinkel LL. Carbon Amendments Induce Shifts in Nutrient Use, Inhibitory, and Resistance Phenotypes Among Soilborne Streptomyces. Front Microbiol 2019; 10:498. [PMID: 30972036 PMCID: PMC6445949 DOI: 10.3389/fmicb.2019.00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Carbon amendments are used in agriculture for increasing microbial activity and biomass in the soil. Changes in microbial community composition and function in response to carbon additions to soil have been associated with biological suppression of soilborne diseases. However, the specific selective impacts of carbon amendments on microbial antagonistic populations are not well understood. We investigated the effects of soil carbon amendments on nutrient use profiles, and antibiotic inhibitory and resistance phenotypes of Streptomyces populations from agricultural soils. Soil mesocosms were amended at intervals over 9 months with low or high dose solutions of glucose, fructose, a complex amendment, or water only (non-amendment control). Over 130 Streptomyces isolates were collected from amended and non-amended mesocosm soils, and nutrient utilization profiles on 95 different carbon substrates were determined. A subset of isolates (n = 40) was characterized for their ability to inhibit or resist one another. Carbon amendments resulted in Streptomyces populations with greater niche widths, and increased growth efficiencies as compared with Streptomyces in non-amended soils. Shifts in microbial nutrient use and growth capacities coincided with positive selection for Streptomyces antibiotic inhibitory phenotypes in carbon-amended soils, resulting in populations dominated by phenotypes that combine both antagonistic capacities and a generalist lifestyle. Carbon inputs resulted in populations that on average were more resistant to one another than populations in non-amended soils. Shifts in metabolic capacities and antagonistic activity indicate that carbon additions to soil may selectively enrich Streptomyces antagonistic phenotypes, that are rare under non-nutrient selection, but can inhibit more intensively nutrient competitors, and resist phenotypes with similar functional traits. These results shed light on the potential for using carbon amendments to strategically mediate soil microbial community assembly, and contribute to the establishment of pathogen-suppressive soils in agricultural systems.
Collapse
Affiliation(s)
| | - Laura Felice
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
10
|
Yi X, Wang M, Zhou Z. The potential impact of naturally produced antibiotics, environmental factors, and anthropogenic pressure on the occurrence of erm genes in urban soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:282-289. [PMID: 30445415 DOI: 10.1016/j.envpol.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The occurrence of environmental antibiotic resistance genes (ARGs) are often attributed to selective pressure from antibiotics from point source pollution. However, the potential effects of natural production of antibiotics, environmental factors, and anthropogenic pressure on the development and spread of ARGs have not been fully investigated. This study evaluated the occurrence and distribution of erythromycin resistance methylase (erm) genes in urban soils. The ermA, ermB, ermC, ermD, ermF, ermG, ermT, and ermY genes were detected with detection frequencies ranging from 20% to 80% and abundances ranging between 5.95 × 101 and 6.94 × 106 copies g-1 dw soil. Both polyketide synthase (PKS) type I and type II biosynthesis genes-which are responsible for biosynthesis of polyketides, such as erythromycin-were detected in all soil samples with a range between 5.77 × 102 and 9.39 × 106 copies g-1 dw soil. The abundances of PKS genes were significantly correlated with 16S rRNA genes (r = 0.487 to 0.741, p < 0.001) and absolute abundances of ermB, ermC, ermD, ermG, and ermY (r = 0.302-0.490, p < 0.05), suggesting that the wide occurrence of ARGs in soils could be potentially driven by naturally produced antibiotics. Erythromycin was strongly correlated with ermB, ermC, ermF and ermY genes (r = 0.462 to 0.667, p < 0.05), but no significant correlation was observed between macrolides and PKS genes, suggesting other environmental factors may have contributed to detected macrolides. The fact that erm gene presented higher extent of variability than PKS genes in different land use types suggests that anthropogenic activity might also influence the occurrence of erm genes in urban soils.
Collapse
Affiliation(s)
- Xinzhu Yi
- Department of Civil and Environmental Engineering, National University of Singapore, 117411, Singapore; School of Life Sciences, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Mian Wang
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, United States
| | - Zhi Zhou
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, United States.
| |
Collapse
|
11
|
Synthesis of bioactive compounds from vermicast isolated actinomycetes species and its antimicrobial activity against human pathogenic bacteria. Microb Pathog 2018; 121:155-165. [DOI: 10.1016/j.micpath.2018.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
|
12
|
Choudoir MJ, Pepe-Ranney C, Buckley DH. Diversification of Secondary Metabolite Biosynthetic Gene Clusters Coincides with Lineage Divergence in Streptomyces. Antibiotics (Basel) 2018; 7:E12. [PMID: 29438308 PMCID: PMC5872123 DOI: 10.3390/antibiotics7010012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
We have identified Streptomyces sister-taxa which share a recent common ancestor and nearly identical small subunit (SSU) rRNA gene sequences, but inhabit distinct geographic ranges demarcated by latitude and have sufficient genomic divergence to represent distinct species. Here, we explore the evolutionary dynamics of secondary metabolite biosynthetic gene clusters (SMGCs) following lineage divergence of these sister-taxa. These sister-taxa strains contained 310 distinct SMGCs belonging to 22 different gene cluster classes. While there was broad conservation of these 22 gene cluster classes among the genomes analyzed, each individual genome harbored a different number of gene clusters within each class. A total of nine SMGCs were conserved across nearly all strains, but the majority (57%) of SMGCs were strain-specific. We show that while each individual genome has a unique combination of SMGCs, this diversity displays lineage-level modularity. Overall, the northern-derived (NDR) clade had more SMGCs than the southern-derived (SDR) clade (40.7 ± 3.9 and 33.8 ± 3.9, mean and S.D., respectively). This difference in SMGC content corresponded with differences in the number of predicted open reading frames (ORFs) per genome (7775 ± 196 and 7093 ± 205, mean and S.D., respectively) such that the ratio of SMGC:ORF did not differ between sister-taxa genomes. We show that changes in SMGC diversity between the sister-taxa were driven primarily by gene acquisition and deletion events, and these changes were associated with an overall change in genome size which accompanied lineage divergence.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Charles Pepe-Ranney
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR. Use of Endophytic and Rhizosphere Actinobacteria from Grapevine Plants To Reduce Nursery Fungal Graft Infections That Lead to Young Grapevine Decline. Appl Environ Microbiol 2017; 83:e01564-17. [PMID: 28986378 PMCID: PMC5717199 DOI: 10.1128/aem.01564-17] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Endophytic and rhizosphere actinobacteria isolated from the root system of 1-year-old grafted Vitis vinifera plants were evaluated for their activities against fungi that cause grapevine trunk diseases. A total of 58 endophytic and 94 rhizosphere isolates were tested. Based on an in vitro bioassay, 15.5% of the endophytic isolates and 30.8% of the rhizosphere isolates exhibited antifungal activity against the fungal pathogen Diplodia seriata, whereas 13.8% of the endophytic isolates and 16.0% of the rhizosphere isolates showed antifungal activity against Dactylonectria macrodidyma (formerly Ilyonectria macrodidyma). The strains which showed the greatest in vitro efficacy against both pathogens were further analyzed for their ability to inhibit the growth of Phaeomoniella chlamydospora and Phaeoacremonium minimum (formerly Phaeoacremonium aleophilum). Based on their antifungal activity, three rhizosphere isolates and three endophytic isolates were applied on grafts in an open-root field nursery in a 3-year trial. The field trial led to the identification of one endophytic strain, Streptomyces sp. VV/E1, and two rhizosphere isolates, Streptomyces sp. VV/R1 and Streptomyces sp. VV/R4, which significantly reduced the infection rates produced by the fungal pathogens Dactylonectria sp., Ilyonectria sp., P. chlamydospora, and P. minimum, all of which cause young grapevine decline. The VV/R1 and VV/R4 isolates also significantly reduced the mortality level of grafted plants in the nursery. This study shows that certain actinobacteria could represent a promising new tool for controlling fungal trunk pathogens that infect grapevine plants through the root system in nurseries.IMPORTANCE Grapevine trunk diseases are a major threat to the wine and grape industry worldwide. They cause a significant reduction in yields as well as in grape quality, and they can even cause plant death. Trunk diseases are caused by fungal pathogens that enter through pruning wounds and/or the root system. Although different strategies have recently been developed to protect pruning wounds using antifungal compounds (natural or synthetic) or biocontrol agents, no tools are yet available for controlling soil pathogens that infect plants through their root system. This study shows that different actinobacterial isolates, when applied to grafts in a nursery, can significantly reduce the infection rate caused by fungal pathogens that enter through the root system. This is a new, promising, and green alternative for preventing the decline of young grapevines in nurseries and vineyards.
Collapse
Affiliation(s)
| | | | | | | | - Ana Ibañez
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Alba Díez-Galán
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | | | - Juan José R Coque
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| |
Collapse
|
14
|
Kurnijasanti R, Isnaeni I, AT P, Sudjarwo SA. PHYLOGENETIC ANALYSIS AND ANTI MICROBIAL ACTIVITY OF Streptomyces spp. ISOLATED FROM COMPOST SOIL IN SURABAYA INDONESIA ON THE BASIS OF 16S Rrna GENE. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v53i3.6456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eight isolates of Streptomyces sp. can be isolated from compost soil in Surabaya, Indonesia. The results of biochemical and morphological tests showed that the 8 isolates were new. Phylogenetic analysis was performed on the sequence of 16S rRNA gene. Nucleotide sequences of 16S rRNA gene Streptomyces sp. the compost soil isolates of Surabaya were analyzed and compared with the 16S rRNA gene sequence from the literature. Streptomyces sp. the compost soil of Surabaya based on the 16S rRNA gene showed the new species of Streptomyces. The result of phylogenetic tree diagram showed that Streptomyces Sp-D, Sp-Ep, Sp-G and Sp-I found in Bratang Surabaya compost house land were new isolates. Streptomyces Sp-Ep was a new type of Streptomyces closely related to Streptomyces indonesiasis and Streptomyces nashvillensis. Streptomyces Sp-Ea was Streptomyces olivoreticuli which was still related to Streptomyces yogyakartensis. Streptomyces Sp-F was Streptomyces levis strain NRRL B-24299. Streptomyces Sp-C was Streptomyces filamentosus. Streptomyces Sp-D was a new type of Streptomyces closely related to Streptomyces javensis and Streptomyces roseus. Streptomyces Sp-G was a new type of Streptomyces closely related to Streptomyces roseoviridis strain NBRC 12911 and Streptomyces thermocarboxydovorans strain AT52. Streptomyces Sp-I was a new streptomyces that was still closely related to Streptomyces cangkringensis and Streptomyces asiaticus. Streptomyces Sp-A was Streptomyces laurentii strain: LMG 19959.
Collapse
|
15
|
Gao M, Glenn AE, Blacutt AA, Gold SE. Fungal Lactamases: Their Occurrence and Function. Front Microbiol 2017; 8:1775. [PMID: 28974947 PMCID: PMC5610705 DOI: 10.3389/fmicb.2017.01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/31/2017] [Indexed: 01/07/2023] Open
Abstract
Fungi are absorptive feeders and thus must colonize and ramify through their substrate to survive. In so doing they are in competition, particularly in the soil, with myriad microbes. These microbes use xenobiotic compounds as offensive weapons to compete for nutrition, and fungi must be sufficiently resistant to these xenobiotics. One prominent mechanism of xenobiotic resistance is through production of corresponding degrading enzymes. As typical examples, bacterial β-lactamases are well known for their ability to degrade and consequently confer resistance to β-lactam antibiotics, a serious emerging problem in health care. We have identified many fungal genes that putatively encode proteins exhibiting a high degree of similarity to β-lactamases. However, fungal cell walls are structurally different from the bacterial peptidoglycan target of β-lactams. This raises the question, why do fungi have lactamases and what are their functions? Previously, we identified and characterized one Fusarium verticillioides lactamase encoding gene (FVEG_08291) that confers resistance to the benzoxazinoid phytoanticipins produced by maize, wheat, and rye. Since benzoxazinoids are γ-lactams with five-membered rings rather than the four-membered β-lactams, we refer to the predicted enzymes simply as lactamases, rather than β-lactamases. An overview of fungal genomes suggests a strong positive correlation between environmental niche complexity and the number of fungal lactamase encoding genes, with soil-borne fungi showing dramatic amplification of lactamase encoding genes compared to those fungi found in less biologically complex environments. Remarkably, Fusarium species frequently possess large (>40) numbers of these genes. We hypothesize that many fungal hydrolytic lactamases are responsible for the degradation of plant or microbial xenobiotic lactam compounds. Alignment of protein sequences revealed two conserved patterns resembling bacterial β-lactamases, specifically those possessing PFAM domains PF00753 or PF00144. Structural predictions of F. verticillioides lactamases also suggested similar catalytic mechanisms to those of their bacterial counterparts. Overall, we present the first in-depth analysis of lactamases in fungi, and discuss their potential relevance to fitness and resistance to antimicrobials in the environment.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Anthony E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| | - Alex A. Blacutt
- Department of Plant Pathology, The University of Georgia, AthensGA, United States
| | - Scott E. Gold
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture – Agricultural Research Service, AthensGA, United States
| |
Collapse
|
16
|
Kraemer SA, Soucy JPR, Kassen R. Antagonistic interactions of soil pseudomonads are structured in time. FEMS Microbiol Ecol 2017; 93:3106319. [DOI: 10.1093/femsec/fix046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
|
17
|
Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica. Oecologia 2016; 182:789-802. [PMID: 27573616 DOI: 10.1007/s00442-016-3702-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.
Collapse
|
18
|
Choudoir MJ, Doroghazi JR, Buckley DH. Latitude delineates patterns of biogeography in terrestrial Streptomyces. Environ Microbiol 2016; 18:4931-4945. [PMID: 27322415 DOI: 10.1111/1462-2920.13420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/04/2016] [Indexed: 01/23/2023]
Abstract
The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - James R Doroghazi
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
A conceptual framework for invasion in microbial communities. ISME JOURNAL 2016; 10:2773-2775. [PMID: 27137125 DOI: 10.1038/ismej.2016.75] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/06/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022]
Abstract
There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.
Collapse
|
20
|
Han XM, Hu HW, Shi XZ, Wang JT, Han LL, Chen D, He JZ. Impacts of reclaimed water irrigation on soil antibiotic resistome in urban parks of Victoria, Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:48-57. [PMID: 26736055 DOI: 10.1016/j.envpol.2015.12.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/15/2015] [Accepted: 12/15/2015] [Indexed: 05/12/2023]
Abstract
UNLABELLED The effluents from wastewater treatment plants have been recognized as a significant environmental reservoir of antibiotics and antibiotic resistance genes (ARGs). Reclaimed water irrigation (RWI) is increasingly used as a practical solution for combating water scarcity in arid and semiarid regions, however, impacts of RWI on the patterns of ARGs and the soil bacterial community remain unclear. Here, we used high-throughput quantitative PCR and terminal restriction fragment length polymorphism techniques to compare the diversity, abundance and composition of a broad-spectrum of ARGs and total bacteria in 12 urban parks with and without RWI in Victoria, Australia. A total of 40 unique ARGs were detected across all park soils, with genes conferring resistance to β-lactam being the most prevalent ARG type. The total numbers and the fold changes of the detected ARGs were significantly increased by RWI, and marked shifts in ARG patterns were also observed in urban parks with RWI compared to those without RWI. The changes in ARG patterns were paralleled by a significant effect of RWI on the bacterial community structure and a co-occurrence pattern of the detected ARG types. There were significant and positive correlations between the fold changes of the integrase intI1 gene and two β-lactam resistance genes (KPC and IMP-2 groups), but no significant impacts of RWI on the abundances of intI1 and the transposase tnpA gene were found, indicating that RWI did not improve the potential for horizontal gene transfer of soil ARGs. Taken together, our findings suggested that irrigation of urban parks with reclaimed water could influence the abundance, diversity, and compositions of a wide variety of soil ARGs of clinical relevance. ONE-SENTENCE SUMMARY Irrigation of urban parks with treated wastewater significantly increased the abundance and diversity of various antibiotic resistance genes, but did not significantly enhance their potential for horizontal gene transfer.
Collapse
Affiliation(s)
- Xue-Mei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, China; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Xiu-Zhen Shi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Durso LM, Wedin DA, Gilley JE, Miller DN, Marx DB. Assessment of Selected Antibiotic Resistances in Ungrazed Native Nebraska Prairie Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:454-62. [PMID: 27065391 DOI: 10.2134/jeq2015.06.0280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The inherent spatial heterogeneity and complexity of antibiotic-resistant bacteria and antibiotic resistance (AR) genes in manure-affected soils makes it difficult to sort out resistance that can be attributed to human antibiotic use from resistance that occurs naturally in the soil. This study characterizes native Nebraska prairie soils that have not been affected by human or food-animal waste products to provide data on background levels of resistance in southeastern Nebraskan soils. Soil samples were collected from 20 sites enumerated on tetracycline and cefotaxime media; screened for tetracycline-, sulfonamide-, β-lactamase-, and macrolide-resistance genes; and characterized for soil physical and chemical parameters. All prairies contained tetracycline- and cefotaxime-resistant bacteria, and 48% of isolates collected were resistant to two or more antibiotics. Most (98%) of the soil samples and all 20 prairies had at least one tetracycline gene. Most frequently detected were (D), (A) (O), (L), and (B). Sulfonamide genes, which are considered a marker of human or animal activity, were detected in 91% of the samples, despite the lack of human inputs at these sites. No correlations were found between either phenotypic or genotypic resistance and soil physical or chemical parameters. Heterogeneity was observed in AR within and between prairies. Therefore, multiple samples are necessary to overcome heterogeneity and to accurately assess AR. Conclusions regarding AR depend on the gene target measured. To determine the impacts of food-animal antibiotic use on resistance, it is essential that background and/or baseline levels be considered, and where appropriate subtracted out, when evaluating AR in agroecosystems.
Collapse
|
22
|
Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. ACTA ACUST UNITED AC 2016; 43:115-28. [DOI: 10.1007/s10295-015-1683-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/29/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.
Collapse
Affiliation(s)
- Michael J Smanski
- grid.17635.36 0000000419368657 Department of Biochemistry, Molecular Biology, and Biophysics University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Daniel C Schlatter
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| | - Linda L Kinkel
- grid.17635.36 0000000419368657 BioTechnology Institute University of Minnesota-Twin Cities 55108 Saint Paul MN USA
- grid.17635.36 0000000419368657 Department of Plant Pathology University of Minnesota-Twin Cities 55108 Saint Paul MN USA
| |
Collapse
|
23
|
Biological Agents in Fusarium Wilt (FW) Diagnostic for Sustainable Pigeon Pea Production, Opportunities and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27312-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hu HW, Han XM, Shi XZ, Wang JT, Han LL, Chen D, He JZ. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiol Ecol 2015; 92:fiv169. [DOI: 10.1093/femsec/fiv169] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2015] [Indexed: 02/07/2023] Open
|
25
|
Schlatter DC, Kinkel LL. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces? BMC Evol Biol 2015; 15:186. [PMID: 26370703 PMCID: PMC4570699 DOI: 10.1186/s12862-015-0470-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Background Tradeoffs among competing traits are believed to be crucial to the maintenance of diversity in complex communities. The production of antibiotics to inhibit competitors and resistance to antibiotic inhibition are two traits hypothesized to be critical to microbial fitness in natural habitats, yet data on costs or tradeoffs associated with these traits are limited. In this work we characterized tradeoffs between antibiotic inhibition or resistance capacities and growth efficiencies or niche widths for a broad collection of Streptomyces from soil. Results Streptomyces isolates tended to have either very little or very high inhibitory capacity. In contrast, Streptomyces isolates were most commonly resistant to antibiotic inhibition by an intermediate number of other isolates. Streptomyces with either very high antibiotic inhibitory or resistance capacities had less efficient growth and utilized a smaller number of resources for growth (smaller niche width) than those with low inhibition or resistance capacities, suggesting tradeoffs between antibiotic inhibitory or resistance and resource use phenotypes. Conclusions This work suggests that life-history tradeoffs may be crucial to the maintenance of the vast diversity of antibiotic inhibitory and resistance phenotypes found among Streptomyces in natural communities. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0470-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel C Schlatter
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN, 55108, USA
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, MN, 55108, USA.
| |
Collapse
|
26
|
Sagova-Mareckova M, Ulanova D, Sanderova P, Omelka M, Kamenik Z, Olsovska J, Kopecky J. Phylogenetic relatedness determined between antibiotic resistance and 16S rRNA genes in actinobacteria. BMC Microbiol 2015; 15:81. [PMID: 25887892 PMCID: PMC4391685 DOI: 10.1186/s12866-015-0416-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Distribution and evolutionary history of resistance genes in environmental actinobacteria provide information on intensity of antibiosis and evolution of specific secondary metabolic pathways at a given site. To this day, actinobacteria producing biologically active compounds were isolated mostly from soil but only a limited range of soil environments were commonly sampled. Consequently, soil remains an unexplored environment in search for novel producers and related evolutionary questions. RESULTS Ninety actinobacteria strains isolated at contrasting soil sites were characterized phylogenetically by 16S rRNA gene, for presence of erm and ABC transporter resistance genes and antibiotic production. An analogous analysis was performed in silico with 246 and 31 strains from Integrated Microbial Genomes (JGI_IMG) database selected by the presence of ABC transporter genes and erm genes, respectively. In the isolates, distances of erm gene sequences were significantly correlated to phylogenetic distances based on 16S rRNA genes, while ABC transporter gene distances were not. The phylogenetic distance of isolates was significantly correlated to soil pH and organic matter content of isolation sites. In the analysis of JGI_IMG datasets the correlation between phylogeny of resistance genes and the strain phylogeny based on 16S rRNA genes or five housekeeping genes was observed for both the erm genes and ABC transporter genes in both actinobacteria and streptomycetes. However, in the analysis of sequences from genomes where both resistance genes occurred together the correlation was observed for both ABC transporter and erm genes in actinobacteria but in streptomycetes only in the erm gene. CONCLUSIONS The type of erm resistance gene sequences was influenced by linkage to 16S rRNA gene sequences and site characteristics. The phylogeny of ABC transporter gene was correlated to 16S rRNA genes mainly above the genus level. The results support the concept of new specific secondary metabolite scaffolds occurring more likely in taxonomically distant producers but suggest that the antibiotic selection of gene pools is also influenced by site conditions.
Collapse
Affiliation(s)
| | - Dana Ulanova
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the AS CR, v.v.i., Prague, Czech Republic.
- Oceanography Section, Science Research Center, Kochi University, IMT-MEXT, Kochi, Japan.
| | - Petra Sanderova
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czech Republic.
- Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic.
| | - Marek Omelka
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Zdenek Kamenik
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the AS CR, v.v.i., Prague, Czech Republic.
| | - Jana Olsovska
- Analytical and Testing Laboratory, Research Institute of Brewing and Malting, PLC, Prague, Czech Republic.
| | - Jan Kopecky
- Epidemiology and Ecology of Microorganisms, Crop Research Institute, Prague, Czech Republic.
| |
Collapse
|
27
|
Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology 2015; 96:134-42. [DOI: 10.1890/13-1648.1] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108 USA
| | - Matthew G. Bakker
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108 USA
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108 USA
| | - Linda L. Kinkel
- Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, Saint Paul, Minnesota 55108 USA
| |
Collapse
|
28
|
Becklund KK, Kinkel LL, Powers JS. Landscape-scale Variation in Pathogen-suppressive Bacteria in Tropical Dry Forest Soils of Costa Rica. Biotropica 2014. [DOI: 10.1111/btp.12155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kristen K. Becklund
- Department of Ecology, Evolution and Behavior; University of Minnesota; 100 Ecology Building 1987 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; St. Paul MN 55108 U.S.A
| | - Jennifer S. Powers
- Department of Ecology, Evolution and Behavior; University of Minnesota; 100 Ecology Building 1987 Upper Buford Circle St. Paul MN 55108 U.S.A
- Department of Plant Biology; University of Minnesota; St. Paul MN 55108 U.S.A
| |
Collapse
|
29
|
Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, Garbeva P. Impact of interspecific interactions on antimicrobial activity among soil bacteria. Front Microbiol 2014; 5:567. [PMID: 25389421 PMCID: PMC4211544 DOI: 10.3389/fmicb.2014.00567] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to screen for the production of antimicrobial activity by monocultures and pair-wise combinations of 146 phylogenetically different bacteria isolated from similar soil habitats. Growth responses of two human pathogenic model organisms, Escherichia coli WA321 and Staphylococcus aureus 533R4, were used to monitor antimicrobial activity. From all isolates, 33% showed antimicrobial activity only in monoculture and 42% showed activity only when tested in interactions. More bacterial isolates were active against S. aureus than against E. coli. The frequency of interaction-mediated induction of antimicrobial activity was 6% (154 interactions out of 2798) indicating that only a limited set of species combinations showed such activity. The screening revealed also interaction-mediated suppression of antimicrobial activity for 22% of all combinations tested. Whereas all patterns of antimicrobial activity (non-induced production, induced production and suppression) were seen for various bacterial classes, interaction-mediated induction of antimicrobial activity was more frequent for combinations of Flavobacteria and alpha- Proteobacteria. The results of our study give a first indication on the frequency of interference competitive interactions in natural soil bacterial communities which may forms a basis for selection of bacterial groups that are promising for the discovery of novel, cryptic antibiotics.
Collapse
Affiliation(s)
- Olaf Tyc
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Marlies van den Berg
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Saskia Gerards
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Johannes A van Veen
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands ; Department of Soil Quality, Wageningen University and Research Centre Wageningen, Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
30
|
Vaz Jauri P, Kinkel LL. Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype amongStreptomycesspp. FEMS Microbiol Ecol 2014; 90:264-75. [DOI: 10.1111/1574-6941.12389] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Patricia Vaz Jauri
- Department of Plant Pathology; University of Minnesota; Twin Cities MN USA
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; Twin Cities MN USA
| |
Collapse
|
31
|
Abstract
Most ecosystems are populated by a large number of diversified microorganisms, which interact with one another and form complex interaction networks. In addition, some of these microorganisms may colonize the surface or internal parts of plants and animals, thereby providing an additional level of interaction complexity. These microbial relations range from intraspecific to interspecific interactions, and from simple short-term interactions to intricate long-term ones. They have played a key role in the formation of plant and animal kingdoms, often resulting in coevolution; they control the size, activity level, and diversity patterns of microbial communities. Therefore, they modulate trophic networks and biogeochemical cycles, regulate ecosystem productivity, and determine the ecology and health of plant and animal partners. A better understanding of these interactions is needed to develop microbe-based ecological engineering strategies for environmental sustainability and conservation, to improve environment-friendly approaches for feed and food production, and to address health challenges posed by infectious diseases. The main types of biotic interactions are presented: interactions between microorganisms, interactions between microorganisms and plants, and interactions between microorganisms and animals.
Collapse
|
32
|
Schlatter DC, Kinkel LL. Global biogeography ofStreptomycesantibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 2014; 88:386-97. [DOI: 10.1111/1574-6941.12307] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/10/2014] [Accepted: 02/13/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
| | - Linda L. Kinkel
- Department of Plant Pathology; University of Minnesota; Saint Paul MN USA
| |
Collapse
|
33
|
Schlatter DC, DavelosBaines AL, Xiao K, Kinkel LL. Resource use of soilborne Streptomyces varies with location, phylogeny, and nitrogen amendment. MICROBIAL ECOLOGY 2013; 66:961-971. [PMID: 23959115 DOI: 10.1007/s00248-013-0280-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/06/2013] [Indexed: 06/02/2023]
Abstract
In this study, we explore variation in resource use among Streptomyces in prairie soils. Resource use patterns were highly variable among Streptomyces isolates and were significantly related to location, phylogeny, and nitrogen (N) amendment history. Streptomyces populations from soils less than 1 m apart differed significantly in their ability to use resources, indicating that drivers of resource use phenotypes in soil are highly localized. Variation in resource use within Streptomyces genetic groups was significantly associated with the location from which Streptomyces were isolated, suggesting that resource use is adapted to local environments. Streptomyces from soils under long-term N amendment used fewer resources and grew less efficiently than those from non-amended soils, demonstrating that N amendment selects for Streptomyces with more limited catabolic capacities. Finally, resource use among Streptomyces populations was correlated with soil carbon content and Streptomyces population densities. We hypothesize that variation in resource use among Streptomyces reflects adaptation to local resource availability and competitive species interactions in soil and that N amendments alter selection for resource use phenotypes.
Collapse
|
34
|
Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME JOURNAL 2013; 8:249-56. [PMID: 24152720 DOI: 10.1038/ismej.2013.175] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 11/08/2022]
Abstract
Soil bacteria produce a diverse array of antibiotics, yet our understanding of the specific roles of antibiotics in the ecological and evolutionary dynamics of microbial interactions in natural habitats remains limited. Here, we show a significant role for antibiotics in mediating antagonistic interactions and nutrient competition among locally coexisting Streptomycete populations from soil. We found that antibiotic inhibition is significantly more intense among sympatric than allopatric Streptomycete populations, indicating local selection for inhibitory phenotypes. For sympatric but not allopatric populations, antibiotic inhibition is significantly positively correlated with niche overlap, indicating that inhibition is targeted toward bacteria that pose the greatest competitive threat. Our results support the hypothesis that antibiotics serve as weapons in mediating local microbial interactions in soil and suggest that coevolutionary niche displacement may reduce the likelihood of an antibiotic arms race. Further insight into the diverse roles of antibiotics in microbial ecology and evolution has significant implications for understanding the persistence of antibiotic inhibitory and resistance phenotypes in environmental microbes, optimizing antibiotic drug discovery and developing strategies for managing microbial coevolutionary dynamics to enhance inhibitory phenotypes.
Collapse
|
35
|
Otto-Hanson LK, Grabau Z, Rosen C, Salomon CE, Kinkel LL. Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control. PHYTOPATHOLOGY 2013; 103:34-42. [PMID: 23035630 DOI: 10.1094/phyto-06-12-0129-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Success in biological control of plant diseases remains inconsistent in the field. A collection of well-characterized Streptomyces antagonists (n = 19 isolates) was tested for their capacities to inhibit pathogenic Streptomyces scabies (n = 15 isolates). There was significant variation among antagonists in ability to inhibit pathogen isolates and among pathogens in their susceptibility to inhibition. Only one antagonist could inhibit all pathogens, and antagonist-pathogen interactions were highly specific, highlighting the limitations of single-strain inoculum in biological control. However, the collection of pathogens could be inhibited by several combinations of antagonists, suggesting the potential for successful antagonist mixtures. Urea generally increased effectiveness of antagonists at inhibiting pathogens in vitro (increased mean inhibition zones) but its specific effects varied among antagonist-pathogen combinations. In greenhouse trials, urea enhanced the effectiveness of antagonist mixtures relative to individual antagonists in controlling potato scab. Although antagonist mixtures were frequently antagonistic in the absence of urea, all n= 2 and n = 3 antagonist-isolate combinations were synergistic in the presence of urea. This work provides insights into the efficacy of single- versus multiple-strain inocula in biological control and on the potential for nutrients to influence mixture success.
Collapse
Affiliation(s)
- L K Otto-Hanson
- Department of Plant Pathology, University of Minnesota, St. Paul 55108, USA.
| | | | | | | | | |
Collapse
|
36
|
Montano ET, Henderson LO. Studies of Antibiotic Production by Cave Bacteria. CAVE MICROBIOMES: A NOVEL RESOURCE FOR DRUG DISCOVERY 2013. [DOI: 10.1007/978-1-4614-5206-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Elaiomycins K and L, new azoxy antibiotics from Streptomyces sp. Tü 6399*. J Antibiot (Tokyo) 2012; 66:85-8. [DOI: 10.1038/ja.2012.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Escalante AE, Inouye S, Travisano M. A spectrum of pleiotropic consequences in development due to changes in a regulatory pathway. PLoS One 2012; 7:e43413. [PMID: 22937047 PMCID: PMC3427377 DOI: 10.1371/journal.pone.0043413] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 01/29/2023] Open
Abstract
Regulatory evolution has frequently been proposed as the primary mechanism driving morphological evolution. This is because regulatory changes may be less likely to cause deleterious pleiotropic effects than changes in protein structure, and consequently have a higher likelihood to be beneficial. We examined the potential for mutations in trans acting regulatory elements to drive phenotypic change, and the predictability of such change. We approach these questions by the study of the phenotypic scope and size of controlled alteration in the developmental network of the bacterium Myxococcus xanthus. We perturbed the expression of a key regulatory gene (fruA) by constructing independent in-frame deletions of four trans acting regulatory loci that modify its expression. While mutants retained developmental capability, the deletions caused changes in the expression of fruA and a dramatic shortening of time required for completion of development. We found phenotypic changes in the majority of traits measured, indicating pleiotropic effects of changes in regulation. The magnitude of the change for different traits was variable but the extent of differences between the mutants and parental type were consistent with changes in fruA expression. We conclude that changes in the expression of essential regulatory regions of developmental networks may simultaneously lead to modest as well as dramatic morphological changes upon which selection may subsequently act.
Collapse
Affiliation(s)
- Ana E Escalante
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America.
| | | | | |
Collapse
|
39
|
Kinkel LL, Schlatter DC, Bakker MG, Arenz BE. Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol 2012; 163:490-9. [PMID: 22922402 DOI: 10.1016/j.resmic.2012.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/04/2012] [Indexed: 01/01/2023]
Abstract
High densities of antagonistic Streptomyces are associated with plant disease suppression in many soils. Here we review use of inoculation and organic matter amendments for enriching antagonistic Streptomyces populations to reduce plant disease and note that effective and consistent disease suppression in response to management has been elusive. We argue that shifting the focus of research from short-term disease suppression to the population ecology and evolutionary biology of antagonistic Streptomyces in soil will enhance prospects for effective management. A framework is presented for considering the impacts of short- and long-term management on competitive and coevolutionary dynamics among Streptomyces populations in relation to disease suppression.
Collapse
Affiliation(s)
- Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
40
|
Garbeva P, Tyc O, Remus-Emsermann MNP, van der Wal A, Vos M, Silby M, de Boer W. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One 2011; 6:e27266. [PMID: 22110622 PMCID: PMC3217935 DOI: 10.1371/journal.pone.0027266] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/13/2011] [Indexed: 11/18/2022] Open
Abstract
Background Many soil-inhabiting bacteria are known to produce secondary metabolites that can suppress microorganisms competing for the same resources. The production of antimicrobial compounds is expected to incur fitness costs for the producing bacteria. Such costs form the basis for models on the co-existence of antibiotic-producing and non-antibiotic producing strains. However, so far studies quantifying the costs of antibiotic production by bacteria are scarce. The current study reports on possible costs, for antibiotic production by Pseudomonas fluorescens Pf0-1, a soil bacterium that is induced to produce a broad-spectrum antibiotic when it is confronted with non-related bacterial competitors or supernatants of their cultures. Methodology and Principal Findings We measured the possible cost of antibiotic production for Pseudomonas fluorescens Pf0-1 by monitoring changes in growth rate with and without induction of antibiotic production by supernatant of a bacterial competitor, namely Pedobacter sp.. Experiments were performed in liquid as well as on semi-solid media under nutrient-limited conditions that are expected to most clearly reveal fitness costs. Our results did not reveal any significant costs for production of antibiotics by Pseudomonas fluorescens Pf0-1. Comparison of growth rates of the antibiotic-producing wild-type cells with those of non-antibiotic producing mutants did not reveal costs of antibiotic production either. Significance Based on our findings we propose that the facultative production of antibiotics might not be selected to mitigate metabolic costs, but instead might be advantageous because it limits the risk of competitors evolving resistance, or even the risk of competitors feeding on the compounds produced.
Collapse
Affiliation(s)
- Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS Biol 2011; 9:e1001184. [PMID: 22039352 PMCID: PMC3201933 DOI: 10.1371/journal.pbio.1001184] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 09/15/2011] [Indexed: 12/20/2022] Open
Abstract
Soil grains harbor an astonishing diversity of Streptomyces strains producing diverse secondary metabolites. However, it is not understood how this genotypic and chemical diversity is ecologically maintained. While secondary metabolites are known to mediate signaling and warfare among strains, no systematic measurement of the resulting interaction networks has been available. We developed a high-throughput platform to measure all pairwise interactions among 64 Streptomyces strains isolated from several individual grains of soil. We acquired more than 10,000 time-lapse movies of colony development of each isolate on media containing compounds produced by each of the other isolates. We observed a rich set of such sender-receiver interactions, including inhibition and promotion of growth and aerial mycelium formation. The probability that two random isolates interact is balanced; it is neither close to zero nor one. The interactions are not random: the distribution of the number of interactions per sender is bimodal and there is enrichment for reciprocity—if strain A inhibits or promotes B, it is likely that B also inhibits or promotes A. Such reciprocity is further enriched in strains derived from the same soil grain, suggesting that it may be a property of coexisting communities. Interactions appear to evolve rapidly: isolates with identical 16S rRNA sequences can have very different interaction patterns. A simple eco-evolutionary model of bacteria interacting through antibiotic production shows how fast evolution of production and resistance can lead to the observed statistical properties of the network. In the model, communities are evolutionarily unstable—they are constantly being invaded by strains with new sets of interactions. This combination of experimental and theoretical observations suggests that diverse Streptomyces communities do not represent a stable ecological state but an intrinsically dynamic eco-evolutionary phenomenon. Soil harbors a diverse spectrum of bacteria that secrete small molecules such as antibiotics. Streptomyces bacteria, considered the most prolific producers, have been mined for decades for novel products with therapeutic applications, yet little is known about the properties of the interaction networks these compounds mediate. These networks can hold clues about how the diversity of small molecules and of Streptomyces strains with different production and resistance capabilities is maintained and promoted. To explore the network properties, we developed a high-throughput platform for measuring pairwise phenotypic interactions mediated by secreted metabolites, and used it to measure the interaction network among 64 random Streptomyces isolates from several grains of soil. We found many strong but specific interactions that are on average determined more by metabolite production than by metabolite sensitivity. We found reciprocity between strains, whereby if one strain inhibits or promotes the growth of a second strain, it's likely that the second strain affects the first strain in a similar manner. These interactions are not correlated with phylogeny, as very closely related strains exhibit different interaction patterns. We could explain these findings with a mathematical model requiring interplay between ecological dynamics and evolution of antibiotic production and resistance, suggesting that the bacterial and small molecule diversity of these communities is maintained by constant evolutionary turnover of interaction phenotypes.
Collapse
Affiliation(s)
- Kalin Vetsigian
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rishi Jajoo
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roy Kishony
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Poulsen M, Oh DC, Clardy J, Currie CR. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 2011; 6:e16763. [PMID: 21364940 PMCID: PMC3043073 DOI: 10.1371/journal.pone.0016763] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/13/2011] [Indexed: 11/19/2022] Open
Abstract
Identifying new sources for small molecule discovery is necessary to help mitigate the continuous emergence of antibiotic-resistance in pathogenic microbes. Recent studies indicate that one potentially rich source of novel natural products is Actinobacterial symbionts associated with social and solitary Hymenoptera. Here we test this possibility by examining two species of solitary mud dauber wasps, Sceliphron caementarium and Chalybion californicum. We performed enrichment isolations from 33 wasps and obtained more than 200 isolates of Streptomyces Actinobacteria. Chemical analyses of 15 of these isolates identified 11 distinct and structurally diverse secondary metabolites, including a novel polyunsaturated and polyoxygenated macrocyclic lactam, which we name sceliphrolactam. By pairing the 15 Streptomyces strains against a collection of fungi and bacteria, we document their antifungal and antibacterial activity. The prevalence and anti-microbial properties of Actinobacteria associated with these two solitary wasp species suggest the potential role of these Streptomyces as antibiotic-producing symbionts, potentially helping defend their wasp hosts from pathogenic microbes. Finding phylogenetically diverse and chemically prolific Actinobacteria from solitary wasps suggests that insect-associated Actinobacteria can provide a valuable source of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Michael Poulsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Dong-Chan Oh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kraemer SA, Toups MA, Velicer GJ. Natural variation in developmental life-history traits of the bacterium Myxococcus xanthus. FEMS Microbiol Ecol 2010; 73:226-33. [PMID: 20491924 PMCID: PMC2910118 DOI: 10.1111/j.1574-6941.2010.00888.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The soil bacterium Myxococcus xanthus is a model for the study of cooperative microbial behaviours such as social motility and fruiting body formation. Several M. xanthus developmental traits that are frequently quantified for laboratory strains are likely to be significant components of fitness in natural populations, yet little is known about the degree to which such traits vary in the wild and may therefore be subject to natural selection. Here, we have tested whether several key M. xanthus developmental life-history traits have diverged significantly among strains both from globally distant origins and from within a sympatric, centimetre-scale population. The isolates examined here were found to vary considerably, in a heritable manner, in their rate of developmental aggregation and in both their rate and efficiency of spore production. Isolates also varied in the nutrient-concentration threshold triggering spore formation and in the heat resistance of spores. The large diversity of developmental phenotypes documented here leads to questions regarding the relative roles of selection and genetic drift in shaping the diversity of local soil populations with respect to these developmental traits. It also raises the question of whether fitness in the wild is largely determined by traits that are expressed independent of social context or by behaviours that are expressed only in genetically heterogeneous social groups.
Collapse
|
44
|
Stow A, Turnbull C, Gillings M, Smith S, Holley M, Silberbauer L, Wilson PD, Briscoe D, Beattie A. Differential antimicrobial activity in response to the entomopathogenic fungus Cordyceps in six Australian bee species. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1440-6055.2010.00749.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Chronáková A, Kristůfek V, Tichý M, Elhottová D. Biodiversity of streptomycetes isolated from a succession sequence at a post-mining site and their evidence in Miocene lacustrine sediment. Microbiol Res 2009; 165:594-608. [PMID: 20015625 DOI: 10.1016/j.micres.2009.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 10/05/2009] [Accepted: 10/31/2009] [Indexed: 11/18/2022]
Abstract
The genetic diversity of streptomycetes in colliery spoil heaps (Sokolov, Czech Republic) was investigated by restriction pattern analysis of 16S-internal transcribed spacer rDNA and 16S sequences. We sampled freshly excavated Miocene sediment (17-19-million-year-old) and four sites of primary succession (initial, early, middle, and late stages; aged 1-44 years) on the same sediment. Active bacteria were present even in fresh Miocene sediment, and the relative proportion of actinomycetes among total bacterial and their genetic diversity increased significantly with the age of the sampling site. The replacement of pioneer species by late succession species during succession was observed. Plate assays of Streptomyces strains revealed 27% antibiotic-producing strains. Screening for nonribosomal peptide synthases and type I polyketide synthases systems suggested that 90% and 55% streptomycetes, respectively, are putative producers of biologically active compounds. The frequencies of tetracycline-, amoxicillin-, and chloramphenicol-resistant streptomycetes were 6%, 9%, and 15%, respectively. These findings document the occurrence of genetic elements encoding antibiotic resistance genes and the production of antibiotics by streptomycetes located in pristine environments. Our results indicate key roles for ancient streptomycetes related to S. microflavus, S. spororaveus, and S. flavofuscus in pioneering community development in freshly excavated substrates.
Collapse
Affiliation(s)
- Alica Chronáková
- Biology Centre of the Academy of Sciences of the Czech Republic, V. V. I.-Institute of Soil Biology, Na Sádkách 7, 37005 Ceské Budejovice, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Ghosh S, Ramsden SJ, LaPara TM. The role of anaerobic digestion in controlling the release of tetracycline resistance genes and class 1 integrons from municipal wastewater treatment plants. Appl Microbiol Biotechnol 2009; 84:791-6. [PMID: 19597810 DOI: 10.1007/s00253-009-2125-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/28/2022]
Abstract
In this study, the abilities of two anaerobic digestion processes used for sewage sludge stabilization were compared for their ability to reduce the quantities of three genes that encode resistance to tetracycline (tet(A), tet(O), and tet(X)) and one gene involved with integrons (intI1). A two-stage, thermophilic/mesophilic digestion process always resulted in significant decreases in the quantities of tet(X) and intI1, less frequently in decreases of tet(O), and no net decrease in tet(A). The thermophilic stage was primarily responsible for reducing the quantities of these genes, while the subsequent mesophilic stage sometimes caused a rebound in their quantities. In contrast, a conventional anaerobic digestion process rarely caused a significant decrease in the quantities of any of these genes, with significant increases occurring more frequently. Our results demonstrate that anaerobic thermophilic treatment was more efficient in reducing quantities of genes associated with the spread of antibiotic resistance compared to mesophilic digestion.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, MN 55455-0116, USA
| | | | | |
Collapse
|
47
|
Tarkka MT, Lehr NA, Hampp R, Schrey SD. Plant behavior upon contact with Streptomycetes. PLANT SIGNALING & BEHAVIOR 2008; 3:917-919. [PMID: 19513192 PMCID: PMC2633735 DOI: 10.4161/psb.5996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 03/31/2008] [Indexed: 05/27/2023]
Abstract
Plants have a variety of chemical and anatomical defences, whose strengths depend on biotic and environmental influences. We show here that root inoculation with belowground bacteria, filamentous gram-positive streptomycetes, can induce plant defence responses. Such induced plant responses can occur belowground in the roots, but also aboveground, in the leaves, and include priming (sensitizing) like characters. Streptomycetes have also evolved mechanisms to facilitate plant root symbioses, mycorrhiza and root nodulation. By promoting fungal growth and by decreasing plant defence responses, these bacteria promote mycorrhiza formation. This minireview covers our current knowledge on the complex interactions that take place between streptomycetes, plants and rhizosphere microbes.
Collapse
Affiliation(s)
- Mika T Tarkka
- UFZ; Department of Soil Ecology; Helmholtz-Centre for Environmental Research; Halle Germany
| | | | | | | |
Collapse
|
48
|
Das S, Ward LR, Burke C. Prospects of using marine actinobacteria as probiotics in aquaculture. Appl Microbiol Biotechnol 2008; 81:419-29. [PMID: 18841358 DOI: 10.1007/s00253-008-1731-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/21/2008] [Accepted: 09/23/2008] [Indexed: 11/29/2022]
Abstract
Chemotherapeutic agents have been banned for disease management in aquaculture systems due to the emergence of antibiotic resistance gene and enduring residual effects in the environments. Instead, microbial interventions in sustainable aquaculture have been proposed, and among them, the most popular and practical approach is the use of probiotics. A range of microorganisms have been used so far as probiotics, which include Gram-negative and Gram-positive bacteria, yeast, bacteriophages, and unicellular algae. The results are satisfactory and promising; however, to combat the latest infectious diseases, the search for a new strain for probiotics is essential. Marine actinobacteria were designated as the chemical factory a long time ago, and quite a large number of chemical substances have been isolated to date. The potent actinobacterial genera are Streptomyces; Micromonospora; and a novel, recently described genus, Salinispora. Despite the existence of all the significant features of a good probiont, actinobacteria have been hardly used as probiotics in aquaculture. However, this group of bacteria promises to supply the most potential probiotic strains in the future.
Collapse
Affiliation(s)
- Surajit Das
- National Centre for Marine Conservation and Resource Sustainability, Australian Maritime College, University of Tasmania, Locked Bag 1370, Launceston, Tasmania, 7250, Australia.
| | | | | |
Collapse
|
49
|
Diversity of endophytic enterobacteria associated with different host plants. J Microbiol 2008; 46:373-9. [DOI: 10.1007/s12275-007-0165-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
|
50
|
Barreto TR, da Silva AC, Soares ACF, de Souza JT. Population densities and genetic diversity of actinomycetes associated to the rhizosphere of Theobroma cacao. Braz J Microbiol 2008; 39:464-70. [PMID: 24031247 PMCID: PMC3768440 DOI: 10.1590/s1517-838220080003000010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/15/2008] [Accepted: 05/04/2008] [Indexed: 12/01/2022] Open
Abstract
In spite of the acknowledged importance of growth-promoting bacteria, only a reduced number of studies were conducted with these microorganisms on Theobroma cacao. The objectives of this work were to study the population densities and genetic diversity of actinomycetes associated with the rhizosphere of cacao as a first step in their application in plant growth promotion and biological control. The populations densities of actinomycetes in soil and cacao roots were similar, with mean values of 1,0 x 10(6) CFU/g and 9,6 x 10(5) CFU/g, respectively. All isolates selected and used in this study were identified through sequencing analyses of a fragment of the rpoB gene that encodes the β-subunit of the RNA polymerase as species of the genus Streptomyces. In vitro cellulolytic, xilanolytic and chitinolytic activity, indolacetic acid production and phosphate solubilization activities were observed in most of the isolates tested. The data obtained in this study demonstrate that actinomycetes account for a higher percentage of the total population of culturable bacteria in soil than on cacao roots. Additionally, actinomycetes from the cacao rhizosphere are genetically diverse and have potential applications as agents of growth promotion.
Collapse
Affiliation(s)
| | | | | | - Jorge T. de Souza
- Universidade Federal do Recôncavo da Bahia, Campus Universitário de Cruz das Almas, Cruz das Almas, BA, Brasil
| |
Collapse
|