• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633406)   Today's Articles (4909)   Subscriber (49949)
For: van Maris AJA, Winkler AA, Porro D, van Dijken JP, Pronk JT. Homofermentative lactate production cannot sustain anaerobic growth of engineered Saccharomyces cerevisiae: possible consequence of energy-dependent lactate export. Appl Environ Microbiol 2004;70:2898-905. [PMID: 15128549 PMCID: PMC404449 DOI: 10.1128/aem.70.5.2898-2905.2004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open

Electronic supplementary material

The online version of this article (doi:10.1186/s12934-015-0329-y) contains supplementary material, which is available to authorized users.

Collapse
Number Cited by Other Article(s)
1
Costa S, Summa D, Radice M, Vertuani S, Manfredini S, Tamburini E. Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Front Bioeng Biotechnol 2024;12:1447278. [PMID: 39157446 PMCID: PMC11327009 DOI: 10.3389/fbioe.2024.1447278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024]  Open
2
Olavarria K, Becker MV, Sousa DZ, van Loosdrecht MC, Wahl SA. Design and thermodynamic analysis of a pathway enabling anaerobic production of poly-3-hydroxybutyrate in Escherichia coli. Synth Syst Biotechnol 2023;8:629-639. [PMID: 37823039 PMCID: PMC10562921 DOI: 10.1016/j.synbio.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]  Open
3
Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to stresses of biotechnological relevance in yeasts. Front Microbiol 2022;13:953479. [PMID: 35966694 PMCID: PMC9366716 DOI: 10.3389/fmicb.2022.953479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023]  Open
4
Pereira R, Ishchuk OP, Li X, Liu Q, Liu Y, Otto M, Chen Y, Siewers V, Nielsen J. Metabolic Engineering of Yeast. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
5
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021;8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021;47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
7
Energy coupling of membrane transport and efficiency of sucrose dissimilation in yeast. Metab Eng 2020;65:243-254. [PMID: 33279674 DOI: 10.1016/j.ymben.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
8
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Corrigendum to "Rewiring yeast metabolism to synthesize products beyond ethanol" [Curr Opin Chem Biol 59 (December 2020) 182-192]. Curr Opin Chem Biol 2020;59:202-204. [PMID: 33199243 PMCID: PMC9744135 DOI: 10.1016/j.cbpa.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
9
Gambacorta FV, Dietrich JJ, Yan Q, Pfleger BF. Rewiring yeast metabolism to synthesize products beyond ethanol. Curr Opin Chem Biol 2020;59:182-192. [PMID: 33032255 DOI: 10.1016/j.cbpa.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
10
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020;6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023]  Open
11
Liu Y, Ghosh IN, Martien J, Zhang Y, Amador-Noguez D, Landick R. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metab Eng 2020;61:261-274. [PMID: 32590077 DOI: 10.1016/j.ymben.2020.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 01/25/2023]
12
Bellut K, Krogerus K, Arendt EK. Lachancea fermentati Strains Isolated From Kombucha: Fundamental Insights, and Practical Application in Low Alcohol Beer Brewing. Front Microbiol 2020;11:764. [PMID: 32390994 PMCID: PMC7191199 DOI: 10.3389/fmicb.2020.00764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023]  Open
13
Onyeabor M, Martinez R, Kurgan G, Wang X. Engineering transport systems for microbial production. ADVANCES IN APPLIED MICROBIOLOGY 2020;111:33-87. [PMID: 32446412 DOI: 10.1016/bs.aambs.2020.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
14
Valk LC, Luttik MAH, de Ram C, Pabst M, van den Broek M, van Loosdrecht MCM, Pronk JT. A Novel D-Galacturonate Fermentation Pathway in Lactobacillus suebicus Links Initial Reactions of the Galacturonate-Isomerase Route With the Phosphoketolase Pathway. Front Microbiol 2020;10:3027. [PMID: 32010092 PMCID: PMC6978723 DOI: 10.3389/fmicb.2019.03027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022]  Open
15
Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. J Biotechnol 2019;304:31-37. [PMID: 31421146 DOI: 10.1016/j.jbiotec.2019.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/06/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
16
Jessop‐Fabre MM, Dahlin J, Biron MB, Stovicek V, Ebert BE, Blank LM, Budin I, Keasling JD, Borodina I. The Transcriptome and Flux Profiling of Crabtree‐Negative Hydroxy Acid‐Producing Strains ofSaccharomyces cerevisiaeReveals Changes in the Central Carbon Metabolism. Biotechnol J 2019;14:e1900013. [DOI: 10.1002/biot.201900013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/21/2019] [Indexed: 01/28/2023]
17
Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 2019;17:4628041. [PMID: 29145596 DOI: 10.1093/femsyr/fox085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022]  Open
18
Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Appl Microbiol Biotechnol 2018;102:5911-5924. [DOI: 10.1007/s00253-018-9092-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022]
19
Novy V, Brunner B, Nidetzky B. L-Lactic acid production from glucose and xylose with engineered strains of Saccharomyces cerevisiae: aeration and carbon source influence yields and productivities. Microb Cell Fact 2018;17:59. [PMID: 29642896 PMCID: PMC5894196 DOI: 10.1186/s12934-018-0905-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/31/2018] [Indexed: 12/21/2022]  Open
20
Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metab Eng 2017;45:121-133. [PMID: 29196124 DOI: 10.1016/j.ymben.2017.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022]
21
Baek S, Kwon EY, Bae S, Cho B, Kim S, Hahn J. Improvement of d ‐Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol J 2017;12. [DOI: 10.1002/biot.201700015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/11/2017] [Indexed: 01/12/2023]
22
Weusthuis RA, Mars AE, Springer J, Wolbert EJH, van der Wal H, de Vrije TG, Levisson M, Leprince A, Houweling-Tan G, PHA Moers A, Hendriks SNA, Mendes O, Griekspoor Y, Werten MWT, Schaap PJ, van der Oost J, Eggink G. Monascus ruber as cell factory for lactic acid production at low pH. Metab Eng 2017;42:66-73. [DOI: 10.1016/j.ymben.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
23
von Kamp A, Klamt S. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat Commun 2017;8:15956. [PMID: 28639622 PMCID: PMC5489714 DOI: 10.1038/ncomms15956] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022]  Open
24
Ho PW, Swinnen S, Duitama J, Nevoigt E. The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives. BIOTECHNOLOGY FOR BIOFUELS 2017;10:10. [PMID: 28053667 PMCID: PMC5209837 DOI: 10.1186/s13068-016-0696-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
25
Lee JW, In JH, Park JB, Shin J, Park JH, Sung BH, Sohn JH, Seo JH, Park JB, Kim SR, Kweon DH. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production. J Biotechnol 2016;241:81-86. [PMID: 27867078 DOI: 10.1016/j.jbiotec.2016.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/18/2022]
26
Lange J, Takors R, Blombach B. Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering. Eng Life Sci 2016;17:27-35. [PMID: 32624726 DOI: 10.1002/elsc.201600108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/18/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]  Open
27
Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng 2016;38:464-472. [DOI: 10.1016/j.ymben.2016.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022]
28
GSF2 deletion increases lactic acid production by alleviating glucose repression in Saccharomyces cerevisiae. Sci Rep 2016;6:34812. [PMID: 27708428 PMCID: PMC5052599 DOI: 10.1038/srep34812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023]  Open
29
Novy V, Brunner B, Müller G, Nidetzky B. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Biotechnol Bioeng 2016;114:163-171. [PMID: 27426989 DOI: 10.1002/bit.26048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
30
van Rossum HM, Kozak BU, Pronk JT, van Maris AJA. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: Pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metab Eng 2016;36:99-115. [PMID: 27016336 DOI: 10.1016/j.ymben.2016.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/20/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022]
31
Milne N, Wahl SA, van Maris AJA, Pronk JT, Daran JM. Excessive by-product formation: A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains. Metab Eng Commun 2016;3:39-51. [PMID: 29142820 PMCID: PMC5678825 DOI: 10.1016/j.meteno.2016.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 01/19/2016] [Indexed: 11/16/2022]  Open
32
Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1. J Ind Microbiol Biotechnol 2015;43:87-96. [PMID: 26660479 DOI: 10.1007/s10295-015-1713-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
33
Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact 2015;14:198. [PMID: 26655598 PMCID: PMC4676173 DOI: 10.1186/s12934-015-0390-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023]  Open
34
Baek SH, Kwon EY, Kim YH, Hahn JS. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2015;100:2737-48. [PMID: 26596574 DOI: 10.1007/s00253-015-7174-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/23/2015] [Accepted: 11/10/2015] [Indexed: 12/01/2022]
35
Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae. Appl Environ Microbiol 2015;81:8392-401. [PMID: 26431967 DOI: 10.1128/aem.02056-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023]  Open
36
Lu H, Liu X, Huang M, Xia J, Chu J, Zhuang Y, Zhang S, Noorman H. Integrated isotope-assisted metabolomics and (13)C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact 2015;14:147. [PMID: 26383080 PMCID: PMC4574132 DOI: 10.1186/s12934-015-0329-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022]  Open

An integrated isotope-assisted metabolomics and 13C metabolic flux analysis was was firstly systematically performed in A. niger. In response to enzyme production, the metabolic flux in A. niger DS03043 (high-producing) was redistributed, characterized by an increased carbon flux directed to the oxidative pentose phosphate pathway as well as an increased pool size of pentose. The consistency in 13C metabolic flux analysis and metabolites quantification indicated that an imbalance of NADH formation and consumption led to the accumulation and secretion of organic acids in A. niger CBS513.88 (wild-type)

  • Hongzhong Lu
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Xiaoyun Liu
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Mingzhi Huang
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Jianye Xia
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Ju Chu
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Yingping Zhuang
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Siliang Zhang
    • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, People's Republic of China.
  • Henk Noorman
    • DSM Biotechnology Center, P.O. Box1, 2600 MA, Delft, The Netherlands.
Collapse
37
Cueto-Rojas HF, van Maris A, Wahl SA, Heijnen J. Thermodynamics-based design of microbial cell factories for anaerobic product formation. Trends Biotechnol 2015;33:534-46. [DOI: 10.1016/j.tibtech.2015.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/20/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
38
Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1074-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]  Open
39
CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2015;2:13-22. [PMID: 34150504 PMCID: PMC8193243 DOI: 10.1016/j.meteno.2015.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 03/11/2015] [Indexed: 11/24/2022]  Open
40
Lee JY, Kang CD, Lee SH, Park YK, Cho KM. Engineering cellular redox balance inSaccharomyces cerevisiaefor improved production of L-lactic acid. Biotechnol Bioeng 2015;112:751-8. [DOI: 10.1002/bit.25488] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/28/2014] [Accepted: 10/21/2014] [Indexed: 11/07/2022]
41
Dato L, Berterame NM, Ricci MA, Paganoni P, Palmieri L, Porro D, Branduardi P. Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae. Microb Cell Fact 2014;13:147. [PMID: 25359316 PMCID: PMC4230512 DOI: 10.1186/s12934-014-0147-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/08/2014] [Indexed: 01/25/2023]  Open
42
Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield. J Biosci Bioeng 2014;119:65-71. [PMID: 25132509 DOI: 10.1016/j.jbiosc.2014.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/23/2022]
43
Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 2014;119:10-8. [PMID: 25077706 DOI: 10.1016/j.jbiosc.2014.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023]
44
Sandström AG, Almqvist H, Portugal-Nunes D, Neves D, Lidén G, Gorwa-Grauslund MF. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock? Appl Microbiol Biotechnol 2014;98:7299-318. [DOI: 10.1007/s00253-014-5866-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
45
Ito Y, Hirasawa T, Shimizu H. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Biosci Biotechnol Biochem 2014;78:151-9. [DOI: 10.1080/09168451.2014.877816] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
46
The transport of carboxylic acids and important role of the Jen1p transporter during the development of yeast colonies. Biochem J 2013;454:551-8. [PMID: 23790185 DOI: 10.1042/bj20120312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
47
Hirasawa T, Ida Y, Furuasawa C, Shimizu H. Potential of a Saccharomyces cerevisiae recombinant strain lacking ethanol and glycerol biosynthesis pathways in efficient anaerobic bioproduction. Bioengineered 2013;5:123-8. [PMID: 24247205 DOI: 10.4161/bioe.26569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]  Open
48
Liang L, Liu R, Li F, Wu M, Chen K, Ma J, Jiang M, Wei P, Ouyang P. Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2013;143:405-12. [PMID: 23819977 DOI: 10.1016/j.biortech.2013.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 05/03/2023]
49
Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Fact 2013;12:53. [PMID: 23706009 PMCID: PMC3680033 DOI: 10.1186/1475-2859-12-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/19/2013] [Indexed: 11/10/2022]  Open
50
Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection. J Biotechnol 2013;168:185-93. [PMID: 23665193 DOI: 10.1016/j.jbiotec.2013.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/05/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA