1
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Yoon JH, Bae YM, Shin Y, Lee SY. Escherichia coli O157:H7 had a high degree of acid resistance in the presence of osmolytes (glycerol, glycine or fructose) by altering its lipid membrane composition. Food Microbiol 2024; 117:104388. [PMID: 37919012 DOI: 10.1016/j.fm.2023.104388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
This study aims to investigate the resistance of E. coli O157:H7 to acetic acid (AA) or malic acid (MA) by adding osmolytes, such as glycerol, glycine, glucose, and fructose, in Luria-Bertani broth without NaCl (LBW/S) or phosphate buffer (PB) stored at 25 °C. In LBW/S, a significantly (p < 0.05) higher D-value of E. coli O157:H7 was observed when treated with AA and 20% glycine (D-value: 1.18-3.44) or 40% glucose (D-value: 1.05-2.52) compared to that of AA alone (D-value: 0.40-0.47). In contrast, the addition of osmolytes (i.e. 3-40% glucose, 3-40% fructose or 20% glycine) to LBW/S acidified by MA significantly decreased D-values of E. coli O157:H7, which was enumerated by using a selective medium. Furthermore, when E. coli O157:H7 was incubated in LBW/S containing AA and osmolytes at 25 °C for 3 d, this bacterium had an increased proportion of C16:0 and C17:0 cyclo (cyclopropane acid) compared to its AA-treated counterparts. Along with the altered shift in membrane phospholipids, the addition of osmolytes into a laboratory medium in the presence of nutritive substrates may increase the resistance of E. coli O157:H7 to AA.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Sunchon National University, 235 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Young-Min Bae
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Yooncheol Shin
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-dearo, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Dong W, Chu L, Zhao H, He L, Sheng X. A combination of proteomics, genetics, and physiology provides insights into the acid-tolerance phenotype of Pseudomonas pergaminensis F77. Microbiol Res 2024; 278:127545. [PMID: 37952350 DOI: 10.1016/j.micres.2023.127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Acid tolerance is crucial for the effective and persistent mineral weathering by acid-producing bacteria. Here, the molecular basis of the acid tolerance of mineral-weathering Pseudomonas pergaminensis F77 was identified using proteomics analysis of the strain under acid stress. Then, the acid tolerance of strain F77 and its mutants with deletion of the acid tolerance-related genes orf03767, mcp, resR, nueR, yegD, and fxsA, which are involved in the two-component systems, DNA repair, nucleotide binding, and membrane parts, were compared. Finally, the acid tolerance-related physiological mechanisms of strain F77 and its mutants F77ΔnueR and F77ΔresR under acidic conditions were characterized. The significantly upregulated proteins in the acid-adapted and acid-challenged strain F77 included the proteins involved in metabolic pathways associated with ATPase, membrane components, organic acid transmembrane transporters, response to stimulus, nucleotide binding, ABC transporters, and two-component systems. The cell numbers decreased by 24-100% at pH ≤ 4.50, while the membrane fluidity increased by 22-61% at pH ≤ 5.50 for the mutants F77ΔnueR and F77ΔresR, compared with that of strain F77. The intracellular H+-ATPase activities decreased by 29-33% for the mutant F77ΔnueR at pH ≤ 4.50% and 33-79% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00); meanwhile, the ratios of intracellular NAD+/NADH decreased by 71-91% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00), compared with that of strain F77. Furthermore, the intracellular putrescine concentrations were reduced by 40-70% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00) compared with that of strain F77. Our findings suggested that multiple proteins and metabolic pathways were associated with bacterial acid tolerance and revealed that nueR and resR were involved in acid tolerance based on their modulation of multiple acid tolerance-related physiological functions in strain F77.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lingfeng Chu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Koo A, Ghate V, Zhou W. Acid adaptation increased the resistance of Escherichia coli O157:H7 in bok choy ( Brassica rapa subsp. chinensis) juice to high-pressure processing. Appl Environ Microbiol 2023; 89:e0060223. [PMID: 37874288 PMCID: PMC10686058 DOI: 10.1128/aem.00602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/27/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Based on the U.S. Food and Drug Administration regulations, E. coli O157:H7 is a pertinent pathogen in high acid juices that needs to be inactivated during the pasteurization process. The results of this study suggest that the effect of acid adaptation should be considered in the selection of HPP parameters for E. coli O157:H7 inactivation to ensure that pasteurization objectives are achieved.
Collapse
Affiliation(s)
- Andrea Koo
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Vinayak Ghate
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| | - Weibiao Zhou
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Kent Ridge, Singapore
- Department of Food Science and Technology, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
5
|
Cross-protective effect of acid adaptation on ethanol tolerance in Salmonella Enteritidis. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
The role of PhoP/PhoQ system in regulating stress adaptation response in Escherichia coli O157:H7. Food Microbiol 2023; 112:104244. [PMID: 36906298 DOI: 10.1016/j.fm.2023.104244] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
The development of acid tolerance response (ATR) as a result of low pH in Escherichia coli O157:H7 (E. coli O157:H7) contaminating beef during processing is considered a major food safety concern. Thus, in order to explore the formation and molecular mechanisms of the tolerance response of E. coli O157:H7 in a simulated beef processing environment, the resistance of a wild-type (WT) strain and its corresponding ΔphoP mutant to acid, heat, and osmotic pressure was evaluated. Strains were pre-adapted under different conditions of pH (5.4 and 7.0), temperature (37 °C and 10 °C), and culture medium (meat extract and Luria-Bertani broth media). In addition, the expression of genes related to stress response and virulence was also investigated among WT and ΔphoP strains under the tested conditions. Pre-acid adaptation increased the resistance of E. coli O157:H7 to acid and heat treatment while resistance to osmotic pressure decreased. Moreover, acid adaptation in meat extract medium simulating slaughter environment increased ATR, whereas pre-adaptation at 10 °C reduced the ATR. Furthermore, it was shown that mildly acidic conditions (pH = 5.4) and the PhoP/PhoQ two-component system (TCS) acted synergistically to enhance acid and heat tolerance in E. coli O157:H7. Additionally, the expression of genes related to arginine and lysine metabolism, heat shock, and invasiveness was up-regulated, which revealed that the mechanism of acid resistance and cross-protection under mildly acidic conditions was mediated by the PhoP/PhoQ TCS. Both acid adaptation and phoP gene knockout reduced the relative expression of stx1 and stx2 genes which were considered as critical pathogenic factors. Collectively, the current findings indicated that ATR could occur in E. coli O157:H7 during beef processing. Thus, there is an increased food safety risk due to the persistence of tolerance response in the following processing conditions. The present study provides a more comprehensive basis for the effective application of hurdle technology in beef processing.
Collapse
|
7
|
Liao X, Chen X, Sant'Ana AS, Feng J, Ding T. Pre-Exposure of Foodborne Staphylococcus aureus Isolates to Organic Acids Induces Cross-Adaptation to Mild Heat. Microbiol Spectr 2023; 11:e0383222. [PMID: 36916935 PMCID: PMC10101096 DOI: 10.1128/spectrum.03832-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
Staphylococcus aureus is a typical enterotoxin-producing bacterium that causes food poisoning. In the food industry, pasteurization is the most widely used technique for food decontamination. However, pre-exposure to an acidic environment might make bacteria more resistant to heat treatment, which could compromise the bactericidal effect of heat treatment and endanger food safety. In this work, the organic acid-induced cross-adaptation of S. aureus isolates to heat and the associated mechanisms were investigated. Cross-adaptation area analysis indicated that pre-exposure to organic acids induced cross-adaptation of S. aureus to heat in a strain-dependent manner. Compared with other strains, S. aureus strain J15 showed extremely high heat resistance after being stressed by acetic acid, citric acid, and lactic acid. S. aureus strains J19, J9, and J17 were found to be unable to develop cross-adaptation to heat with pre-exposure to acetic acid, citric acid, and lactic acid, respectively. Analysis of the phenotypic characteristics of the cell membrane demonstrated that the acid-heat-cross-adapted strain J15 retained cell membrane integrity and functions through enhanced Na+K+-ATPase and FoF1-ATPase activities. Cell membrane fatty acid analysis revealed that the ratio of anteiso to iso branched-chain fatty acids in the acid-heat-cross-adapted strain J15 decreased and the content of straight-chain fatty acids exhibited a 2.9 to 4.4% increase, contributing to the reduction in membrane fluidity. At the molecular level, fabH was overexpressed with preconditioning by organic acid, and its expression was further enhanced with subsequent heat exposure. Organic acids activated the GroESL system, which participated in the heat shock response of S. aureus to the subsequent heat stress. IMPORTANCE Cross-adaptation is one of the most important phenotypes in foodborne pathogens and poses a potential risk to food safety and human health. In this work, we found that pretreatment with acetic acid, citric acid, and lactic acid could induce subsequent heat tolerance development in S. aureus. Various S. aureus strains exhibited different acid-heat cross-adaptation areas. The acid-induced cross-adaptation to heat might be attributable to membrane integrity maintenance, stabilization of the charge equilibrium to achieve a normal internal pH, and membrane fluidity reduction achieved by decreasing the ratios of anteiso to iso fatty acids. The fabH gene, which is involved in fatty acid biosynthesis, and groES/groEL, which are related to heat shock response, contributed to the development of the acid-heat cross-adaptation phenomenon in S. aureus. The investigations of the stress cross-adaptation phenomenon in foodborne pathogens could help optimize food processing to better control S. aureus.
Collapse
Affiliation(s)
- Xinyu Liao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Xin Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anderson S. Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Jinsong Feng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| |
Collapse
|
8
|
Sullivan MR, McGowen K, Liu Q, Akusobi C, Young DC, Mayfield JA, Raman S, Wolf ID, Moody DB, Aldrich CC, Muir A, Rubin EJ. Biotin-dependent cell envelope remodelling is required for Mycobacterium abscessus survival in lung infection. Nat Microbiol 2023; 8:481-497. [PMID: 36658396 PMCID: PMC9992005 DOI: 10.1038/s41564-022-01307-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/14/2022] [Indexed: 01/21/2023]
Abstract
Mycobacterium abscessus is an emerging pathogen causing lung infection predominantly in patients with underlying structural abnormalities or lung disease and is resistant to most frontline antibiotics. As the pathogenic mechanisms of M. abscessus in the context of the lung are not well-understood, we developed an infection model using air-liquid interface culture and performed a transposon mutagenesis and sequencing screen to identify genes differentially required for bacterial survival in the lung. Biotin cofactor synthesis was required for M. abscessus growth due to increased intracellular biotin demand, while pharmacological inhibition of biotin synthesis prevented bacterial proliferation. Biotin was required for fatty acid remodelling, which increased cell envelope fluidity and promoted M. abscessus survival in the alkaline lung environment. Together, these results indicate that biotin-dependent fatty acid remodelling plays a critical role in pathogenic adaptation to the lung niche, suggesting that biotin synthesis and fatty acid metabolism might provide therapeutic targets for treatment of M. abscessus infection.
Collapse
Affiliation(s)
- Mark R Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Young
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahadevan Raman
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ian D Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Immunity and Inflammation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Alexander Muir
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
9
|
Abstract
Bifidobacteria naturally inhabit diverse environments, including the gastrointestinal tracts of humans and animals. Members of the genus are of considerable scientific interest due to their beneficial effects on health and, hence, their potential to be used as probiotics. By definition, probiotic cells need to be viable despite being exposed to several stressors in the course of their production, storage, and administration. Examples of common stressors encountered by probiotic bifidobacteria include oxygen, acid, and bile salts. As bifidobacteria are highly heterogenous in terms of their tolerance to these stressors, poor stability and/or robustness can hamper the industrial-scale production and commercialization of many strains. Therefore, interest in the stress physiology of bifidobacteria has intensified in recent decades, and many studies have been established to obtain insights into the molecular mechanisms underlying their stability and robustness. By complementing traditional methodologies, omics technologies have opened new avenues for enhancing the understanding of the defense mechanisms of bifidobacteria against stress. In this review, we summarize and evaluate the current knowledge on the multilayered responses of bifidobacteria to stressors, including the most recent insights and hypotheses. We address the prevailing stressors that may affect the cell viability during production and use as probiotics. Besides phenotypic effects, molecular mechanisms that have been found to underlie the stress response are described. We further discuss strategies that can be applied to improve the stability of probiotic bifidobacteria and highlight knowledge gaps that should be addressed in future studies.
Collapse
Affiliation(s)
- Marie Schöpping
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ahmad A. Zeidan
- Systems Biology, Discovery, Chr. Hansen A/S, Hørsholm, Denmark
| | - Carl Johan Franzén
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Shave MK, Santore MM. Motility Increases the Numbers and Durations of Cell-Surface Engagements for Escherichia coli Flowing near Poly(ethylene glycol)-Functionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34342-34353. [PMID: 35857760 PMCID: PMC9674025 DOI: 10.1021/acsami.2c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.
Collapse
Affiliation(s)
| | - Maria M. Santore
- corresponding author: Maria Santore, Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, 413-577-1417,
| |
Collapse
|
11
|
Santore MM. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv Colloid Interface Sci 2022; 304:102665. [PMID: 35468355 DOI: 10.1016/j.cis.2022.102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Biofilms initiate when bacteria encounter and are retained on surfaces. The surface orchestrates biofilm growth through direct physico-chemical and mechanical interactions with different structures on bacterial cells and, in turn, through its influence on cell-cell interactions. Individual cells respond directly to a surface through mechanical or chemical means, initiating "surface sensing" pathways that regulate gene expression, for instance producing extra cellular matrix or altering phenotypes. The surface can also physically direct the evolving colony morphology as cells divide and grow. In either case, the physico-chemistry of the surface influences cells and cell communities through mechanisms that involve additional factors. For instance the numbers of cells arriving on a surface from solution relative to the generation of new cells by division depends on adhesion and transport kinetics, affecting early colony density and composition. Separately, the forces experienced by adhering cells depend on hydrodynamics, gravity, and the relative stiffnesses and viscoelasticity of the cells and substrate materials, affecting mechanosensing pathways. Physical chemistry and surface functionality, along with interfacial mechanics also influence cell-surface friction and control colony morphology, in particular 2D and 3D shape. This review focuses on the current understanding of the mechanisms in which physico-chemical interactions, deriving from surface functionality, impact individual cells and cell community behavior through their coupling with other interfacial processes.
Collapse
|
12
|
Tang R, Sun W, Zhang JC, Mao L, Quanquin N, Wu D, Sun Y. Expression of Human Uncoupling Protein-1 in Escherichia coli Decreases its Survival Under Extremely Acidic Conditions. Curr Microbiol 2022; 79:77. [DOI: 10.1007/s00284-022-02762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/08/2022] [Indexed: 11/03/2022]
|
13
|
Zhu S, Song Y, Pei J, Xue F, Cui X, Xiong X, Li C. The application of photodynamic inactivation to microorganisms in food. Food Chem X 2021; 12:100150. [PMID: 34761205 PMCID: PMC8566761 DOI: 10.1016/j.fochx.2021.100150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Nowadays, food safety issues have drawn increased attention due to the continual occurrence of infectious diseases caused by foodborne pathogens, which is an important factor causing food safety hazard. Meanwhile, the emergence of an increasing number of antibiotic-resistant pathogens is a worrisome phenomenon. Therefore, it is imperative to find new technologies with low-cost to inactivate pathogenic microorganisms and prevent cross-contamination. Compared with traditional preservatives, photodynamic inactivation (PDI) has emerged as a novel and promising strategy to eliminate foodborne pathogens with advantages such as non-toxic and low microbial resistance, which also meets the demand of current consumers for green treatment. Over the past few years, reports of using this technology for food safety have increased rapidly. This review summarizes recent progresses in the development of photodynamic inactivation of foodborne microorganisms. The mechanisms, factors influencing PDI and the application of different photosensitizers (PSs) in different food substrates are reviewed.
Collapse
Affiliation(s)
- Shengyu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yukang Song
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiliu Pei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaowen Cui
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
14
|
Bozatli SB, Dikici A, Ergönül B. Determination of the changes in the gastric fluid endurance of O157 and non-O157 Shiga toxin-producing Escherichia coli during storage of experimentally produced beef frankfurter. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3086-3093. [PMID: 34294971 DOI: 10.1007/s13197-020-04812-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
Resistance of Shiga toxin-producing Escherichia coli (STEC) O157:H7 and serogroups O103, O26 and O145 to synthetic gastric fluid (SGF, pH 1.5) were investigated during frankfurter storage. Pathogens were inoculated (5 ± 1 log10 cfu g-1) on frankfurters and frankfurters were stored at 4 °C for 75 days in vacuum packages. Population changes of the competitive flora and STEC, changes in the pH of the frankfurters and resistance of STEC to SGF were monitored on days 0, 15, 30, 45, 60 and 75 of frankfurter storage. Direct synthetic gastric fluid (DSGF) challenges were also conducted to assess pathogen resistance without being effected by frankfurters, by inoculating pathogen cultures directly into SGF. Results showed that acid resistance of O145 and O26 was stronger than that of O103 and O157 during frankfurter storage. Resistance of O103 to SGF was better than that of O157 during frankfurter storage but, was similar to that of O157 during DSGF challenges. Results indicate that acid resistance of some strains of STEC pathogens might differentiate during storage of frankfurters. Different resistance capabilities to SGF were observed in the STEC strains when inoculated and stored on frankfurters than directly inoculated in the SGF.
Collapse
Affiliation(s)
- Sümeyye Betül Bozatli
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
| | - Abdullah Dikici
- Department of Food Engineering, Faculty of Engineering, Uşak University, Uşak, Turkey
| | - Bülent Ergönül
- Department of Food Engineering, Faculty of Engineering, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
15
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
16
|
Wu RA, Yuk HG, Liu D, Ding T. Recent advances in understanding the effect of acid-adaptation on the cross-protection to food-related stress of common foodborne pathogens. Crit Rev Food Sci Nutr 2021; 62:7336-7353. [PMID: 33905268 DOI: 10.1080/10408398.2021.1913570] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acid stress is one of the most common stresses that foodborne pathogens encounter. It could occur naturally in foods as a by-product of anaerobic respiration (fermentation), or with the addition of acids. However, foodborne pathogens have managed to survive to acid conditions and consequently develop cross-protection to subsequent stresses, challenging the efficacy of hurdle technologies. Here, we cover the studies describing the cross-protection response following acid-adaptation, and the possible molecular mechanisms for cross-protection. The current and future prospective of this research topic with the knowledge gaps in the literature are also discussed. Exposure to acid conditions (pH 3.5 - 5.5) could induce cross-protection for foodborne pathogens against subsequent stress or multiple stresses such as heat, cold, osmosis, antibiotic, disinfectant, and non-thermal technology. So far, the known molecular mechanisms that might be involved in cross-protection include sigma factors, glutamate decarboxylase (GAD) system, protection or repair of molecules, and alteration of cell membrane. Cross-protection could pose a serious threat to food safety, as many hurdle technologies are believed to be effective in controlling foodborne pathogens. Thus, the exact mechanisms underlying cross-protection in a diversity of bacterial species, stress conditions, and food matrixes should be further studied to reduce potential food safety risks. HighlightsFoodborne pathogens have managed to survive to acid stress, which may provide protection to subsequent stresses, known as cross-protection.Acid-stress may induce cross-protection to many stresses such as heat, cold, osmotic, antibiotic, disinfectant, and non-thermal technology stress.At the molecular level, foodborne pathogens use different cross-protection mechanisms, which may correlate with each other.
Collapse
Affiliation(s)
- Ricardo A Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
González-Angulo M, Serment-Moreno V, Clemente-García L, Tonello C, Jaime I, Rovira J. Assessing the pressure resistance of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica to high pressure processing (HPP) in citric acid model solutions for process validation. Food Res Int 2021; 140:110091. [PMID: 33648306 DOI: 10.1016/j.foodres.2020.110091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
Despite the commercial success of high pressure processing (HPP) in the juice industry, some regulatory agencies still require process validation. However, there is a lack of consensus on various aspects regarding validation protocols, including the selection of representative strains to be used in challenge tests. This study characterized the variable response of Escherichia coli O157:H7 (34 strains), Listeria monocytogenes (44 strains) and Salmonella enterica (45 strains) to HPP, and identified potential candidates to use in process validation. Stationary phase cells were submitted to 500 MPa for 1 min at 10 °C in model solutions consisting of tryptic soy broth + 0.6% yeast extract (TSBYE) adjusted to pH 4.5 and 6.0 with citric acid. At pH 6.0, pressure resistance widely varied between species and within strains of the same species. E. coli O157:H7 and L. monocytogenes were the most pressure resistant and showed high variability at strain level, as the total count range given by minimum and maximum counts spread between 2.0 and 6.5 log10 CFU/ml. S. enterica was the least resistant pathogen with more than 82% of the isolates displaying non-detectable counts after HPP. Recovery through storage at 12 °C was also variable for all pathogens, but eventually most strains recovered with median counts on day 14 between 8.3 and 8.9 log10 CFU/ml. For pH 4.5 solutions, 26 E. coli O157:H7 strains displayed survivors after HPP but did not adapt, registering non-detectable counts in the next sampling dates. None of the L. monocytogenes and S. enterica strains survived HPP or incubation at pH 4.5 (<2.0 log10 CFU/ml), suggesting that citric acid at 4.16 g/l is a safe barrier for pathogen control under moderate HPP conditions. Principal component and cluster analyses served to propose strain cocktails for each species based on their pressure resistant and adaptation phenotypes. Additionally, S. enterica was identified as less pressure resistant and less prone to recover following HPP than E. coli O157:H7 and L. monocytogenes, so its relevance in process validation for juices should be questioned. Future work will validate the proposed strain cocktails on real food systems.
Collapse
Affiliation(s)
- Mario González-Angulo
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain; University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Vinicio Serment-Moreno
- Hiperbaric USA Corporation, Department of Applications and Food Processing, 2250 NW 84(th) Avenue, 101, Miami, FL 33122, United States
| | - Laura Clemente-García
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Carole Tonello
- Hiperbaric, S.A., Department of Applications and Food Processing, C/ Condado de Treviño, 6, 09001 Burgos, Spain
| | - Isabel Jaime
- University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Jordi Rovira
- University of Burgos, Department of Biotechnology and Food Science, Faculty of Sciences, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
18
|
Kaya Z, Unluturk S, Martin-Belloso O, Soliva-Fortuny R. Effectiveness of pulsed light treatments assisted by mild heat on Saccharomyces cerevisiae inactivation in verjuice and evaluation of its quality during storage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
20
|
Kornspan D, Zahavi T, Salmon-Divon M. The Acidic Stress Response of the Intracellular Pathogen Brucella melitensis: New Insights from a Comparative, Genome-Wide Transcriptome Analysis. Genes (Basel) 2020; 11:genes11091016. [PMID: 32872264 PMCID: PMC7563570 DOI: 10.3390/genes11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
- Correspondence: ; Tel.: +972-3-968-1745
| | - Tamar Zahavi
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
21
|
Gavriil A, Thanasoulia A, Skandamis PN. Sublethal concentrations of undissociated acetic acid may not always stimulate acid resistance in Salmonella enterica sub. enterica serovar Enteritidis Phage Type 4: Implications of challenge substrate associated factors. PLoS One 2020; 15:e0234999. [PMID: 32702039 PMCID: PMC7377465 DOI: 10.1371/journal.pone.0234999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/06/2020] [Indexed: 11/26/2022] Open
Abstract
Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that prevail in several food-related ecosystems. In the present study, the role of undissociated acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in laboratory media and in an acid food matrix was investigated. Several combinations of acetic acid (0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their ability to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening assay). Increased survival was observed when increasing undissociated acetic acid within a range of sublethal concentrations (1.9–5.4 mM), but only at pH 5.5 and 6.0. No effect was observed at lower pH values, regardless of the undissociated acetic acid levels. Three combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH 4.35 ± 0.02), stored at 5°C. Surprisingly and contrary to the results of the screening assay, none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the food matrix, as compared to non-adapted cells (control). Further examination of the food pH value, acidulant and storage (challenge) temperature on the responses of the pathogen adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media. Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH 4.35 (tarama salad pH value) at 37°C and 5°C, whereas incubation under refrigeration (5°C) at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent manner, with regard to conditions prevailing during acid challenge.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Athina Thanasoulia
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
22
|
Pienaar JA, Singh A, Barnard TG. Membrane modification as a survival mechanism through gastric fluid in non-acid adapted enteropathogenic Escherichia coli (EPEC). Microb Pathog 2020; 144:104180. [PMID: 32240767 DOI: 10.1016/j.micpath.2020.104180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023]
Abstract
In bacterial cells, the cytoplasmic membrane forms a barrier between the environment and the cell's cytoplasm. This barrier regulates which substances (and the amount) that leave and enter the cell, to maintain homeostasis between the cytoplasm and the external environment. One of the mechanisms employed to maintain structure and functionality during exposure to environmental stress is adaptation of the membrane lipids. The aim of this study was to investigate membrane alteration as a possible survival method of non-acid adapted enteropathogenic Escherichia coli (E. coli) (EPEC) (as could be found in contaminated water or unprocessed food) through simulated gastric fluid (SGF). Enteropathogenic E. coli was grown in nutrient-rich media and then exposed to SGF of various pH (1.5, 2.5, 3.5, or 4.5) for 180 min. Flow cytometry was utilised to examine membrane integrity; and morphological changes were investigated using transmission electron microscopy (TEM). Gas chromatography-mass spectrometry (GC-MS) was used to assess the membrane lipid composition. The results of this study showed that SGF treatment caused membrane damage, as well as cell wall thickening and irregular plasma membranes. The morphological changes were accompanied by membrane lipid changes indicative of decreased membrane fluidity and increased rigidity. The findings suggest that non-acid adapted EPEC can perceive pH change in the environment and adapt accordingly.
Collapse
Affiliation(s)
- Jennifer Anne Pienaar
- Department of Biomedical Technology, University of Johannesburg, Doornfontein, South Africa; Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa
| | - Atheesha Singh
- Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa.
| | - Tobias George Barnard
- Water and Health Research Centre, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
23
|
The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biotechnol 2020; 104:2911-2921. [PMID: 32067056 DOI: 10.1007/s00253-020-10453-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Acid resistance (AR) is an indispensable mechanism for the survival of neutralophilic bacteria, such as Escherichia coli (E. coli) strains that survive in the gastrointestinal tract. E. coli acid tolerance has been extensively studied during past decades, with most studies focused on gene regulation and mechanisms. However, the role of cell membrane structure in the context of acid stress resistance has not been discussed in depth. Here, we provide a comprehensive review of the roles and mechanisms of the E. coli cell envelope from different membrane components, such as membrane proteins, fatty acids, chaperones, and proton-consuming systems, and particularly focus on the innovative effects revealed by recent studies. We hope that the information guides us to understand the bacterial survival strategies under acid stress and to further explore the AR regulatory mechanisms to prevent or treat E. coli and other related Gram-negative bacteria infection, or to enhance the AR of engineering E. coli.
Collapse
|
24
|
Du B, Yang L, Lloyd CJ, Fang X, Palsson BO. Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli. PLoS Comput Biol 2019; 15:e1007525. [PMID: 31809503 PMCID: PMC6897400 DOI: 10.1371/journal.pcbi.1007525] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle by passing through the stomach to colonize the digestive tract. To develop a fundamental understanding of this response, we established a molecular mechanistic description of acid stress mitigation responses in E. coli and integrated them with a genome-scale model of its metabolism and macromolecular expression (ME-model). We considered three known mechanisms of acid stress mitigation: 1) change in membrane lipid fatty acid composition, 2) change in periplasmic protein stability over external pH and periplasmic chaperone protection mechanisms, and 3) change in the activities of membrane proteins. After integrating these mechanisms into an established ME-model, we could simulate their responses in the context of other cellular processes. We validated these simulations using RNA sequencing data obtained from five E. coli strains grown under external pH ranging from 5.5 to 7.0. We found: i) that for the differentially expressed genes accounted for in the ME-model, 80% of the upregulated genes were correctly predicted by the ME-model, and ii) that these genes are mainly involved in translation processes (45% of genes), membrane proteins and related processes (18% of genes), amino acid metabolism (12% of genes), and cofactor and prosthetic group biosynthesis (8% of genes). We also demonstrated several intervention strategies on acid tolerance that can be simulated by the ME-model. We thus established a quantitative framework that describes, on a genome-scale, the acid stress mitigation response of E. coli that has both scientific and practical uses.
Collapse
Affiliation(s)
- Bin Du
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Colton J. Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
25
|
Airborne Survival of Escherichia coli under Different Culture Conditions in Synthetic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234745. [PMID: 31783576 PMCID: PMC6926559 DOI: 10.3390/ijerph16234745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
Abstract
Bioaerosol generated in wastewater treatment plants has potential to harm human health. Survival of bacteria in bioaerosol during suspension is one of the major factors that affect its biological risk. It is hypothesized that bacteria grown in different wastewater have different physiology and lead to variation in airborne survival. This study investigated the relationship between the cultured conditions and the bioaerosol survival. Synthetic wastewater was used as the culture medium to simulate the water quality of wastewater. Escherichia coli BW25113 were cultured in different conditions, including growth salinity, growth temperature, growth pH, and presence of pesticide. The fatty acid composition and the reduction in airborne survival of the E. coli cultured under these conditions were determined and compared. Results showed that increasing growth salinity and temperature led to a lower reduction in airborne survival of E. coli.E. coli cultured at pH 6 had a higher reduction in airborne survival than those cultured at pH 7 and 8. Moreover, a correlation was observed between the membrane fluidity (fluidity index) and the reduction airborne survival for both aerosolization and airborne suspension. A link between culture conditions, bacterial membrane fluidity, and airborne survival was established. Culture conditions (wastewater quality) that lead to a low membrane fluidity of bacteria increase the airborne survival of bioaerosol, and vice versa. This provides a new aspect to evaluate bioaerosol survival and improve assessment on biological risk of bioaerosols.
Collapse
|
26
|
Lucca V, Apellanis Borges K, Quedi Furian T, Borsoi A, Pippi Salle CT, de Souza Moraes HL, Pinheiro do Nascimento V. Influence of the norepinephrine and medium acidification in the growth and adhesion of Salmonella Heidelberg isolated from poultry. Microb Pathog 2019; 138:103799. [PMID: 31614192 DOI: 10.1016/j.micpath.2019.103799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 02/03/2023]
Abstract
Salmonella spp. are among the leading pathogens responsible for foodborne illnesses worldwide. Bacterial communities use a quorum sensing (QS) system to control biofilm formation. QS is a cell-to-cell signaling mechanism involving compounds called auto-inducers (AI). Norepinephrine utilizes the same bacterial signaling of AI-3 and serves as a signal of QS. Acid stress is a challenge encountered by microorganisms in food processing environments and in the gastrointestinal tracts of hosts. Thus, adaptation to acidic environments may increase the pathogenicity of the strain. The aim of this study was to evaluate the influence of two concentrations of norepinephrine (100 μM and 250 μM) and acidification (pH 3.0) of the medium on the growth and adhesion of Salmonella Heidelberg strains isolated from poultry sources at 12 °C and 25 °C. Furthermore, three genes associated with the biofilm formation process were detected (adrA, csgD, and sidA). Norepinephrine stimulation did not influence the growth or adhesion of Salmonella Heidelberg strains, regardless of the catecholamine concentration and temperature. On the other hand, the use of acidified medium (pH 3.0) resulted in a significant reduction of growth and a significant increase of S. Heidelberg adhesion at both temperatures, indicating that the acidified medium favors the biofilm formation process. The adrA and sidA genes showed higher detection frequencies than csgD. Experiments analyzing the biofilm production process by S. Heidelberg strains are not common, and further studies are necessary to understand this complex process.
Collapse
Affiliation(s)
- Vivian Lucca
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Karen Apellanis Borges
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil.
| | - Thales Quedi Furian
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Anderlise Borsoi
- Universidade Tuiuti do Paraná, R. Sydnei Antonio Rangel Santos, 238, Curitiba, PR, Brazil
| | - Carlos Tadeu Pippi Salle
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Hamilton Luiz de Souza Moraes
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| | - Vladimir Pinheiro do Nascimento
- Universidade Federal do Rio Grande do Sul, Faculdade de Veterinária, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Av. Bento Gonçalves, 8824, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Prokaryotic and Mitochondrial Lipids: A Survey of Evolutionary Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31502197 DOI: 10.1007/978-3-030-21162-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria and bacteria share a myriad of properties since it is believed that the powerhouses of the eukaryotic cell have evolved from a prokaryotic origin. Ribosomal RNA sequences, DNA architecture and metabolism are strikingly similar in these two entities. Proteins and nucleic acids have been a hallmark for comparison between mitochondria and prokaryotes. In this chapter, similarities (and differences) between mitochondrial and prokaryotic membranes are addressed with a focus on structure-function relationship of different lipid classes. In order to be suitable for the theme of the book, a special emphasis is reserved to the effects of bioactive sphingolipids, mainly ceramide, on mitochondrial membranes and their roles in initiating programmed cell death.
Collapse
|
28
|
Surendran Nair M, Ma F, Lau P, Upadhyaya I, Venkitanarayanan K. Inactivation of Escherichia coli O157:H7 in apple cider by resveratrol and naringenin. Food Microbiol 2019; 86:103327. [PMID: 31703855 DOI: 10.1016/j.fm.2019.103327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 08/01/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The study investigated the efficacy of two GRAS-status phytochemicals, mega-resveratrol (RV) and naringenin (NG) to inactivate Escherichia coli O157:H7 (EHEC) in apple cider. A five-strain mixture of EHEC (∼7 log CFU/ml) was inoculated into cider, followed by the addition of RV (8.7 mM and 13.0 mM) or NG (7.3 mM and 11.0 mM). The cider samples were stored at 4 °C for 14 days and EHEC was enumerated on days 0,1,5,7 and 14. The deleterious effects of RV and NG on EHEC cells were visualized by scanning electron microscopy (SEM), and RT-qPCR was done to determine the effect of phytochemicals on three known acid resistance (AR) systems of EHEC. NG was more effective than RV and reduced EHEC counts by ∼4.5 log CFU/ml by day 14, whereas RV reduced counts by ∼2.5 log CFU/ml compared to controls (P < 0.05). SEM showed that RV and NG resulted in the destruction of EHEC cells, and surviving bacteria appeared 'lemon shaped'. RT-qPCR results revealed that RV and NG downregulated the transcription of AR associated genes in EHEC (P < 0.05). Results suggest the potential use of RV and NG as natural antimicrobial additives to enhance the microbiological safety of apple cider. However, sensory analysis studies are warranted.
Collapse
Affiliation(s)
- Meera Surendran Nair
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Fulin Ma
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Patrick Lau
- Department of Public Health, University of Connecticut Health Centre, Farmington, CT, USA
| | - Indu Upadhyaya
- College of Agriculture & Human Ecology, Tennessee Tech University, Cookeville, TN, USA
| | | |
Collapse
|
29
|
Vinh PT, Shinohara Y, Yamada A, Duc HM, Nakayama M, Ozawa T, Sato J, Masuda Y, Honjoh KI, Miyamoto T. Baicalein Inhibits Stx1 and 2 of EHE: Effects of Baicalein on the Cytotoxicity, Production, and Secretion of Shiga Toxins of Enterohaemorrhagic Escherichia coli. Toxins (Basel) 2019; 11:toxins11090505. [PMID: 31470657 PMCID: PMC6784239 DOI: 10.3390/toxins11090505] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen. Baicalein (5,6,7-trihydroxylflavone), a flavone isolated from the roots of Scutellaria baicalensis, is considered as a potential antibacterial agent to control foodborne pathogens. Among seven compounds selected by in silico screening of the natural compound database, baicalein inhibited the cytotoxicity of both Shiga toxins 1 and 2 (Stx1 and Stx2) against Vero cells after pretreatment at 0.13 mmol/L. In addition, baicalein reduced the susceptibility of Vero cells to both Stx1 and Stx2. Real-time qPCR showed that baicalein increased transcription of stx1 but not of stx2. However, baicalein had no effects on production or secretion of Stx1 or Stx2. Docking models suggested that baicalein formed a stable structure with StxB pentamer with low intramolecular energy. The results demonstrate that inhibitory activity of baicalein against the cytotoxicity of both Stx1 and Stx2 might be due to of the formation of a binding structure inside the pocket of the Stx1B and Stx2B pentamers.
Collapse
Affiliation(s)
- Pham Thi Vinh
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yui Shinohara
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akifumi Yamada
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hoang Minh Duc
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Motokazu Nakayama
- Global R&D-Safty Science, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Tadahiro Ozawa
- Bioscience Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Jun Sato
- Global R&D-Safty Science, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan
| | - Yoshimitsu Masuda
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
Yu L, Ji S, Yu J, Fu W, Zhang L, Li J, Gao F, Jiang Y. Effects of lactic acid stress with lactic acid adaptation on the survival and expression of virulence‐related genes inEscherichia coliO157:H7. J Food Saf 2019. [DOI: 10.1111/jfs.12701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lanlin Yu
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Saisai Ji
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Jinlong Yu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Wenjing Fu
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| | - Lin Zhang
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Jiaolong Li
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Feng Gao
- College of Animal Science and TechnologyNanjing Agricultural University Nanjing China
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety GuaranteeNanjing Agricultural University Nanjing China
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety ControlNanjing Agricultural University Nanjing China
| | - Yun Jiang
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University Nanjing China
| |
Collapse
|
31
|
Bisignano C, Ginestra G, Smeriglio A, La Camera E, Crisafi G, Franchina FA, Tranchida PQ, Alibrandi A, Trombetta D, Mondello L, Mandalari G. Study of the Lipid Profile of ATCC and Clinical Strains of Staphylococcus aureus in Relation to Their Antibiotic Resistance. Molecules 2019; 24:molecules24071276. [PMID: 30986911 PMCID: PMC6480324 DOI: 10.3390/molecules24071276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
A number of reports have indicated a relationship between bacterial resistance to antibiotics and their lipid composition. In the present study, we characterized the lipid profiles of American Type Culture Collection (ATCC) and clinical strains of Staphylococcus aureus and its correlation with antibiotic resistance and hydrophobicity. The following strains were used: S. aureus ATCC 6538P, S. aureus ATCC 43300 (MRSA), seven clinical strains from the pharynges, two strains from duodenal ulcers, four strains from hip prostheses, and one strain from the conjunctiva. Lipid-related differentiation was observed across the S. aureus strains: the higher abundance of anteiso-pentadecanoic acid (anteiso-C15:0) and anteiso-heptadecanoic acid (anteiso-C17:0), followed by iso-pentadecanoic acid (iso-C15:0), suggested that these were common lipids. Iso-tridecanoic acid (iso-C13:0) and anteiso-tridecanoic acid (anteiso-C13:0), iso-hexadecanoic acid (iso-C16:0) and anteiso-hexadecanoic acid (anteiso-C16:0), and all forms of octadecanoic acid (C18:0) were usually detected in low abundance. Strains isolated from pharynges showed the highest ratio of branched/straight chains. A distinction in two clusters based on the amount and type of bacterial lipids identified was obtained, which correlated to the antibiotic resistance, the strains origin, and the cell-surface hydrophobicity. We report a potential correlation between the lipid profile of S. aureus strains, site of infection, antibiotic resistance, and cell-surface hydrophobicity. These results, which still need further insights, could be a first step to identifying antibiotic resistance in response to environmental adaptation.
Collapse
Affiliation(s)
- Carlo Bisignano
- Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Giovanna Ginestra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Giuseppe Crisafi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Flavio A Franchina
- Chromaleont c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
- School of Engineering at Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, USA.
- University of Liège, Molecular System Organic & Biological Analytical Chemistry, 11 Allée du Six Août, 4000 Liège, Belgium.
| | - Peter Q Tranchida
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, 98125 Messina, Italy.
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
- Chromaleont c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, I-98168 Messina, Italy.
| |
Collapse
|
32
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
34
|
Hamid H, Shi HQ, Ma GY, Fan Y, Li WX, Zhao LH, Zhang JY, Ji C, Ma QG. Influence of acidified drinking water on growth performance and gastrointestinal function of broilers. Poult Sci 2018; 97:3601-3609. [PMID: 29860532 DOI: 10.3382/ps/pey212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/28/2018] [Indexed: 11/20/2022] Open
Abstract
The ban on the use of antibiotic feed additives as growth promoters compelled the researchers for exploring the future utility of other alternatives. This experiment was designed to evaluate the effect of acidified drinking water on growth performance, gastrointestinal pH, digestive enzymes, intestinal histomorphology, and cecum microbial counting of the broiler chicken. A total of 540 one-day-old male broilers (Arbor Acre) were randomly assigned to 5 treatments, with 6 replicates of 18 chicks per replicate. Broilers received diets and water as follows: NC (negative control, basal diet, normal water), PC (positive control, basal diet + 8 ppm colistin sulfate + 8 ppm enduracidin, normal water), A1 (basal diet, continuous supply of acidified water during whole experiment period), A2 (basal diet, intermittent acidification of water during 0 to 14 d, 22 to 28 d, and 36 to 42 d), and A3 [basal diet, intermittent acidification of water (24 h/d from 0 to 14 d and from 10:00 am to 4:00 pm on d 15 to 42)]. During the entire period, the acidified groups (A1, A2, and A3) and PC group showed improve on weight gain, average daily gain and feed conversion ratio compared to NC group (P < 0.05). The pH in crop, proventriculus and ileum at 43 d declined by 0.04, 1.03, 1.23; 0.55, 0.69, 0.70; and 0.63, 0.74, 1.21 in A1, A2, and A3 group, respectively. There was a significant decline of lipase activity in the PC and acidified groups compared to NC group. The A2 group had higher villus height in jejunum than NC group. The PC and acidified groups reduced (P < 0.05) the total aerobic bacteria count of cecum when contrasted to NC group. Therefore, we conclude that acidified drinking water can improve growth performance, compensate for gastric acidity, and control pathogenic bacteria in broilers and may be considered as a potential alternative to improve production parameters. Discontinuous supply of acidified water had the same or even better influence on broilers compared to continuous supply.
Collapse
Affiliation(s)
- H Hamid
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - H Q Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - G Y Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Y Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - W X Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - L H Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - J Y Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - C Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Q G Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl Environ Microbiol 2018; 84:AEM.01616-18. [PMID: 30217837 DOI: 10.1128/aem.01616-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023] Open
Abstract
Thymol, carvacrol, and trans-cinnamaldehyde are essential oil (EO) compounds with broad-spectrum antimicrobial activities against foodborne pathogens, including Escherichia coli O157:H7. However, little is known regarding direct resistance and cross-resistance development in E. coli O157:H7 after adaptation to sublethal levels of these compounds, and information is scarce on microbial adaptive responses at a molecular level. The present study demonstrated that E. coli O157:H7 was able to grow in the presence of sublethal thymol (1/2T), carvacrol (1/2C), or trans-cinnamaldehyde (1/2TC), displaying an extended lag phase duration and a lower maximum growth rate. EO-adapted cells developed direct resistance against lethal EO treatments and cross-resistance against heat (58°C) and oxidative (50 mM H2O2) stresses. However, no induction of acid resistance (simulated gastric fluid, pH 1.5) was observed. RNA sequencing revealed a large number (310 to 338) of differentially expressed (adjusted P value [Padj ], <0.05; fold change, ≥5) genes in 1/2T and 1/2C cells, while 1/2TC cells only showed 27 genes with altered expression. In accordance with resistance phenotypes, the genes related to membrane, heat, and oxidative stress responses and genes related to iron uptake and metabolism were upregulated. Conversely, virulence genes associated with motility, biofilm formation, and efflux pumps were repressed. This study demonstrated the development of direct resistance and cross-resistance and characterized whole-genome transcriptional responses in E. coli O157:H7 adapted to sublethal thymol, carvacrol, or trans-cinnamaldehyde. The data suggested that caution should be exercised when using EO compounds as food antimicrobials, due to the potential stress resistance development in E. coli O157:H7.IMPORTANCE The present study was designed to understand transcriptomic changes and the potential development of direct and cross-resistance in essential oil (EO)-adapted Escherichia coli O157:H7. The results demonstrated altered growth behaviors of E. coli O157:H7 during adaptation in sublethal thymol, carvacrol, and trans-cinnamaldehyde. Generally, EO-adapted bacteria showed enhanced resistance against subsequent lethal EO, heat, and oxidative stresses, with no induction of acid resistance in simulated gastric fluid. A transcriptomic analysis revealed the upregulation of related stress resistance genes and a downregulation of various virulence genes in EO-adapted cells. This study provides new insights into microbial EO adaptation behaviors and highlights the risk of resistance development in adapted bacteria.
Collapse
|
36
|
Kim SS, Park SH, Kang DH. Application of continuous-type pulsed ohmic heating system for inactivation of foodborne pathogens in buffered peptone water and tomato juice. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
The Mycobacterium tuberculosis protein Rv2387 is involved in cell wall remodeling and susceptibility to acidic conditions. Biochem Biophys Res Commun 2018; 503:625-630. [PMID: 29902462 DOI: 10.1016/j.bbrc.2018.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
Abstract
The distinctive cell walls of mycobacteria are characteristic features of these bacteria. Individual cell wall components influence diverse mycobacterial phenotypes, such as colony morphology, virulence and stress resistance. To investigate the role of the hypothetical protein Rv2387, we constructed a Mycobacterium smegmatis strain that heterologously expressed this ORF, and we observed that the M. smegmatis strain expressing Rv2387 exhibited altered colony morphology and cell wall lipid composition, leading to a marked decrease in the resistance against acidic conditions. This study demonstrates that due to its impact on cell wall remodeling, Rv2387 might play an important role in mycobacterial physiology.
Collapse
|
38
|
Park C, Park W. Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential. Front Microbiol 2018; 9:1081. [PMID: 29910779 PMCID: PMC5992423 DOI: 10.3389/fmicb.2018.01081] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/07/2018] [Indexed: 11/17/2022] Open
Abstract
Many petroleum-polluted areas are considered as extreme environments because of co-occurrence of low and high temperatures, high salt, and acidic and anaerobic conditions. Alkanes, which are major constituents of crude oils, can be degraded under extreme conditions, both aerobically and anaerobically by bacteria and archaea of different phyla. Alkane degraders possess exclusive metabolic pathways and survival strategies, which involve the use of protein and RNA chaperones, compatible solutes, biosurfactants, and exopolysaccharide production for self-protection during harsh environmental conditions such as oxidative and osmotic stress, and ionic nutrient-shortage. Recent findings suggest that the thermophilic sulfate-reducing archaeon Archaeoglobus fulgidus uses a novel alkylsuccinate synthase for long-chain alkane degradation, and the thermophilic Candidatus Syntrophoarchaeum butanivorans anaerobically oxidizes butane via alkyl-coenzyme M formation. In addition, gene expression data suggest that extremophiles produce energy via the glyoxylate shunt and the Pta-AckA pathway when grown on a diverse range of alkanes under stress conditions. Alkane degraders possess biotechnological potential for bioremediation because of their unusual characteristics. This review will provide genomic and molecular insights on alkane degraders under extreme conditions.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
39
|
Lee H, Woo ER, Lee DG. Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 2018; 18:4810751. [DOI: 10.1093/femsyr/foy003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/05/2023] Open
|
40
|
Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res Int 2017; 105:178-183. [PMID: 29433205 DOI: 10.1016/j.foodres.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 11/13/2017] [Indexed: 11/27/2022]
Abstract
As the development of hurdle technology, cross-protection of various stresses for pathogens posed the potential risk to food safety and public health. This study tried to explore various preliminary stresses including acidity, osmosis, oxidation, heat and cold on the resistance of microbial cells toward the non-thermal plasma (NTP) exposure. The results indicated that short-term (4h) exposure of Staphylococcus aureus and Escherichia coli to acidity, osmosis, oxidation, heat and cold stresses did not lead to the resistance to the subsequent NTP treatment. On the contrary, acidity, osmosis and heat preadaptation increased the vulnerability of E. coli cells to NTP treatment. After exposing S. aureus to osmosis, oxidation, heat and cold stress for longer period (24h), the reduction level showed significantly (P<0.05) higher. Interestingly, long-term (24h) preliminary exposure of acidic stress exhibited protective effect for S. aureus against the following NTP exposure with less damage in cell membrane integrity, membrane potential and intracellular enzyme activity. It might be due to the protein production for oxidative stress response during preliminary acidic adaptation. In general, the obtained result helped to grasp better understanding of the microbial stress response to NTP treatment and provided insight for the future research in order to accelerate the development of NTP technology in food industry.
Collapse
|
41
|
Modification of membrane properties and fatty acids biosynthesis-related genes in Escherichia coli and Staphylococcus aureus: Implications for the antibacterial mechanism of naringenin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:481-490. [PMID: 29138066 DOI: 10.1016/j.bbamem.2017.11.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/11/2017] [Accepted: 11/10/2017] [Indexed: 11/24/2022]
Abstract
In this work, modifications of cell membrane fluidity, fatty acid composition and fatty acid biosynthesis-associated genes of Escherichia coli ATCC 25922 (E. coli) and Staphylococcus aureus ATCC 6538 (S. aureus), during growth in the presence of naringenin (NAR), one of the natural antibacterial components in citrus plants, was investigated. Compared to E. coli, the growth of S. aureus was significantly inhibited by NAR in low concentrations. Combination of gas chromatography-mass spectrometry with fluorescence polarization analysis revealed that E. coli and S. aureus cells increased membrane fluidity by altering the composition of membrane fatty acids after exposure to NAR. For example, E. coli cells produced more unsaturated fatty acids (from 18.5% to 43.3%) at the expense of both cyclopropane and saturated fatty acids after growth in the concentrations of NAR from 0 to 2.20mM. For S. aureus grown with NAR at 0 to 1.47mM, the relative proportions of anteiso-branched chain fatty acids increased from 37.2% to 54.4%, whereas iso-branched and straight chain fatty acids decreased from 30.0% and 33.1% to 21.6% and 23.7%, respectively. Real time q-PCR analysis showed that NAR at higher concentrations induced a significant down-regulation of fatty acid biosynthesis-associated genes in the bacteria, with the exception of an increased expression of fabA gene. The minimum inhibitory concentration (MIC) of NAR against these two bacteria was determined, and both of bacteria underwent morphological changes after exposure to 1.0 and 2.0 MIC.
Collapse
|
42
|
Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017; 21:651-670. [PMID: 28508135 PMCID: PMC5487899 DOI: 10.1007/s00792-017-0939-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/29/2017] [Indexed: 12/30/2022]
Abstract
The cytoplasmic membrane of a prokaryotic cell consists of a lipid bilayer or a monolayer that shields the cellular content from the environment. In addition, the membrane contains proteins that are responsible for transport of proteins and metabolites as well as for signalling and energy transduction. Maintenance of the functionality of the membrane during changing environmental conditions relies on the cell's potential to rapidly adjust the lipid composition of its membrane. Despite the fundamental chemical differences between bacterial ester lipids and archaeal ether lipids, both types are functional under a wide range of environmental conditions. We here provide an overview of archaeal and bacterial strategies of changing the lipid compositions of their membranes. Some molecular adjustments are unique for archaea or bacteria, whereas others are shared between the two domains. Strikingly, shared adjustments were predominantly observed near the growth boundaries of bacteria. Here, we demonstrate that the presence of membrane spanning ether-lipids and methyl branches shows a striking relationship with the growth boundaries of archaea and bacteria.
Collapse
Affiliation(s)
- Melvin F Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
43
|
Fayemi OE, Taylor JRN, Buys EM. Potential for prevention of non-O157 Shiga toxin-producingEscherichia colicontamination in traditionally fermented African maize gruel by fermentative probioticLactobacillus plantarum. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olanrewaju E. Fayemi
- Department of Food Science; University of Pretoria; Private Bag X 20, Hatfield 0028 Pretoria South Africa
| | - John R. N. Taylor
- Department of Food Science; University of Pretoria; Private Bag X 20, Hatfield 0028 Pretoria South Africa
| | - Elna M. Buys
- Department of Food Science; University of Pretoria; Private Bag X 20, Hatfield 0028 Pretoria South Africa
| |
Collapse
|
44
|
Yun DG, Lee DG. Silymarin exerts antifungal effects via membrane-targeted mode of action by increasing permeability and inducing oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:467-474. [PMID: 28069415 DOI: 10.1016/j.bbamem.2017.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
Silymarin, which is derived from the seeds of Silybum marianum, has been widely used to prevent and treat liver disorders. It is also consumed as a dietary supplement to improve liver function, as it does not exhibit any toxic effects in humans. Recently, silymarin has been reported to show antimicrobial effects against various pathogenic microorganisms, but the mode of action remains unknown. Thus, we investigated the antifungal activity of silymarin and aimed to determine the underlying mechanism. Initially, a propidium iodide assay was carried out; the results indicated that silymarin induced injury to the fungal plasma membrane. Subsequently, large unilamellar vesicles encapsulating calcein and fluorescein isothiocyanate-labeled dextrans (FDs) 4, 10, and 20 were prepared to analyze whether silymarin affects an artificial membrane model. The results indicated that silymarin increased membrane permeability by disturbing the membrane structure, thereby allowing free access to molecules smaller than FD20 (approximately 3.3nm). The accumulation of reactive oxygen species (ROS) results in deleterious effects to various cellular components. In particular, ROS easily react with the membrane lipids and induce lipid peroxidation, which increases membrane permeability and disturbs hydrophobic phospholipids. Using 2',7'-dichlorodihydrofluorescein diacetate and thiobarbituric acid, we confirmed that silymarin induced harmful effects on the plasma membrane. Membrane depolarization and K+ leakage, which were associated with an increase in membrane permeability, were also observed in Candida albicans cells. An assay using 1,6-diphenyl-1,3,5-hexatriene showed that silymarin decreased membrane fluidity. Taken together, we suggest that silymarin exerts its antifungal activity by targeting the C. albicans plasma membrane.
Collapse
Affiliation(s)
- Dae Gyu Yun
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
45
|
Haberbeck LU, Wang X, Michiels C, Devlieghere F, Uyttendaele M, Geeraerd AH. Cross-protection between controlled acid-adaptation and thermal inactivation for 48 Escherichia coli strains. Int J Food Microbiol 2017; 241:206-214. [DOI: 10.1016/j.ijfoodmicro.2016.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/02/2016] [Accepted: 10/08/2016] [Indexed: 11/26/2022]
|
46
|
Horn S, Pieters R, Bezuidenhout C. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes. JOURNAL OF WATER AND HEALTH 2016; 14:890-900. [PMID: 27959868 DOI: 10.2166/wh.2016.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.
Collapse
Affiliation(s)
- Suranie Horn
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| | - Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa E-mail:
| |
Collapse
|
47
|
Roussel C, Cordonnier C, Galia W, Le Goff O, Thévenot J, Chalancon S, Alric M, Thevenot-Sergentet D, Leriche F, Van de Wiele T, Livrelli V, Blanquet-Diot S. Increased EHEC survival and virulence gene expression indicate an enhanced pathogenicity upon simulated pediatric gastrointestinal conditions. Pediatr Res 2016; 80:734-743. [PMID: 27429202 DOI: 10.1038/pr.2016.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/15/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) are major foodborne pathogens that constitute a serious public health threat, mainly in young children. Shiga toxins (Stx) are the main virulence determinants of EHEC pathogenesis but adhesins like intimin (eae) and Long polar fimbriae (Lpf) also contribute to infection. The TNO GastroIntestinal Model (TIM) was used for a comparative study of EHEC O157:H7 survival and virulence under adult and child digestive conditions. METHODS Survival kinetics in the in vitro digestive tract were determined by plating while bacterial viability was assessed by flow cytometry analysis. Expression of stx, eae, and lpf genes was followed by reverse transcriptase-quantitative PCR (RT-qPCR) and Stx production was measured by ELISA (enzyme-linked immunosorbent assay). RESULTS Upon gastrointestinal passage, a higher amount of viable cells was found in the simulated ileal effluents of children compared to that of adults (with 34 and 6% of viable cells, respectively). Expression levels of virulence genes were up to 125-fold higher in children. Stx was detected only in child ileal effluents. CONCLUSION Differences in digestive physicochemical parameters may partially explain why children are more susceptible to EHEC infection than adults. Such data are essential for a full understanding of EHEC pathogenesis and would help in designing novel therapeutic approaches.
Collapse
Affiliation(s)
- Charlène Roussel
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France.,CMet, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Charlotte Cordonnier
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France.,M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM/Université d'Auvergne, Université d'Auvergne, Clermont-Ferrand, France
| | - Wessam Galia
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France.,UMR 5557 Ecologie Microbienne, Research Group on Bacterial Opportunistic Pathogens and Environment, CNRS, VetAgro Sup and Université de Lyon, Lyon, France.,Unité CALYTISS, VetAgro Sup, Lempdes, France
| | - Olivier Le Goff
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France
| | - Jonathan Thévenot
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France.,M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM/Université d'Auvergne, Université d'Auvergne, Clermont-Ferrand, France
| | - Sandrine Chalancon
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France
| | - Monique Alric
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France
| | - Delphine Thevenot-Sergentet
- UMR 5557 Ecologie Microbienne, Research Group on Bacterial Opportunistic Pathogens and Environment, CNRS, VetAgro Sup and Université de Lyon, Lyon, France.,Laboratoire d'Etude des Microorganismes Alimentaires Pathogènes, French National Reference Laboratory for Escherichia coli including Shiga Toxin-Producing E. coli, VetAgro Sup, Université de Lyon, Marcy l'Etoile, France
| | | | - Tom Van de Wiele
- CMet, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Valérie Livrelli
- M2iSH, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte UMR INSERM/Université d'Auvergne, Université d'Auvergne, Clermont-Ferrand, France.,Service de Bactériologie, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- EA 4678 CIDAM, Conception Ingénierie et Développement de l'Aliment et du Médicament, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
48
|
Duport C, Jobin M, Schmitt P. Adaptation in Bacillus cereus: From Stress to Disease. Front Microbiol 2016; 7:1550. [PMID: 27757102 PMCID: PMC5047918 DOI: 10.3389/fmicb.2016.01550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Bacillus cereus is a food-borne pathogen that causes diarrheal disease in humans. After ingestion, B. cereus experiences in the human gastro-intestinal tract abiotic physical variables encountered in food, such as acidic pH in the stomach and changing oxygen conditions in the human intestine. B. cereus responds to environmental changing conditions (stress) by reversibly adjusting its physiology to maximize resource utilization while maintaining structural and genetic integrity by repairing and minimizing damage to cellular infrastructure. As reviewed in this article, B. cereus adapts to acidic pH and changing oxygen conditions through diverse regulatory mechanisms and then exploits its metabolic flexibility to grow and produce enterotoxins. We then focus on the intricate link between metabolism, redox homeostasis, and enterotoxins, which are recognized as important contributors of food-borne disease.
Collapse
Affiliation(s)
- Catherine Duport
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Michel Jobin
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| | - Philippe Schmitt
- Sécurité et Qualité des Produits d'Origine Végétale, UMR0408, Avignon Université, Institut National de la Recherche Agronomique Avignon, France
| |
Collapse
|
49
|
Leite de Souza E. The effects of sublethal doses of essential oils and their constituents on antimicrobial susceptibility and antibiotic resistance among food-related bacteria: A review. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Kim GH, Fratamico P, Breidt F, Oh DH. Survival and expression of acid resistance genes in Shiga toxin-producing Escherichia coli
acid adapted in pineapple juice and exposed to synthetic gastric fluid. J Appl Microbiol 2016; 121:1416-1426. [DOI: 10.1111/jam.13223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 01/19/2023]
Affiliation(s)
- G.-H. Kim
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - P. Fratamico
- USDA-ARS Eastern Regional Research Center; Wyndmoor PA USA
| | - F. Breidt
- USDA-ARS Food Science Research Unit; Department of Food; Bioprocessing and Nutrition Sciences; North Carolina State University; Raleigh NC USA
| | - D.-H. Oh
- Department of Food Science and Biotechnology; Kangwon National University; Chuncheon Gangwon South Korea
| |
Collapse
|