1
|
Wang J, Li X, Jin H, Yang S, Yu L, Wang H, Huang S, Liao H, Wang X, Yan J, Yang Y. CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination. MICROBIOME 2024; 12:154. [PMID: 39160636 PMCID: PMC11334346 DOI: 10.1186/s40168-024-01869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.
Collapse
Grants
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No.2023004 Zhiyuan Science Foundation of BIPT
- Grant No. 2019YFC1804400 National Key Research and Development Program of China
- Grant No. ZDBS-LY-DQC038 Key Research Program of Frontier Science, Chinese Academy of Sciences
- Grant No. 2021-MS-026 Natural Science Foundation of Liaoning Province of China
- Grant No. IAEMP202201 Major Program of Institute of Applied Ecology, Chinese Academy of Sciences
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shujing Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 117004, China
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Liao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhao Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
2
|
Blázquez-Pallí N, Torrentó C, Marco-Urrea E, Garriga D, González M, Bosch M. Pilot tests for the optimization of the bioremediation strategy of a multi-layered aquifer at a multi-focus site impacted with chlorinated ethenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173093. [PMID: 38768723 DOI: 10.1016/j.scitotenv.2024.173093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
A multi-layered aquifer in an industrial area in the north of the Iberian Peninsula is severely contaminated with the chlorinated ethenes (CEs) tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. Both shallow and deep aquifers are polluted, with two differentiated north and south CEs plumes. Hydrogeochemical and isotopic data (δ13C of CEs) evidenced natural attenuation of CEs. To select the optimal remediation strategy to clean-up the contamination plumes, laboratory treatability studies were performed, which confirmed the intrinsic biodegradation potential of the north and south shallow aquifers to fully dechlorinate CEs to ethene after injection of lactate, but also the combination of lactate and sulfidized mZVI as an alternative treatment for the north deep aquifer. In the lactate-amended microcosms, full dechlorination of CEs was accompanied by an increase in 16S rRNA gene copies of Dehalococcoides and Dehalogenimonas, and the tceA, vcrA and bvcA reductive dehalogenases. Three in situ pilot tests were implemented, which consisted in injections of lactate in the north and south shallow aquifers, and injections of lactate and sulfidized mZVI in the north deep aquifer. The hydrogeochemical, isotopic and molecular analyses used to monitor the pilot tests evidenced that results obtained mimicked the laboratory observations, albeit at different dechlorination rates. It is likely that the efficiency of the injections was affected by the amendment distribution. In addition, monitoring of the pilot tests in the shallow aquifers showed the release of CEs due to back diffusion from secondary sources, which limited the use of isotopic data for assessing treatment efficiency. In the pilot test that combined the injection of lactate and sulfidized mZVI, both biotic and abiotic pathways contributed to the production of ethene. This study demonstrates the usefulness of integrating different chemical, isotopic and biomolecular approaches for a more robust selection and implementation of optimal remediation strategies in CEs polluted sites.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain.
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Serra Húnter Fellowship, Generalitat de Catalunya, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193 Cerdanyola del Vallès, Spain
| | - David Garriga
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marta González
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marçal Bosch
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| |
Collapse
|
3
|
Zhang Z, Ali M, Tang Z, Sun Q, Wang Q, Liu X, Yin L, Yan S, Xu M, Coulon F, Song X. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134034. [PMID: 38521036 DOI: 10.1016/j.jhazmat.2024.134034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.
Collapse
Affiliation(s)
- Zhuanxia Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Liu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lipu Yin
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Song Yan
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Hu M, Scott C. Toward the development of a molecular toolkit for the microbial remediation of per-and polyfluoroalkyl substances. Appl Environ Microbiol 2024; 90:e0015724. [PMID: 38477530 PMCID: PMC11022551 DOI: 10.1128/aem.00157-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly fluorinated synthetic organic compounds that have been used extensively in various industries owing to their unique properties. The PFAS family encompasses diverse classes, with only a fraction being commercially relevant. These substances are found in the environment, including in water sources, soil, and wildlife, leading to human exposure and fueling concerns about potential human health impacts. Although PFAS degradation is challenging, biodegradation offers a promising, eco-friendly solution. Biodegradation has been effective for a variety of organic contaminants but is yet to be successful for PFAS due to a paucity of identified microbial species capable of transforming these compounds. Recent studies have investigated PFAS biotransformation and fluoride release; however, the number of specific microorganisms and enzymes with demonstrable activity with PFAS remains limited. This review discusses enzymes that could be used in PFAS metabolism, including haloacid dehalogenases, reductive dehalogenases, cytochromes P450, alkane and butane monooxygenases, peroxidases, laccases, desulfonases, and the mechanisms of microbial resistance to intracellular fluoride. Finally, we emphasize the potential of enzyme and microbial engineering to advance PFAS degradation strategies and provide insights for future research in this field.
Collapse
Affiliation(s)
- Miao Hu
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
5
|
Rahmatullah R, Marquis CP. Evaluation of alternate hosts for recombinant expression of a reductive dehalogenase. Enzyme Microb Technol 2024; 174:110390. [PMID: 38147780 DOI: 10.1016/j.enzmictec.2023.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Organohalides are recalcitrant, toxic environmental pollutants. Reductive dehalogenase enzymes (RDases) found in organohalide respiring bacteria (OHRB) utilise organohalides as electron acceptors for cellular energy and growth, producing lesser-halogenated compounds. Consequently, microbial reductive dehalogenation via organohalide respiration represents a promising solution for clean-up of organohalide pollutants. Dehalobacter sp. UNSWDHB is an OHRB capable of respiring highly toxic chloroform (CF) and converting it to dichloromethane (DCM). TmrA has been identified as an RDase responsible for this conversion and different strategies for generation of functional recombinant TmrA is the focus of this article. In this study, TmrA was recovered from inclusion bodies expressed in E. coli and refolded in the presence of FeCl3, Na2S and cobalamin to yield functional enzyme. TmrA has been previously expressed in a soluble and functional form in the corrinoid-producing Bacillus megaterium. Using a fractional experimental design for cultivation and induction combined with purification under anaerobic conditions resulted in substantially higher activity of recombinant and native TmrA than previously reported. TmrA was then expressed in a soluble and active form in Shimwellia blattae. Co-expression with two different putative chaperone proteins from the original host did not increase the level of soluble expression in S. blattae, however activity assays showed that removing the TAT signal from TmrA increases the dechlorination activity compared to when the TAT signal is present. Finally, TmrA was successfully expressed in a soluble and active form in the H2-oxidizing C. necator H16, a novel host for the expression of RDases.
Collapse
Affiliation(s)
- Rabeya Rahmatullah
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Sydney, NSW 2052 Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, The University of NSW, Sydney, NSW 2052 Australia.
| |
Collapse
|
6
|
Ng TL, Silver PA. Sustainable B 12-Dependent Dehalogenation of Organohalides in E. coli. ACS Chem Biol 2024; 19:380-391. [PMID: 38254247 DOI: 10.1021/acschembio.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Microbial bioremediation can provide an environmentally friendly and scalable solution to treat contaminated soil and water. However, microbes have yet to optimize pathways for degrading persistent anthropogenic pollutants, in particular organohalides. In this work, we first expand our repertoire of enzymes useful for bioremediation. By screening a panel of cobalamin (B12)-dependent reductive dehalogenases, we identified previously unreported enzymes that dechlorinate perchloroethene and regioselectively deiodinate the thyroidal disruptor 2,4,6-triiodophenol. One deiodinase, encoded by the animal-associated anaerobe Clostridioides difficile, was demonstrated to dehalogenate the naturally occurring metabolites L-halotyrosines. In cells, several combinations of ferredoxin oxidoreductase and flavodoxin extract and transfer low-potential electrons from pyruvate to drive reductive dehalogenation without artificial reductants and mediators. This work provides new insights into a relatively understudied family of B12-dependent enzymes and sets the stage for engineering synthetic pathways for degrading unnatural small molecule pollutants.
Collapse
Affiliation(s)
- Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute of Biologically-Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Kucharzyk KH, Murdoch FK, Wilson J, Michalsen M, Löffler FE, Murdoch RW, Istok JD, Hatzinger PB, Mullins L, Hill A. Integrated Advanced Molecular Tools Predict In Situ cVOC Degradation Rates: Field Demonstration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:557-569. [PMID: 38109066 DOI: 10.1021/acs.est.3c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chlorinated volatile organic compound (cVOC) degradation rate constants are crucial information for site management. Conventional approaches generate rate estimates from the monitoring and modeling of cVOC concentrations. This requires time series data collected along the flow path of the plume. The estimates of rate constants are often plagued by confounding issues, making predictions cumbersome and unreliable. Laboratory data suggest that targeted quantitative analysis of Dehalococcoides mccartyi (Dhc) biomarker genes (qPCR) and proteins (qProt) can be directly correlated with reductive dechlorination activity. To assess the potential of qPCR and qProt measurements to predict rates, we collected data from cVOC-contaminated aquifers. At the benchmark study site, the rate constant for degradation of cis-dichloroethene (cDCE) extracted from monitoring data was 11.0 ± 3.4 yr-1, and the rate constant predicted from the abundance of TceA peptides was 6.9 yr-1. The rate constant for degradation of vinyl chloride (VC) from monitoring data was 8.4 ± 5.7 yr-1, and the rate constant predicted from the abundance of TceA peptides was 5.2 yr-1. At the other study sites, the rate constants for cDCE degradation predicted from qPCR and qProt measurements agreed within a factor of 4. Under the right circumstances, qPCR and qProt measurements can be useful to rapidly predict rates of cDCE and VC biodegradation, providing a major advance in effective site management.
Collapse
Affiliation(s)
| | | | - John Wilson
- Scissortail Environmental Solutions, LLC, Ada, Oklahoma 74820, United States
| | - Mandy Michalsen
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, Department of Microbiology, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert W Murdoch
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| | - Jack D Istok
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee 37831, United States
| | - Paul B Hatzinger
- Aptim Biotechnology Development and Applications Group, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Larry Mullins
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| | - Amy Hill
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| |
Collapse
|
8
|
Romantschuk M, Lahti-Leikas K, Kontro M, Galitskaya P, Talvenmäki H, Simpanen S, Allen JA, Sinkkonen A. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Front Microbiol 2023; 14:1258148. [PMID: 38029190 PMCID: PMC10658714 DOI: 10.3389/fmicb.2023.1258148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Bioremediation by in situ biostimulation is an attractive alternative to excavation of contaminated soil. Many in situ remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers. The focus here is on indigenous microbial degraders and evaluation of their performance. Identifying and removing biodegradation bottlenecks for degradation of organic pollutants is essential. Limiting factors commonly include: lack of oxygen or alternative electron acceptors, low temperature, and lack of essential nutrients. Additional factors: the bioavailability of the contaminating compound, pH, distribution of the contaminant, and soil structure and moisture, and in some cases, lack of degradation potential which may be amended with bioaugmentation. Methods to remove these bottlenecks are discussed. Implementers should also be prepared to combine methods or use them in sequence. Chemical/physical means may be used to enhance biostimulation. The review also suggests tools for assessing sustainability, life cycle assessment, and risk assessment. To help entrepreneurs, decision makers, and methods developers in the future, we suggest founding a database for otherwise seldom reported unsuccessful interventions, as well as the potential for artificial intelligence (AI) to assist in site evaluation and decision-making.
Collapse
Affiliation(s)
- Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Katariina Lahti-Leikas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Merja Kontro
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - John A. Allen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Horticulture Technologies, Turku, Finland
| |
Collapse
|
9
|
Wu Z, Yu X, Liu G, Li W, Lu L, Li P, Xu X, Jiang J, Wang B, Qiao W. Sustained detoxification of 1,2-dichloroethane to ethylene by a symbiotic consortium containing Dehalococcoides species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121443. [PMID: 36921661 DOI: 10.1016/j.envpol.2023.121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 μM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 μmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per μmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Pengfa Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Cui Y, Li X, Yan J, Lv Y, Jin H, Wang J, Chen G, Kara-Murdoch F, Yang Y, Löffler FE. Dehalogenimonas etheniformans sp. nov., a formate-oxidizing, organohalide-respiring bacterium isolated from grape pomace. Int J Syst Evol Microbiol 2023; 73. [PMID: 37185088 DOI: 10.1099/ijsem.0.005881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
A strictly anaerobic, organohalide-respiring bacterium, designated strain GPT, was characterized using a polyphasic approach. GPT is Gram-stain-negative, non-spore-forming and non-motile. Cells are irregular cocci ranging between 0.6 and 0.9 µm in diameter. GPT couples growth with the reductive dechlorination of 1,2-dichloroethane, vinyl chloride and all polychlorinated ethenes, except tetrachloroethene, yielding ethene and inorganic chloride as dechlorination end products. H2 and formate serve as electron donors for organohalide respiration in the presence of acetate as carbon source. Major cellular fatty acids include C16 : 0, C18 : 1ω9c, C16 : 1, C14 : 0 and C18 : 0. On the basis of 16S rRNA gene phylogeny, GPT is most closely related to Dehalogenimonas formicexedens NSZ-14T and Dehalogenimonas alkenigignens IP3-3T with 99.8 and 97.4 % sequence identities, respectively. Genome-wide pairwise comparisons based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization do not support the inclusion of GPT in previously described species of the genus Dehalogenimonas with validly published names. On the basis of phylogenetic, physiological and phenotypic traits, GPT represents a novel species within the genus Dehalogenimonas, for which the name Dehalogenimonas etheniformans sp. nov. is proposed. The type strain is GPT (= JCM 39172T = CGMCC 1.17861T).
Collapse
Affiliation(s)
- Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Yan Lv
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Fadime Kara-Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Present address: Battelle Memorial Institute, Columbus, OH 43201, USA
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
11
|
May AL, Xie Y, Kara Murdoch F, Michalsen MM, Löffler FE, Campagna SR. Metabolome patterns identify active dechlorination in bioaugmentation consortium SDC-9™. Front Microbiol 2022; 13:981994. [PMID: 36386687 PMCID: PMC9641191 DOI: 10.3389/fmicb.2022.981994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2023] Open
Abstract
Ultra-high performance liquid chromatography-high-resolution mass spectrometry (UPHLC-HRMS) is used to discover and monitor single or sets of biomarkers informing about metabolic processes of interest. The technique can detect 1000's of molecules (i.e., metabolites) in a single instrument run and provide a measurement of the global metabolome, which could be a fingerprint of activity. Despite the power of this approach, technical challenges have hindered the effective use of metabolomics to interrogate microbial communities implicated in the removal of priority contaminants. Herein, our efforts to circumvent these challenges and apply this emerging systems biology technique to microbiomes relevant for contaminant biodegradation will be discussed. Chlorinated ethenes impact many contaminated sites, and detoxification can be achieved by organohalide-respiring bacteria, a process currently assessed by quantitative gene-centric tools (e.g., quantitative PCR). This laboratory study monitored the metabolome of the SDC-9™ bioaugmentation consortium during cis-1,2-dichloroethene (cDCE) conversion to vinyl chloride (VC) and nontoxic ethene. Untargeted metabolomics using an UHPLC-Orbitrap mass spectrometer and performed on SDC-9™ cultures at different stages of the reductive dechlorination process detected ~10,000 spectral features per sample arising from water-soluble molecules with both known and unknown structures. Multivariate statistical techniques including partial least squares-discriminate analysis (PLSDA) identified patterns of measurable spectral features (peak patterns) that correlated with dechlorination (in)activity, and ANOVA analyses identified 18 potential biomarkers for this process. Statistical clustering of samples with these 18 features identified dechlorination activity more reliably than clustering of samples based only on chlorinated ethene concentration and Dhc 16S rRNA gene abundance data, highlighting the potential value of metabolomic workflows as an innovative site assessment and bioremediation monitoring tool.
Collapse
Affiliation(s)
- Amanda L. May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, TN, United States
| | - Fadime Kara Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Mandy M. Michalsen
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, Tickle College of Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- Department of Biosystems Engineering and Soil Science, Herbert College of Agriculture, The University of Tennessee, Knoxville, TN, United States
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Shawn R. Campagna
- Department of Chemistry, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- Biological and Small Molecule Mass Spectrometry Core, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States
- University of Tennessee-Oak Ridge Innovation Institute, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
12
|
Zhao S, Ding C, Xu G, Rogers MJ, Ramaswamy R, He J. Diversity of organohalide respiring bacteria and reductive dehalogenases that detoxify polybrominated diphenyl ethers in E-waste recycling sites. THE ISME JOURNAL 2022; 16:2123-2131. [PMID: 35710945 PMCID: PMC9381789 DOI: 10.1038/s41396-022-01257-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Widespread polybrominated diphenyl ethers (PBDEs) contamination poses risks to human health and ecosystems. Bioremediation is widely considered to be a less ecologically disruptive strategy for remediation of organohalide contamination, but bioremediation of PBDE-contaminated sites is limited by a lack of knowledge about PBDE-dehalogenating microbial populations. Here we report anaerobic PBDE debromination in microcosms established from geographically distinct e-waste recycling sites. Complete debromination of a penta-BDE mixture to diphenyl ether was detected in 16 of 24 investigated microcosms; further enrichment of these 16 microcosms implicated microbial populations belonging to the bacterial genera Dehalococcoides, Dehalogenimonas, and Dehalobacter in PBDE debromination. Debrominating microcosms tended to contain either both Dehalogenimonas and Dehalobacter or Dehalococcoides alone. Separately, complete debromination of a penta-BDE mixture was also observed by axenic cultures of Dehalococcoides mccartyi strains CG1, CG4, and 11a5, suggesting that this phenotype may be fairly common amongst Dehalococcoides. PBDE debromination in these isolates was mediated by four reductive dehalogenases not previously known to debrominate PBDEs. Debromination of an octa-BDE mixture was less prevalent and less complete in microcosms. The PBDE reductive dehalogenase homologous genes in Dehalococcoides genomes represent plausible molecular markers to predict PBDE debromination in microbial communities via their prevalence and transcriptions analysis.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chang Ding
- Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
13
|
Zhang C, Atashgahi S, Bosma TNP, Peng P, Smidt H. Organohalide respiration potential in marine sediments from Aarhus Bay. FEMS Microbiol Ecol 2022; 98:fiac073. [PMID: 35689665 PMCID: PMC9303371 DOI: 10.1093/femsec/fiac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Organohalide respiration (OHR), catalysed by reductive dehalogenases (RDases), plays an important role in halogen cycling. Natural organohalides and putative RDase-encoding genes have been reported in Aarhus Bay sediments, however, OHR has not been experimentally verified. Here we show that sediments of Aarhus Bay can dehalogenate a range of organohalides, and different organohalides differentially affected microbial community compositions. PCE-dechlorinating cultures were further examined by 16S rRNA gene-targeted quantitative PCR and amplicon sequencing. Known organohalide-respiring bacteria (OHRB) including Dehalococcoides, Dehalobacter and Desulfitobacterium decreased in abundance during transfers and serial dilutions, suggesting the importance of yet uncharacterized OHRB in these cultures. Switching from PCE to 2,6-DBP led to its complete debromination to phenol in cultures with and without sulfate. 2,6-DBP debrominating cultures differed in microbial composition from PCE-dechlorinating cultures. Desulfobacterota genera recently verified to include OHRB, including Desulfovibrio and Desulfuromusa, were enriched in all microcosms, whereas Halodesulfovibrio was only enriched in cultures without sulfate. Hydrogen and methane were detected in cultures without sulfate. Hydrogen likely served as electron donor for OHR and methanogenesis. This study shows that OHR can occur in marine environments mediated by yet unknown OHRB, suggesting their role in natural halogen cycling.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom N P Bosma
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Peng Peng
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125, United States
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
14
|
Sauk AH, Hug LA. Substrate-restricted methanogenesis and limited volatile organic compound degradation in highly diverse and heterogeneous municipal landfill microbial communities. ISME COMMUNICATIONS 2022; 2:58. [PMID: 37938269 PMCID: PMC9723747 DOI: 10.1038/s43705-022-00141-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 06/17/2023]
Abstract
Microbial communities in landfills transform waste and generate methane in an environment unique from other built and natural environments. Landfill microbial diversity has predominantly been observed at the phylum level, without examining the extent of shared organismal diversity across space or time. We used 16S rRNA gene amplicon and shotgun metagenomic sequencing to examine the taxonomic and functional diversity of the microbial communities inhabiting a Southern Ontario landfill. The microbial capacity for volatile organic compound degradation in leachate and groundwater samples was correlated with geochemical conditions. Across the landfill, 25 bacterial and archaeal phyla were present at >1% relative abundance within at least one landfill sample, with Patescibacteria, Bacteroidota, Firmicutes, and Proteobacteria dominating. Methanogens were neither numerous nor particularly abundant, and were predominantly constrained to either acetoclastic or methylotrophic methanogenesis. The landfill microbial community was highly heterogeneous, with 90.7% of organisms present at only one or two sites within this interconnected system. Based on diversity measures, the landfill is a microbial system undergoing a constant state of disturbance and change, driving the extreme heterogeneity observed. Significant differences in geochemistry occurred across the leachate and groundwater wells sampled, with calcium, iron, magnesium, boron, meta and para xylenes, ortho xylenes, and ethylbenzene concentrations contributing most strongly to observed site differences. Predicted microbial degradation capacities indicated a heterogeneous community response to contaminants, including identification of novel proteins implicated in anaerobic degradation of key volatile organic compounds.
Collapse
Affiliation(s)
- Alexandra H Sauk
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, 200 University Ave, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
15
|
Hudari MSB, Richnow H, Vogt C, Nijenhuis I. Mini-review: effect of temperature on microbial reductive dehalogenation of chlorinated ethenes: a review. FEMS Microbiol Ecol 2022; 98:6638985. [PMID: 35810002 DOI: 10.1093/femsec/fiac081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temperature is a key factor affecting microbial activity and ecology. An increase in temperature generally increases rates of microbial processes up to a certain threshold, above which rates decline rapidly. In the subsurface, temperature of groundwater is usually stable and related to the annual average temperature at the surface. However, anthropogenic activities related to the use of the subsurface, e.g. for thermal heat management, foremost heat storage, will affect the temperature of groundwater locally. This mini-review intends to summarize the current knowledge on reductive dehalogenation activities of the chlorinated ethenes, common urban groundwater contaminants, at different temperatures. This includes an overview of activity and dehalogenation extent at different temperatures in laboratory isolates and enrichment cultures, the effect of shifts in temperature in micro- and mesocosm studies as well as observed biotransformation at different natural and induced temperatures at contaminated field sites. Furthermore, we address indirect effects on biotransformation, e.g. changes in fermentation, methanogenesis and sulfate reduction as competing or synergetic microbial processes. Finally, we address the current gaps in knowledge regarding bioremediation of chlorinated ethenes, microbial community shifts and bottlenecks for active combination with thermal energy storage, and necessities for bioaugmentation and/or natural re-populations after exposure to high temperature.
Collapse
Affiliation(s)
- Mohammad Sufian Bin Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
16
|
Morson N, Molenda O, Picott KJ, Richardson RE, Edwards EA. Long-term survival of Dehalococcoides mccartyi strains in mixed cultures under electron acceptor and ammonium limitation. FEMS MICROBES 2022; 3:xtac021. [PMID: 37332513 PMCID: PMC10117805 DOI: 10.1093/femsmc/xtac021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2023] Open
Abstract
Few strains of Dehalococcoides mccartyi harbour and express the vinyl chloride reductase (VcrA) that catalyzes the dechlorination of vinyl chloride (VC), a carcinogenic soil and groundwater contaminant. The vcrA operon is found on a Genomic Island (GI) and, therefore, believed to participate in horizontal gene transfer (HGT). To try to induce HGT of the vcrA-GI, we blended two enrichment cultures in medium without ammonium while providing VC. We hypothesized that these conditions would select for a mutant strain of D. mccartyi that could both fix nitrogen and respire VC. However, after more than 4 years of incubation, we found no evidence for HGT of the vcrA-GI. Rather, we observed VC-dechlorinating activity attributed to the trichloroethene reductase TceA. Sequencing and protein modelling revealed a mutation in the predicted active site of TceA, which may have influenced substrate specificity. We also identified two nitrogen-fixing D. mccartyi strains in the KB-1 culture. The presence of multiple strains of D. mccartyi with distinct phenotypes is a feature of natural environments and certain enrichment cultures (such as KB-1), and may enhance bioaugmentation success. The fact that multiple distinct strains persist in the culture for decades and that we could not induce HGT of the vcrA-GI suggests that it is not as mobile as predicted, or that mobility is restricted in ways yet to be discovered to specific subclades of Dehalococcoides.
Collapse
Affiliation(s)
- Nadia Morson
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Katherine J Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Dr, Ithaca, NY, Ithaca, NY, United States
| | - Elizabeth A Edwards
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| |
Collapse
|
17
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Candidatus Dehalogenimonas etheniformans". Appl Environ Microbiol 2022; 88:e0044322. [PMID: 35674428 DOI: 10.1128/aem.00443-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yields of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. The isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring. IMPORTANCE Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non-Dehalococcoides bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene. In addition to hydrogen, the new isolate utilizes formate as electron donor for reductive dechlorination, providing opportunities for more effective electron donor delivery to the contaminated subsurface. The discovery that a broader microbial diversity can achieve detoxification of toxic chlorinated ethenes in anoxic aquifers illustrates the potential of naturally occurring microbes for biotechnological applications.
Collapse
|
19
|
Jiang L, Yang Y, Jin H, Wang H, Swift CM, Xie Y, Schubert T, Löffler FE, Yan J. Geobacter sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3430-3440. [PMID: 35239320 DOI: 10.1021/acs.est.1c05952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorinated ethanes, including 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA), are widespread groundwater contaminants. Enrichment cultures XRDCA and XRTCA derived from river sediment dihaloeliminated 1,2-DCA to ethene and 1,1,2-TCA to vinyl chloride (VC), respectively. The XRTCA culture subsequently converted VC to ethene via hydrogenolysis. Microbial community profiling demonstrated the enrichment of Geobacter 16S rRNA gene sequences in both the XRDCA and XRTCA cultures, and Dehalococcoides mccartyi (Dhc) sequences were only detected in the ethene-producing XRTCA culture. The presence of a novel Geobacter population, designated as Geobacter sp. strain IAE, was identified by the 16S rRNA gene-targeted polymerase chain reaction and Sanger sequencing. Time-resolved population dynamics attributed the dihaloelimination activity to strain IAE, which attained the growth yields of 0.93 ± 0.06 × 107 and 1.18 ± 0.14 × 107 cells per μmol Cl- released with 1,2-DCA and 1,1,2-TCA as electron acceptors, respectively. In contrast, Dhc growth only occurred during VC-to-ethene hydrogenolysis. Our findings discover a Geobacter sp. strain capable of respiring multiple chlorinated ethanes and demonstrate the involvement of a broader diversity of organohalide-respiring bacteria in the detoxification of 1,2-DCA and 1,1,2-TCA.
Collapse
Affiliation(s)
- Lisi Jiang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cynthia M Swift
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torsten Schubert
- Research Group Anaerobic Microbiology, Friedrich Schiller University, Jena 07743, Germany
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
20
|
Zhu X, Deng S, Fang Y, Yang S, Zhong Y, Li D, Wang H, Wu J, Peng P. Dehalococcoides-Containing Enrichment Cultures Transform Two Chlorinated Organophosphate Esters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1951-1962. [PMID: 35015551 DOI: 10.1021/acs.est.1c06686] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although chlorinated organophosphate esters (Cl-OPEs) have been reported to be ubiquitously distributed in various anoxic environments, little information is available on their fate under anoxic conditions. In this study, we report two Dehalococcoides-containing enrichment cultures that transformed 3.88 ± 0.22 μmol tris(2-chloroethyl) phosphate (TCEP) and 2.61 ± 0.02 μmol tris(1-chloro-2-propyl) phosphate (TCPP) within 10 days. Based on the identification of the transformed products and deuteration experiments, we inferred that TCEP may be transformed to generate bis(2-chloroethyl) phosphate and ethene via one-electron transfer (radical mechanism), followed by C-O bond cleavage. Ethene was subsequently reduced to ethane. Similarly, TCPP was transformed to form bis(1-chloro-2-propyl) phosphate and propene. 16S rRNA gene amplicon sequencing and quantitative polymerase chain reaction analysis revealed that Dehalococcoides was the predominant contributor to the transformation of TCEP and TCPP. Two draft genomes of Dehalococcoides assembled from the metagenomes of the TCEP- and TCPP-transforming enrichment cultures contained 14 and 15 putative reductive dehalogenase (rdh) genes, respectively. Most of these rdh genes were actively transcribed, suggesting that they might contribute to the transformation of TCEP and TCPP. Taken together, this study provides insights into the role of Dehalococcoides during the transformation of representative Cl-OPEs.
Collapse
Affiliation(s)
- Xifen Zhu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaofu Deng
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yun Fang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Dan Li
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Wushan, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| |
Collapse
|
21
|
Zhu X, Wang X, Li N, Wang Q, Liao C. Bioelectrochemical system for dehalogenation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118519. [PMID: 34793908 DOI: 10.1016/j.envpol.2021.118519] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
Collapse
Affiliation(s)
- Xuemei Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Qi Wang
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd. and National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
22
|
Heterologous expression of active Dehalobacter spp. respiratory reductive dehalogenases in Escherichia coli. Appl Environ Microbiol 2021; 88:e0199321. [PMID: 34851719 DOI: 10.1128/aem.01993-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases (RDases) are a family of redox enzymes that are required for anaerobic organohalide respiration, a microbial process that is useful in bioremediation. Structural and mechanistic studies of these enzymes have been greatly impeded due to challenges in RDase heterologous expression, potentially because of their cobamide-dependence. There have been a few successful attempts at RDase production in unconventional heterologous hosts, but a robust method has yet to be developed. Here we outline a novel respiratory RDase expression system using Escherichia coli. The overexpression of E. coli's cobamide transport system, btu, and anaerobic expression conditions were found to be essential for production of active RDases from Dehalobacter - an obligate organohalide respiring bacterium. The expression system was validated on six enzymes with amino acid sequence identities as low as 28%. Dehalogenation activity was verified for each RDase by assaying cell-free extracts of small-scale expression cultures on various chlorinated substrates including chloroalkanes, chloroethenes, and hexachlorocyclohexanes. Two RDases, TmrA from Dehalobacter sp. UNSWDHB and HchA from Dehalobacter sp. HCH1, were purified by nickel affinity chromatography. Incorporation of the cobamide and iron-sulfur cluster cofactors was verified; though, the precise cobalamin incorporation could not be determined due to variance between methodologies, and the specific activity of TmrA was consistent with that of the native enzyme. The heterologous expression of respiratory RDases, particularly from obligate organohalide respiring bacteria, has been extremely challenging and unreliable. Here we present a relatively straightforward E. coli expression system that has performed well for a variety of Dehalobacter spp. RDases. IMPORTANCE Understanding microbial reductive dehalogenation is important to refine the global halogen cycle and to improve bioremediation of halogenated contaminants; however, studies of the family of enzymes responsible are limited. Characterization of reductive dehalogenase enzymes has largely eluded researchers due to the lack of a reliable and high-yielding production method. We are presenting an approach to express reductive dehalogenase enzymes from Dehalobacter, a key group of organisms used in bioremediation, in E. coli. This expression system will propel the study of reductive dehalogenases by facilitating their production and isolation, allowing researchers to pursue more in-depth questions about the activity and structure of these enzymes. This platform will also provide a starting point to improve the expression of reductive dehalogenases from many other organisms.
Collapse
|
23
|
A Microcosm Treatability Study for Evaluating Wood Mulch-Based Amendments as Electron Donors for Trichloroethene (TCE) Reductive Dechlorination. WATER 2021. [DOI: 10.3390/w13141949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.
Collapse
|
24
|
Yoshikawa M, Zhang M, Kawabe Y, Katayama T. Effects of ferrous iron supplementation on reductive dechlorination of tetrachloroethene and on methanogenic microbial community. FEMS Microbiol Ecol 2021; 97:6274675. [PMID: 33979429 PMCID: PMC8139862 DOI: 10.1093/femsec/fiab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 11/14/2022] Open
Abstract
Chloroethenes are common soil and groundwater pollutants. Their dechlorination is impacted by environmental factors, such as the presence of metal ions. We here investigated the effect of ferrous iron on bacterial reductive dechlorination of chloroethenes and on methanogen community. Reductive dechlorination of tetrachloroethene was assayed with a groundwater sample originally containing 6.3 × 103 copies mL−1 of Dehalococcoides 16S rRNA gene and 2 mg L−1 of iron. Supplementation with 28 mg L−1 of ferrous iron enhanced the reductive dechlorination of cis-dichloroethene (cis-DCE) and vinyl chloride in the presence of methanogens. The supplementation shortened the time required for complete dechlorination of 1 mg L−1 of tetrachloroethene to ethene and ethane from 84 to 49 d. Methanogens, such as Candidatus ‘Methanogranum’, Methanomethylovorans and Methanocorpusculum, were significantly more abundant in iron-supplemented cultures than in non-supplemented cultures (P < 0.01). Upon methanogen growth inhibition by 2-bromoethanesulfonate and in the absence of iron supplementation, cis-DCE was not dechlorinated. Further, iron supplementation induced 71.3% dechlorination of cis-DCE accompanied by an increase in Dehalococcoides 16S rRNA and dehalogenase vcrA gene copies but not dehalogenase tceA gene copies. These observations highlight the cooperative effect of iron and methanogens on the reductive dechlorination of chloroethenes by Dehalococcoides spp.
Collapse
Affiliation(s)
- Miho Yoshikawa
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Ming Zhang
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Yoshishige Kawabe
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Taiki Katayama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8567, Japan
| |
Collapse
|
25
|
Choi M, Yun T, Song MJ, Kim J, Lee BH, Löffler FE, Yoon S. Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5959-5969. [PMID: 33843227 DOI: 10.1021/acs.est.0c08766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Remediation of toxic chlorinated ethenes via microbial reductive dechlorination can lead to ethene formation; however, the process stalls in acidic groundwater, leading to the accumulation of carcinogenic vinyl chloride (VC). This study explored the feasibility of cometabolic VC degradation by moderately acidophilic methanotrophs. Two novel isolates, Methylomonas sp. strain JS1 and Methylocystis sp. strain MJC1, were obtained from distinct alpine peat bogs located in South Korea. Both isolates cometabolized VC with CH4 as the primary substrate under oxic conditions at pH at or below 5.5. VC cometabolism in axenic cultures occurred in the presence (10 μM) or absence (<0.01 μM) of copper, suggesting that VC removal had little dependence on copper availability, which regulates expression and activity of soluble and particulate methane monooxygenases in methanotrophs. The model neutrophilic methanotroph Methylosinus trichosporium strain OB3b also grew and cometabolized VC at pH 5.0 regardless of copper availability. Bioaugmentation of acidic peat soil slurries with methanotroph isolates demonstrated enhanced VC degradation and VC consumption below the maximum concentration level of 2 μg L-1. Community profiling of the microcosms suggested species-specific differences, indicating that robust bioaugmentation with methanotroph cultures requires further research.
Collapse
Affiliation(s)
- Munjeong Choi
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Taeho Yun
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Jisun Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, NIBR, Incheon 22689, South Korea
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
26
|
Ghezzi D, Filippini M, Cappelletti M, Firrincieli A, Zannoni D, Gargini A, Fedi S. Molecular characterization of microbial communities in a peat-rich aquifer system contaminated with chlorinated aliphatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23017-23035. [PMID: 33438126 DOI: 10.1007/s11356-020-12236-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.
Collapse
Affiliation(s)
- Daniele Ghezzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Laboratory of NanoBiotechnology, IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136, Bologna, Italy
| | - Maria Filippini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Andrea Firrincieli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Alessandro Gargini
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Zamboni 67, 40126, Bologna, Italy
| | - Stefano Fedi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
27
|
Yan J, Wang J, Villalobos Solis MI, Jin H, Chourey K, Li X, Yang Y, Yin Y, Hettich RL, Löffler FE. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4831-4841. [PMID: 33683880 DOI: 10.1021/acs.est.0c07354] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioremediation of chlorinated ethenes in anoxic aquifers hinges on organohalide-respiring Dehalococcoidia expressing vinyl chloride (VC) reductive dehalogenase (RDase). The tceA gene encoding the trichloroethene-dechlorinating RDase TceA is frequently detected in contaminated groundwater but not recognized as a biomarker for VC detoxification. We demonstrate that tceA-carrying Dehalococcoides mccartyi (Dhc) strains FL2 and 195 grow with VC as an electron acceptor when sufficient vitamin B12 (B12) is provided. Strain FL2 cultures that received 50 μg L-1 B12 completely dechlorinated VC to ethene at rates of 14.80 ± 1.30 μM day-1 and attained 1.64 ± 0.11 × 108 cells per μmol of VC consumed. Strain 195 attained similar growth yields of 1.80 ± 1.00 × 108 cells per μmol of VC consumed, and both strains could be consecutively transferred with VC as the electron acceptor. Proteomic analysis demonstrated TceA expression in VC-grown strain FL2 cultures. Resequencing of the strain FL2 and strain 195 tceA genes identified non-synonymous substitutions, although their consequences for TceA function are currently unknown. The finding that Dhc strains expressing TceA respire VC can explain ethene formation at chlorinated solvent sites, where quantitative polymerase chain reaction analysis indicates that tceA dominates the RDase gene pool.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jingjing Wang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Huijuan Jin
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karuna Chourey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiuying Li
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
28
|
Li T, Wen J, Li B, Ding S, Wang W. Biological effects of tourmaline treatment on Dehalococcoides spp. during the reductive dechlorination of trichloroethylene. RSC Adv 2021; 11:12086-12094. [PMID: 35423729 PMCID: PMC8697016 DOI: 10.1039/d0ra10830h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022] Open
Abstract
In the present study, to develop the application of biostimulation for the in situ remediation of trichloroethylene (TCE) in contaminated groundwater/soil, a mixed culture containing Dehalococcoides spp. was employed to investigate the biological effects of the polarized mineral tourmaline on the dechlorination performance, community structure, cell proliferation and expression of two model gene (tceA and vcrA) coding for reductive dehalogenases (Rdase). It was observed that tourmaline could speed up the biological dechlorination of TCE by promoting the growth and metabolism of the bacteria, impacting the expression of RDase genes. Compared with the bacteria system, the time for the complete removal of TCE was reduced from 7 d to 4 d when 5 g L−1 tourmaline was added to the bacterial system, and the yield of the innocuous product ethene increased from 53% to 91% on the 15th day of reaction. At this time, the community similarity of the tourmaline-added bacteria system and the bacteria system was 83.1%. The Dehalococcoides spp. in the tourmaline system grew 2 times more than that in the bacteria system. Moreover, an increase in the expression levels and decrease in the relative expression ratios of the functional genes (tceA and vcrA) were observed with the addition of tourmaline. The above analysis provides a molecular basis for the investigation of the biostimulation process by minerals. To explore the application of mineral in bioremediation of contaminated aquifers, this study investigated tourmaline-induced changes in TCE degradation, community structure, cell proliferation and gene expression of dechlorinating bacteria.![]()
Collapse
Affiliation(s)
- Tielong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution
- College of Environmental Science and Engineering
- Nankai University
| | - Jiaxin Wen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution
- College of Environmental Science and Engineering
- Nankai University
| | - Bingjie Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution
- College of Environmental Science and Engineering
- Nankai University
| | - Shihu Ding
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution
- College of Environmental Science and Engineering
- Nankai University
| | - Wei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution
- College of Environmental Science and Engineering
- Nankai University
| |
Collapse
|
29
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
30
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Catabolic Reductive Dehalogenase Substrate Complex Structures Underpin Rational Repurposing of Substrate Scope. Microorganisms 2020; 8:microorganisms8091344. [PMID: 32887524 PMCID: PMC7565698 DOI: 10.3390/microorganisms8091344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Reductive dehalogenases are responsible for the reductive cleavage of carbon-halogen bonds during organohalide respiration. A variety of mechanisms have been proposed for these cobalamin and [4Fe-4S] containing enzymes, including organocobalt, radical, or cobalt-halide adduct based catalysis. The latter was proposed for the oxygen-tolerant Nitratireductor pacificus pht-3B catabolic reductive dehalogenase (NpRdhA). Here, we present the first substrate bound NpRdhA crystal structures, confirming a direct cobalt–halogen interaction is established and providing a rationale for substrate preference. Product formation is observed in crystallo due to X-ray photoreduction. Protein engineering enables rational alteration of substrate preference, providing a future blue print for the application of this and related enzymes in bioremediation.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl A. P. Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Correspondence: ; Tel.: +44-161-306-51-50
| |
Collapse
|
31
|
Franke S, Seidel K, Adrian L, Nijenhuis I. Dual Element (C/Cl) Isotope Analysis Indicates Distinct Mechanisms of Reductive Dehalogenation of Chlorinated Ethenes and Dichloroethane in Dehalococcoides mccartyi Strain BTF08 With Defined Reductive Dehalogenase Inventories. Front Microbiol 2020; 11:1507. [PMID: 32903289 PMCID: PMC7396605 DOI: 10.3389/fmicb.2020.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/10/2020] [Indexed: 02/02/2023] Open
Abstract
Dehalococcoides mccartyi strain BTF08 has the unique property to couple complete dechlorination of tetrachloroethene and 1,2-dichloroethane to ethene with growth by using the halogenated compounds as terminal electron acceptor. The genome of strain BTF08 encodes 20 genes for reductive dehalogenase homologous proteins (RdhA) including those described for dehalogenation of tetrachloroethene (PceA, PteA), trichloroethene (TceA) and vinyl chloride (VcrA). Thus far it is unknown under which conditions the different RdhAs are expressed, what their substrate specificity is and if different reaction mechanisms are employed. Here we found by proteomic analysis from differentially activated batches that PteA and VcrA were expressed during dechlorination of tetrachloroethene to ethene, while TceA was expressed during 1,2-dichloroethane dehalogenation. Carbon and chlorine compound-specific stable isotope analysis suggested distinct reaction mechanisms for the dechlorination of (i) cis-dichloroethene and vinyl chloride versus (ii) tetrachloroethene. This differentiation was observed independent of the expressed RdhA proteins. Differently, two stable isotope fractionation patterns were observed for 1,2-dichloroethane transformation, for cells with distinct RdhA inventories. Conclusively, we could link specific RdhA expression with functions and provide an insight into the apparently substrate-specific reaction mechanisms in the pathway of reductive dehalogenation in D. mccartyi strain BTF08. Data are available via ProteomeXchange with identifiers PXD018558 and PXD018595.
Collapse
Affiliation(s)
- Steffi Franke
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Seidel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology at TU Berlin, Berlin, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
32
|
Summer D, Schöftner P, Watzinger A, Reichenauer TG. Inhibition and stimulation of two perchloroethene degrading bacterial cultures by nano- and micro-scaled zero-valent iron particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137802. [PMID: 32199366 DOI: 10.1016/j.scitotenv.2020.137802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The pollutant perchloroethene (PCE) can often be found at urban contaminated sites. Thus in-situ clean-up methods, like remediation using zero valent iron (ZVI) or bacterial dechlorination, are preferred. During the remediation with ZVI particles anaerobic corrosion occurs as an unwanted, particle consuming side reaction with water. However, in this reaction H2 is formed, which is usually scarce during anaerobic microbial dechlorination. Dehalococcoides needs H2 for cell growth using it as an electron donor to dechlorinate chlorinated hydrocarbons. Combining application of ZVI with bacterial dechlorination can turn ZVI in a H2 donor leading to a more controllable bacterial dechlorination, a smaller amount of ZVI suspension and decreased remediation costs. In this study nano- and micro scaled ZVI particles (nZVI, mZVI) were combined in microcosms with two dechlorinating bacterial cultures. The two cultures showed different dechlorination behaviors with ethene and cis-DCE as final products. Phospholipid fatty acids (PLFA) associated with Dehalococcoides (18:1w7, 18:1w7c, 10:Me16:0) and Geobacteriaceae (16,1w7c; 15:0; 16:0) have been found in both bacterial cultures, slight differences in their abundance could explain the different dechlorinating behaviors. The combination of both bacterial cultures with mZVI led to a stimulated dechlorination process leading to about two times higher kobs for PCE dechlorination (0.01-0.05 h-1). In the otherwise cis-DCE accumulating culture complete dechlorination to ethene was achieved. While addition of nZVI inhibited both cultures. Combined with nZVI the completely dechlorinating culture produced lower amounts of dechlorinated products (3.2 μmol) as compared to the single biotic treatment (5.1 μmol). Combining the incompletely dechlorinating culture with nZVI significantly reduced the kobs,PCE (single: 8 × 10-3 ± 3 × 10-4 h-1; combination: 5 × 10-3 ± 2 × 10-4 h-1). H2 produced by nZVI and mZVI was utilized by both bacterial cultures. The particle size, resulting specific surface areas, agglomeration tendencies and reactivity appears to be crucial for the effect on microbial cells.
Collapse
Affiliation(s)
- Dorothea Summer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Philipp Schöftner
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Andrea Watzinger
- Institute of Soil Research, Department of Forest- and Soil Sciences, Institute of Soil Sciences, University of Natural Resources and Applied Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Thomas G Reichenauer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria.
| |
Collapse
|
33
|
Kucharzyk KH, Meisel JE, Kara-Murdoch F, Murdoch RW, Higgins SA, Vainberg S, Bartling CM, Mullins L, Hatzinger PB, Löffler FE. Metagenome-Guided Proteomic Quantification of Reductive Dehalogenases in the Dehalococcoides mccartyi-Containing Consortium SDC-9. J Proteome Res 2020; 19:1812-1823. [PMID: 32135063 DOI: 10.1021/acs.jproteome.0c00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
At groundwater sites contaminated with chlorinated ethenes, fermentable substrates are often added to promote reductive dehalogenation by indigenous or augmented microorganisms. Contemporary bioremediation performance monitoring relies on nucleic acid biomarkers of key organohalide-respiring bacteria, such as Dehalococcoides mccartyi (Dhc). Metagenome sequencing of the commercial, Dhc-containing consortium, SDC-9, identified 12 reductive dehalogenase (RDase) genes, including pceA (two copies), vcrA, and tceA, and allowed for specific detection and quantification of RDase peptides using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Shotgun (i.e., untargeted) proteomics applied to the SDC-9 consortium grown with tetrachloroethene (PCE) and lactate identified 143 RDase peptides, and 36 distinct peptides that covered greater than 99% of the protein-coding sequences of the PceA, TceA, and VcrA RDases. Quantification of RDase peptides using multiple reaction monitoring (MRM) assays with 13C-/15N-labeled peptides determined 1.8 × 103 TceA and 1.2 × 102 VcrA RDase molecules per Dhc cell. The MRM mass spectrometry approach allowed for sensitive detection and accurate quantification of relevant Dhc RDases and has potential utility in bioremediation monitoring regimes.
Collapse
Affiliation(s)
| | - Jayda E Meisel
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Fadime Kara-Murdoch
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996, United States.,Department of Biosystems Engineering and Soil Science University of Tennessee, 2506 E. J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Robert W Murdoch
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee 37996, United States.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Steven A Higgins
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Simon Vainberg
- APTIM, Biotechnology Development and Applications Group, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Craig M Bartling
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Larry Mullins
- Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201, United States
| | - Paul B Hatzinger
- APTIM, Biotechnology Development and Applications Group, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996, United States.,Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee 37996, United States.,Department of Civil and Environmental Engineering, University of Tennessee, 851 Neyland Drive, Knoxville, Tennessee 37996, United States.,Department of Biosystems Engineering and Soil Science University of Tennessee, 2506 E. J. Chapman Drive, Knoxville, Tennessee 37996, United States.,Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
34
|
Wen LL, Li Y, Zhu L, Zhao HP. Influence of non-dechlorinating microbes on trichloroethene reduction based on vitamin B 12 synthesis in anaerobic cultures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113947. [PMID: 31931416 DOI: 10.1016/j.envpol.2020.113947] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, the YH consortium, an ethene-producing culture, was used to evaluate the effect of vitamin B12 (VB12) on trichloroethene (TCE) dechlorination by transferring the original TCE-reducing culture with or without adding exogenous VB12. Ultra-high performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) was applied to detect the concentrations of VB12 and its lower ligand 5,6-dimethylbenzimidazole (DMB) in the cultures. After three successive VB12 starvation cycles, the dechlorination of TCE stopped mostly at cis-dichloroethene (cDCE), and no ethene was found; methane production increased significantly, and no VB12 was detected. Results suggest that the co-cultured microbes may not be able to provide enough VB12 as a cofactor for the growth of Dehalococcoides in the YH culture, possibly due to the competition for corrinoids between Dehalococcoides and methanogens. The relative abundances of 16 S rRNA gene of Dehalococcoides and reductive dehalogenase genes tceA or vcrA were lower in the cultures without VB12 compared with the cultures with VB12. VB12 limitation changed the microbial community structures of the consortia. In the absence of VB12, the microbial community shifted from dominance of Chloroflexi to Proteobacteria after three consecutive VB12 starvation cycles, and the dechlorinating genus Dehalococcoides declined from 42.9% to 13.5%. In addition, Geobacter, Clostridium, and Desulfovibrio were also present in the cultures without VB12. Furthermore, the abundance of archaea increased under VB12 limited conditions. Methanobacterium and Methanosarcina were the predominant archaea in the culture without VB12.
Collapse
Affiliation(s)
- Li-Lian Wen
- College of Resource and Environmental Science, Hubei University, Wuhan, 430062, China; MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Yaru Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
35
|
Molenda O, Puentes Jácome LA, Cao X, Nesbø CL, Tang S, Morson N, Patron J, Lomheim L, Wishart DS, Edwards EA. Insights into origins and function of the unexplored majority of the reductive dehalogenase gene family as a result of genome assembly and ortholog group classification. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:663-678. [PMID: 32159535 DOI: 10.1039/c9em00605b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organohalide respiring bacteria (OHRB) express reductive dehalogenases for energy conservation and growth. Some of these enzymes catalyze the reductive dehalogenation of chlorinated and brominated pollutants in anaerobic subsurface environments, providing a valuable ecosystem service. Dehalococcoides mccartyi strains have been most extensively studied owing to their ability to dechlorinate all chlorinated ethenes - most notably carcinogenic vinyl chloride - to ethene. The genomes of OHRB, particularly obligate OHRB, often harbour multiple putative reductive dehalogenase genes (rdhA), most of which have yet to be characterized. We recently sequenced and closed the genomes of eight new strains, increasing the number of available D. mccartyi genomes in NCBI from 16 to 24. From all available OHRB genomes, we classified predicted translations of reductive dehalogenase genes using a previously established 90% amino acid pairwise identity cut-off to identify Ortholog Groups (OGs). Interestingly, the majority of D. mccartyi dehalogenase gene sequences, once classified into OGs, exhibited a remarkable degree of synteny (gene order) in all genomes sequenced to date. This organization was not apparent without the classification. A high degree of synteny indicates that differences arose from rdhA gene loss rather than recombination. Phylogenetic analysis suggests that most rdhA genes have a long evolutionary history in the Dehalococcoidia with origin prior to speciation of Dehalococcoides and Dehalogenimonas. We also looked for evidence of synteny in the genomes of other species of OHRB. Unfortunately, there are too few closed Dehalogenimonas genomes to compare at this time. There is some partial evidence for synteny in the Dehalobacter restrictus genomes, but here too more closed genomes are needed for confirmation. Interestingly, we found that the rdhA genes that encode enzymes that catalyze dehalogenation of industrial pollutants are the only rdhA genes with strong evidence of recent lateral transfer - at least in the genomes examined herein. Given the utility of the RdhA sequence classification to comparative analyses, we are building a public web server () for the community to use, which allows users to add and classify new sequences, and download the entire curated database of reductive dehalogenases.
Collapse
Affiliation(s)
- Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McCarty PL, Criddle CS, Vogel TM. Retrospective on microbial transformations of halogenated organics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:512-517. [PMID: 32181779 DOI: 10.1039/c9em00575g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prior to the 1960s, knowledge of biological transformations of highly halogenated aliphatic compounds was limited, except in mammalian organisms where enzymatic transformations occurred to rid the body of ingested harmful chemicals. Limited abiotic transformation of such compounds had also been observed, with half-lives varying from days to centuries. Commonly believed was that aerobic transformation might occur by cometabolism rather than to conserve energy for respiration, while anaerobic transformations were in general thought not to occur. However, in the late 1960s anaerobic transformation of chlorinated pesticides was noted, and then in the early 1980s, partial microbial dehalogenation of chlorinated solvents such as tetrachlorethene, trichloroethene, trichlorethane, and carbon tetrachloride was also found to occur. With only partial dechlorination, complete detoxification was not achieved. And at the time, dehalogenation reactions were not believed to yield energy for growth to the degrading microorganisms. However, in the 1990s bacteria began to be found that obtain energy from anaerobic transformations, often enabling complete dechlorination and detoxification. Since then such ability has been found among several bacterial species, many of which use molecular hydrogen as a donor substrate and halogenated organics as electron acceptors, thus conserving energy through reductive dehalogenation. Growth of knowledge in this field has grown rapidly since the 1960s. Broad usages of such microorganisms are now underway to rid contaminated groundwater of hazardous halogenated chemicals.
Collapse
Affiliation(s)
- P L McCarty
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305-4020, USA.
| | | | | |
Collapse
|
37
|
Preparation and characterization of site-specific dechlorinating microbial inocula capable of complete dechlorination enriched in anaerobic microcosms amended with clay mineral. World J Microbiol Biotechnol 2020; 36:29. [PMID: 32016527 PMCID: PMC6997268 DOI: 10.1007/s11274-020-2806-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/22/2020] [Indexed: 11/21/2022]
Abstract
Abstract Short-chain halogenated aliphatic hydrocarbons (e.g. perchloroethene, trichloroethene) are among the most toxic environmental pollutants. Perchloroethene and trichloroethene can be dechlorinated to non-toxic ethene through reductive dechlorination by Dehalococcoides sp. Bioaugmentation, applying cultures containing organohalide-respiring microorganisms, is a possible technique to remediate sites contaminated with chlorinated ethenes. Application of site specific inocula is an efficient alternative solution. Our aim was to develop site specific dechlorinating microbial inocula by enriching microbial consortia from groundwater contaminated with trichloroethene using microcosm experiments containing clay mineral as solid phase. Our main goal was to develop fast and reliable method to produce large amount (100 L) of bioactive agent with anaerobic fermentation technology. Polyphasic approach has been applied to monitor the effectiveness of dechlorination during the transfer process from bench-scale (500 mL) to industrial-scale (100 L). Gas chromatography measurement and T-RFLP (Terminal Restriction Fragment Length Polymorphism) revealed that the serial subculture of the enrichments shortened the time-course of the complete dechlorination of trichloroethene to ethene and altered the composition of bacterial communities. Complete dechlorination was observed in enrichments with significant abundance of Dehalococcoides sp. cultivated at 8 °C. Consortia incubated in fermenters at 18 °C accelerated the conversion of TCE to ethene by 7–14 days. Members of the enrichments belong to the phyla Bacteroidetes, Chloroflexi, Proteobacteria and Firmicutes. According to the operational taxonomic units, main differences between the composition of the enrichment incubated at 8 °C and 18 °C occurred with relative abundance of acetogenic and fermentative species. In addition to the temperature, the site-specific origin of the microbial communities and the solid phase applied during the fermentation technique contributed to the development of a unique microbial composition. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11274-020-2806-7) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Lo KH, Lu CW, Lin WH, Chien CC, Chen SC, Kao CM. Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. CHEMOSPHERE 2020; 238:124596. [PMID: 31524629 DOI: 10.1016/j.chemosphere.2019.124596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Deteriorated environmental conditions during the bioremediation of trichloroethene (TCE)-polluted groundwater cause decreased treatment efficiencies. This study assessed the effect of applying immobilized Clostridium butyricum (a hydrogen-producing bacterium) in silica gel on enhancing the reductive dechlorination efficiency of TCE with the slow polycolloid-releasing substrate (SPRS) supplement in groundwater. The responses of microbial communities with the immobilized system (immobilized Clostridium butyricum and SPRS amendments) were also characterized by the metagenomics assay. A complete TCE removal in microcosms was obtained within 30 days with the application of this immobilized system via reductive dechlorination processes. An increase in the population of Dehalococcoides spp. was observed using the quantitative polymerase chain reaction (qPCR) analysis. Results of metagenomics assay reveal that the microbial communities in the immobilized system were distinct from those in systems with SPRS only. Bacterial communities associated with TCE biodegradation also increased in microcosms treated with the immobilized system. The immobilized system shows a great potential to promote the TCE dechlorination efficiency, and the metagenomics-based approach provides detailed insights into dechlorinating microbial community dynamics. The results would be helpful in designing an in situ immobilized system to enhance the bioremediation efficiency of TCE-contaminated groundwater.
Collapse
Affiliation(s)
- Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, 32001, Taiwan.
| | - Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, 32003, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, 32001, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
39
|
Heavner GLW, Mansfeldt CB, Wilkins MJ, Nicora CD, Debs GE, Edwards EA, Richardson RE. Detection of Organohalide-Respiring Enzyme Biomarkers at a Bioaugmented TCE-Contaminated Field Site. Front Microbiol 2019; 10:1433. [PMID: 31316484 PMCID: PMC6610324 DOI: 10.3389/fmicb.2019.01433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
RNA-based biomarkers have been successfully detected at field sites undergoing in situ bioremediation, but the detection of expressed enzymes is a more direct way to prove activity for a particular biocatalytic process of interest since they provide evidence of potential in situ activity rather than simply confirming presence and abundance of genes in a given population by measurement of DNA copies using qPCR. Here we successfully applied shotgun proteomics to field samples from a trichloroethene (TCE)-contaminated industrial site in southern Ontario, Canada that had been bio-augmented with the commercially available KB-1TM microbial culture. The KB-1TM culture contains multiple strains of Dehalococcoides mccartyi (D. mccartyi) as well as an organohalide respiring Geobacter species. The relative abundances of specific enzymatic proteins were subsequently compared to corresponding qPCR-derived levels of DNA and RNA biomarkers in the same samples. Samples were obtained from two wells with high hydraulic connectivity to the KB-1TM-bioaugemented enhanced in situ bioremediation system, and two control wells that showed evidence of low levels of native organohalide respiring bacteria (OHRB), Dehalococcoides and Geobacter. Enzymes involved in organohalide respiration were detected in the metaproteomes of all four field samples, as were chaperonins of D. mccartyi, chemotaxis proteins, and ATPases. The most highly expressed RDase in the bioaugmentation culture (VcrA) was the most highly detected enzyme overall in the bioaugmented groundwater samples. In one background groundwater well, we found high expression of the Geobacter pceA RDase. The DNA and RNA biomarkers detected using qPCR-based assays were a set of orthologs of Dehalococcoides reductive dehalogenases (VcrA, TceA, BvcA, dehalogenase “DET1545”), and the Ni-Fe uptake hydrogenase, HupL. Within a sample, RNA levels for key enzymes correlated with relative protein abundance. These results indicate that laboratory observations of TCE-bioremediation biomarker protein expression are recapitulated in field environmental systems and that both RNA and protein biomarker monitoring hold promise for activity monitoring of in situ populations of OHRB.
Collapse
Affiliation(s)
- Gretchen L W Heavner
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Michael J Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Garrett E Debs
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
40
|
Richards PM, Liang Y, Johnson RL, Mattes TE. Cryogenic soil coring reveals coexistence of aerobic and anaerobic vinyl chloride degrading bacteria in a chlorinated ethene contaminated aquifer. WATER RESEARCH 2019; 157:281-291. [PMID: 30959331 DOI: 10.1016/j.watres.2019.03.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Vinyl chloride (VC) is a common groundwater contaminant and known human carcinogen. Three major bacterial guilds are known to participate in VC biodegradation: aerobic etheneotrophs and methanotrophs, and anaerobic organohalide-respiring VC-dechlorinators. We investigated the spatial relationships between functional genes representing these three groups of bacteria (as determined by qPCR) with chlorinated ethene concentrations in a surficial aquifer at a contaminated site. We used cryogenic soil coring to collect high-resolution aquifer sediment samples and to preserve sample geochemistry and nucleic acids under field conditions. All samples appeared to be anaerobic (i.e., contained little to no dissolved oxygen). VC biodegradation associated functional genes from etheneotrophs (etnC and/or etnE), methanotrophs (mmoX and/or pmoA), and anaerobic VC-dechlorinators (bvcA and/or vcrA) coexisted in 48% of the samples. Transcripts of etnC/etnE and bvcA/vcrA were quantified in contemporaneous groundwater samples, indicating co-located gene expression. Functional genes from etheneotrophs and anaerobic VC-dechlorinators were correlated to VC concentrations in the lower surficial aquifer (p < 0.05). Methanotroph functional genes were not correlated to VC concentrations. Cryogenic soil coring proved to be a powerful tool for capturing high-spatial resolution trends in geochemical and nucleic acid data in aquifer sediments. We conclude that both aerobic etheneotrophs and anaerobic VC-dechlorinators may play a significant role in VC biodegradation in aquifers that have little dissolved oxygen.
Collapse
Affiliation(s)
- Patrick M Richards
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Richard L Johnson
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
41
|
Temme HR, Carlson A, Novak PJ. Presence, Diversity, and Enrichment of Respiratory Reductive Dehalogenase and Non-respiratory Hydrolytic and Oxidative Dehalogenase Genes in Terrestrial Environments. Front Microbiol 2019; 10:1258. [PMID: 31231342 PMCID: PMC6567934 DOI: 10.3389/fmicb.2019.01258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022] Open
Abstract
Organohalide-respiring bacteria have been linked to the cycling and possible respiration of chlorinated natural organic matter (Cl-NOM) in uncontaminated soils and sediments. The importance of non-respiratory hydrolytic/oxidative dechlorination processes in the cycling of Cl-NOM in terrestrial soil and sediment, however, is still not understood. This research analyzes the dechlorination potential of terrestrial systems through analysis of the metagenomes of urban lake sediments and cultures enriched with Cl-NOM. Even with the variability in sample type and enrichment conditions, the potential to dechlorinate was universal, with reductive dehalogenase genes and hydrolytic or oxidative dehalogenase genes found in all samples analyzed. The reductive dehalogenase genes detected grouped taxonomically with those from organohalide-respiring bacteria with broad metabolic capabilities, as opposed to those that obligately respire organohalides. Furthermore, reductive dehalogenase genes and two haloacid dehalogenase genes increased in abundance when sediment was enriched with high concentrations of Cl-NOM. Our data suggests that both respiratory and non-respiratory dechlorination processes are important for Cl-NOM cycling, and that non-obligate organohalide-respiring bacteria are most likely involved in these processes.
Collapse
Affiliation(s)
| | | | - Paige J. Novak
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
42
|
Hermon L, Hellal J, Denonfoux J, Vuilleumier S, Imfeld G, Urien C, Ferreira S, Joulian C. Functional Genes and Bacterial Communities During Organohalide Respiration of Chloroethenes in Microcosms of Multi-Contaminated Groundwater. Front Microbiol 2019; 10:89. [PMID: 30809199 PMCID: PMC6379275 DOI: 10.3389/fmicb.2019.00089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 02/01/2023] Open
Abstract
Microcosm experiments with CE-contaminated groundwater from a former industrial site were set-up to evaluate the relationships between biological CE dissipation, dehalogenase genes abundance and bacterial genera diversity. Impact of high concentrations of PCE on organohalide respiration was also evaluated. Complete or partial dechlorination of PCE, TCE, cis-DCE and VC was observed independently of the addition of a reducing agent (Na2S) or an electron donor (acetate). The addition of either 10 or 100 μM PCE had no effect on organohalide respiration. qPCR analysis of reductive dehalogenases genes (pceA, tceA, vcrA, and bvcA) indicated that the version of pceA gene found in the genus Dehalococcoides [hereafter named pceA(Dhc)] and vcrA gene increased in abundance by one order of magnitude during the first 10 days of incubation. The version of the pceA gene found, among others, in the genus Dehalobacter, Sulfurospirillum, Desulfuromonas, and Geobacter [hereafter named pceA(Dhb)] and bvcA gene showed very low abundance. The tceA gene was not detected throughout the experiment. The proportion of pceA(Dhc) or vcrA genes relative to the universal 16S ribosomal RNA (16S rRNA) gene increased by up to 6-fold upon completion of cis-DCE dissipation. Sequencing of 16S rRNA amplicons indicated that the abundance of Operational Taxonomic Units (OTUs) affiliated to dehalogenating genera Dehalococcoides, Sulfurospirillum, and Geobacter represented more than 20% sequence abundance in the microcosms. Among organohalide respiration associated genera, only abundance of Dehalococcoides spp. increased up to fourfold upon complete dissipation of PCE and cis-DCE, suggesting a major implication of Dehalococcoides in CEs organohalide respiration. The relative abundance of pceA and vcrA genes correlated with the occurrence of Dehalococcoides and with dissipation extent of PCE, cis-DCE and CV. A new type of dehalogenating Dehalococcoides sp. phylotype affiliated to the Pinellas group, and suggested to contain both pceA(Dhc) and vcrA genes, may be involved in organohalide respiration of CEs in groundwater of the study site. Overall, the results demonstrate in situ dechlorination potential of CE in the plume, and suggest that taxonomic and functional biomarkers in laboratory microcosms of contaminated groundwater following pollutant exposure can help predict bioremediation potential at contaminated industrial sites.
Collapse
Affiliation(s)
- Louis Hermon
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France.,CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Jennifer Hellal
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| | - Jérémie Denonfoux
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphane Vuilleumier
- CNRS, GMGM UMR 7156, Genomics and Microbiology, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- CNRS/EOST, LHyGeS UMR 7517, Laboratory of Hydrology and Geochemistry of Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Charlotte Urien
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Stéphanie Ferreira
- Service Recherche, Développement et Innovation-Communautés Microbiennes, GenoScreen, SAS, Lille, France
| | - Catherine Joulian
- Geomicrobiology and Environmental Monitoring Unit, Bureau de Recherches Géologiques et Minières (BRGM), Orléans, France
| |
Collapse
|
43
|
Han K, Park S, Hong U, Yeum Y, Kwon S, Kim Y. Estimating bioaugmentation efficacy of TCE dechlorination using long-term field well-to-well tests in a highly recharged and TCE-contaminated aquifer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:208-218. [PMID: 30600760 DOI: 10.1080/10934529.2018.1544800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
This study demonstrates a combined field method accurately assessing the extent of trichloroethylene (TCE) reductive dechlorination activity and the mass fraction of its by-products. A combined method of injecting a known concentration of 1,1,2-trichloro-2-fluoroethene (TCFE) as a TCE bio-surrogate and a data processing technique of forced mass balance (FMB), considering the sorption effect on the mass fraction of chloroethene was evaluated by performing soil column and field bioaugmentation tests. In the soil column test, the FMB resulted in the mass fraction of 6% TCE, 48.3% cis-1,2-dichloroethene, 18.5% vinyl chloride and 27.2% ethylene. In the field bioaugmentation test, TCFE showed equivalent dechlorination pathways of TCE. The mass fractions estimated by FMB were very similar to those observed in the soil column bioaugmentation tests: 4.5% TCFE, 57.1% 1,2-dichloro-1-fluoroethene, 12% 1-chloro-1-fluoroethene and 26.4% fluoroethene (FE). The FMB method gave ∼50% higher mass fraction for more chlorinated ethenes (i.e., TCFE) and ∼10% lower mass fraction of less chlorinated ethenes (i.e., FE) than those considering only the aqueous concentrations of chlorofluoroethenes. A combined method of TCFE and FMB that could accurately estimate both the extent of dechlorination activities and mass distribution of TCE reductive dechlorination would be highly useful.
Collapse
Affiliation(s)
- Kyungjin Han
- a Department of Environmental Engineering , Korea University , Sejong , Korea
| | - Sunhwa Park
- b National Institute of Environmental Research , Incheon , Korea
| | | | - Yuhoon Yeum
- d Program in Environmental Technology and Policy , Korea University , Sejong , Korea
| | - Sooyoul Kwon
- e Department of Environmental Health , Korea National Open University , Seoul , Korea
| | - Young Kim
- a Department of Environmental Engineering , Korea University , Sejong , Korea
- d Program in Environmental Technology and Policy , Korea University , Sejong , Korea
| |
Collapse
|
44
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
45
|
Dang H, Kanitkar YH, Stedtfeld RD, Hatzinger PB, Hashsham SA, Cupples AM. Abundance of Chlorinated Solvent and 1,4-Dioxane Degrading Microorganisms at Five Chlorinated Solvent Contaminated Sites Determined via Shotgun Sequencing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13914-13924. [PMID: 30427665 DOI: 10.1021/acs.est.8b04895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Shotgun sequencing was used for the quantification of taxonomic and functional biomarkers associated with chlorinated solvent bioremediation in 20 groundwater samples (five sites), following bioaugmentation with SDC-9. The analysis determined the abundance of (1) genera associated with chlorinated solvent degradation, (2) reductive dehalogenase (RDases) genes, (3) genes associated with 1,4-dioxane removal, (4) genes associated with aerobic chlorinated solvent degradation, and (5) D. mccartyi genes associated with hydrogen and corrinoid metabolism. The taxonomic analysis revealed numerous genera previously linked to chlorinated solvent degradation, including Dehalococcoides, Desulfitobacterium, and Dehalogenimonas. The functional gene analysis indicated vcrA and tceA from D. mccartyi were the RDases with the highest relative abundance. Reads aligning with both aerobic and anaerobic biomarkers were observed across all sites. Aerobic solvent degradation genes, etnC or etnE, were detected in at least one sample from each site, as were pmoA and mmoX. The most abundant 1,4-dioxane biomarker detected was Methylosinus trichosporium OB3b mmoX. Reads aligning to thmA or Pseudonocardia were not found. The work illustrates the importance of shotgun sequencing to provide a more complete picture of the functional abilities of microbial communities. The approach is advantageous over current methods because an unlimited number of functional genes can be quantified.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Paul B Hatzinger
- APTIM , 17 Princess Road , Lawrenceville , New Jersey 08648 , United States
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
- Center for Microbial Ecology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Alison M Cupples
- Department of Civil and Environmental Engineering , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
46
|
Niño de Guzmán GT, Hapeman CJ, Millner PD, Torrents A, Jackson D, Kjellerup BV. Presence of organohalide-respiring bacteria in and around a permeable reactive barrier at a trichloroethylene-contaminated Superfund site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:766-776. [PMID: 30228068 DOI: 10.1016/j.envpol.2018.08.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Trichloroethylene (TCE) is one of the most common groundwater contaminants in the United States; however clean-up efforts are a challenge due to its physical and chemical properties. TCE and several of its degradation products were detected in the groundwater of the Beaver Dam Road Landfill site (Beltsville, MD) at concentrations above accepted maximum contaminant levels. A permeable reactive barrier (i.e., biowall) was installed to remediate the groundwater. Microbial infiltration and colonization of the biowall with native site bacteria was expected to occur. An array of molecular biological tools was applied to survey the microbial community for presence of organohalide-respiring microorganisms at the site. Microorganisms belonging to methanogens, acetogens, sulfate-reducing bacteria, and chlorinated aliphatic hydrocarbon-metabolizing bacteria were identified, thus making way for the application of the microbial populations in the biowall bioaugmentation efforts. In concomitant laboratory studies, molecular approaches were used to monitor continuously-fed column reactors containing saturated biowall material spiked with a commercially-available, Dehalococcoides-containing culture (SDC-9), with or without zero-valent iron (ZVI) shavings. The column without ZVI had the highest abundance of Dehalococcoides spp. (2.7 × 106 cells g-1 material, S.D. = 3.8 × 105 cells g-1 material), while the addition of ZVI did not affect the overall population. Although the addition of ZVI and biostimulation did change ratios of the Dehalococcoides strains, the results suggests that if ZVI would be applied as a biowall material amendment, biostimulation would not be required to maintain a Dehalococcoides population. These experimental results will be utilized in future remediation and/or biowall expansion plans to utilize the natural resources most effectively at the biowall site.
Collapse
Affiliation(s)
| | - Cathleen J Hapeman
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Patricia D Millner
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Alba Torrents
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Dana Jackson
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
47
|
Clark K, Taggart DM, Baldwin BR, Ritalahti KM, Murdoch RW, Hatt JK, Löffler FE. Normalized Quantitative PCR Measurements as Predictors for Ethene Formation at Sites Impacted with Chlorinated Ethenes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13410-13420. [PMID: 30365883 PMCID: PMC6945293 DOI: 10.1021/acs.est.8b04373] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative PCR (qPCR) targeting Dehalococcoides mccartyi ( Dhc) biomarker genes supports effective management at sites impacted with chlorinated ethenes. To establish correlations between Dhc biomarker gene abundances and ethene formation (i.e., detoxification), 859 groundwater samples representing 62 sites undergoing monitored natural attenuation or enhanced remediation were analyzed. Dhc 16S rRNA genes and the vinyl chloride (VC) reductive dehalogenase genes bvcA and vcrA were detected in 88% and 61% of samples, respectively, from wells with ethene. Dhc 16S rRNA, bvcA, vcrA, and tceA (implicated in cometabolic reductive VC dechlorination) gene abundances all positively correlated with ethene formation. Significantly greater ethene concentrations were observed when Dhc 16S rRNA gene and VC RDase gene abundances exceeded 107 and 106 copies L-1, respectively, and when Dhc 16S rRNA- and bvcA + vcrA-to-total bacterial 16S rRNA gene ratios exceeded 0.1%. Dhc 16S rRNA gene-to- vcrA/ bvcA ratios near unity also indicated elevated ethene; however, no increased ethene was observed in 19 wells where vcrA and/or bvcA gene copy numbers exceeded Dhc cell numbers 10- to 10 000-fold. Approximately one-third of samples with detectable ethene lacked bvcA, vcrA, and tceA, suggesting that comprehensive understanding of VC detoxification biomarkers has not been achieved. Although the current biomarker suite is incomplete, the data analysis corroborates the value of the available Dhc DNA biomarkers for prognostic and diagnostic groundwater monitoring at sites impacted with chlorinated ethenes.
Collapse
Affiliation(s)
- Katherine Clark
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Dora M. Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Brett R. Baldwin
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Kirsti M. Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert W. Murdoch
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Janet K. Hatt
- School of Civil and Environmental Engineering, Atlanta, Georgia 30332-0512
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division and Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge Tennessee 37831, United States
| |
Collapse
|
48
|
Marcet TF, Cápiro NL, Yang Y, Löffler FE, Pennell KD. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions. WATER RESEARCH 2018; 145:21-29. [PMID: 30114555 DOI: 10.1016/j.watres.2018.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Coupling in situ thermal treatment (ISTT) with microbial reductive dechlorination (MRD) has the potential to enhance contaminant degradation and reduce cleanup costs compared to conventional standalone remediation technologies. Impacts of low-temperature ISTT on Dehalococcoides mccartyi (Dhc), a relevant species in the anaerobic degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) to nontoxic ethene, were assessed in sand-packed columns under dynamic flow conditions. Dissolved tetrachloroethene (PCE; 258 ± 46 μM) was introduced to identical columns bioaugmented with the PCE-to-ethene dechlorinating consortium KB-1®. Initial column temperatures represented a typical aquifer (15 °C) or a site undergoing low-temperature ISTT (35 °C), and were subsequently increased to 35 and 74 °C, respectively, to assess temperature impacts on reductive dechlorination activity. In the 15 °C column, PCE was transformed primarily to cis-DCE (159 ± 2 μM), which was further degraded to VC (164 ± 3 μM) and ethene (30 ± 0 μM) within 17 pore volumes (PVs) after the temperature was increased to 35 °C. Regardless of the initial column temperature, ethene constituted >50 mol% of effluent degradation products in both columns after 73-74 PVs at 35 °C, indicating that MRD performance was greatly improved under low-temperature ISTT conditions. Increasing the temperature of the column initially at 35 °C resulted in continued VC and ethene production until a temperature of approximately 43 °C was reached, at which point Dhc activity substantially decreased. The abundance of the vcrA reductive dehalogenase gene exceeded that of the bvcA gene by 1-2.5 orders of magnitude at 15 °C, but this relationship inversed at temperatures >35 °C, suggesting Dhc strain-specific responses to temperature. These findings demonstrate improved MRD performance with low-temperature thermal treatment and emphasize potential synergistic effects at sites undergoing ISTT.
Collapse
Affiliation(s)
- Tyler F Marcet
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States.
| | - Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States; Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States; School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
49
|
Molenda O, Tang S, Lomheim L, Gautam VK, Lemak S, Yakunin AF, Maxwell KL, Edwards EA. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes. ISME JOURNAL 2018; 13:24-38. [PMID: 30104577 DOI: 10.1038/s41396-018-0254-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
Dehalococcoides mccartyi are obligate organohalide-respiring bacteria that play an important detoxifying role in the environment. They have small genomes (~1.4 Mb) with a core region interrupted by two high plasticity regions (HPRs) containing dozens of genes encoding reductive dehalogenases involved in organohalide respiration. The genomes of eight new strains of D. mccartyi were closed from metagenomic data from a related set of enrichment cultures, bringing the total number of genomes to 24. Two of the newly sequenced strains and three previously sequenced strains contain CRISPR-Cas systems. These D. mccartyi CRISPR-Cas systems were found to primarily target prophages and genomic islands. The genomic islands were identified either as integrated into D. mccartyi genomes or as circular extrachromosomal elements. We observed active circularization of the integrated genomic island containing vcrABC operon encoding the dehalogenase (VcrA) responsible for the transformation of vinyl chloride to non-toxic ethene. We interrogated archived DNA from established enrichment cultures and found that the CRISPR array acquired three new spacers in 11 years. These data provide a glimpse into dynamic processes operating on the genomes distinct to D. mccartyi strains found in enrichment cultures and provide the first insights into possible mechanisms of lateral DNA exchange in D. mccartyi.
Collapse
Affiliation(s)
- Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vasu K Gautam
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
50
|
Nakamura R, Obata T, Nojima R, Hashimoto Y, Noguchi K, Ogawa T, Yohda M. Functional Expression and Characterization of Tetrachloroethene Dehalogenase From Geobacter sp. Front Microbiol 2018; 9:1774. [PMID: 30147676 PMCID: PMC6095959 DOI: 10.3389/fmicb.2018.01774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Reductive dehalogenase (RDase) consists of two parts, RdhA and RdhB. RdhA is the catalytic subunit, harboring a cobalamin cofactor and two Fe-S clusters. RdhA is anchored to the cytoplasmic membrane via the membrane anchoring subunit, RdhB. There are many genes encoding RDases in the genome of organohalide-respiring bacteria, including Dehalococcoides spp. However, most genes have not been functionally characterized. Biochemical studies on RDases have been hampered by difficulties encountered in their expression and purification. In this study, we have expressed, purified and characterized RdhA of RDase for tetrachloroethene (PceA) from Geobacter sp. PceA was expressed as a fusion protein with a trigger factor tag in Escherichia coli. PceA was purified and denatured in aerobic condition. Subsequently, this protein was refolded in the presence of FeCl3, Na2S and cobalamin in anaerobic condition. The reconstituted PceA exhibited dechlorination ability for tetrachloroethene. UV-Vis spectroscopy has shown that it contains cobalamin and Fe-S clusters. Since this method requires anaerobic manipulation only in the reconstituting process and has a relatively high yield, it will enable further biochemical studies of RDases.
Collapse
Affiliation(s)
- Ryuki Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomohiro Obata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Nojima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takahiro Ogawa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|