1
|
Chen D, Moar WJ, Jerga A, Gowda A, Milligan JS, Bretsynder EC, Rydel TJ, Baum JA, Semeao A, Fu X, Guzov V, Gabbert K, Head GP, Haas JA. Bacillus thuringiensis chimeric proteins Cry1A.2 and Cry1B.2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. PLoS One 2021; 16:e0249150. [PMID: 34138865 PMCID: PMC8211277 DOI: 10.1371/journal.pone.0249150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/07/2021] [Indexed: 01/08/2023] Open
Abstract
Two new chimeric Bacillus thuringiensis (Bt) proteins, Cry1A.2 and Cry1B.2, were constructed using specific domains, which provide insecticidal activity against key lepidopteran soybean pests while minimizing receptor overlaps between themselves, current, and soon to be commercialized plant incorporated protectants (PIP's) in soybean. Results from insect diet bioassays demonstrate that the recombinant Cry1A.2 and Cry1B.2 are toxic to soybean looper (SBL) Chrysodeixis includens Walker, velvetbean caterpillar (VBC) Anticarsia gemmatalis Hubner, southern armyworm (SAW) Spodoptera eridania, and black armyworm (BLAW) Spodoptera cosmioides with LC50 values < 3,448 ng/cm2. Cry1B.2 is of moderate activity with significant mortality and stunting at > 3,448 ng/cm2, while Cry1A.2 lacks toxicity against old-world bollworm (OWB) Helicoverpa armigera. Results from disabled insecticidal protein (DIP) bioassays suggest that receptor utilization of Cry1A.2 and Cry1B.2 proteins are distinct from each other and from current, and yet to be commercially available, Bt proteins in soy such as Cry1Ac, Cry1A.105, Cry1F.842, Cry2Ab2 and Vip3A. However, as Cry1A.2 contains a domain common to at least one commercial soybean Bt protein, resistance to this common domain in a current commercial soybean Bt protein could possibly confer at least partial cross resistance to Cry1A2. Therefore, Cry1A.2 and Cry1B.2 should provide two new tools for controlling many of the major soybean insect pests described above.
Collapse
Affiliation(s)
- Danqi Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William J. Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Agoston Jerga
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Anilkumar Gowda
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jason S. Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | | | - Timothy J. Rydel
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - James A. Baum
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Altair Semeao
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Xiaoran Fu
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Victor Guzov
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Karen Gabbert
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Graham P. Head
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jeffrey A. Haas
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
2
|
Insecticidal Activity of Bacillus thuringiensis Proteins Against Coleopteran Pests. Toxins (Basel) 2020; 12:toxins12070430. [PMID: 32610662 PMCID: PMC7404982 DOI: 10.3390/toxins12070430] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
Bacillus thuringiensis is the most successful microbial insecticide agent and its proteins have been studied for many years due to its toxicity against insects mainly belonging to the orders Lepidoptera, Diptera and Coleoptera, which are pests of agro-forestry and medical-veterinary interest. However, studies on the interactions between this bacterium and the insect species classified in the order Coleoptera are more limited when compared to other insect orders. To date, 45 Cry proteins, 2 Cyt proteins, 11 Vip proteins, and 2 Sip proteins have been reported with activity against coleopteran species. A number of these proteins have been successfully used in some insecticidal formulations and in the construction of transgenic crops to provide protection against main beetle pests. In this review, we provide an update on the activity of Bt toxins against coleopteran insects, as well as specific information about the structure and mode of action of coleopteran Bt proteins.
Collapse
|
3
|
McDonald J, Burns A, Raybould A. Advancing ecological risk assessment on genetically engineered breeding stacks with combined insect-resistance traits. Transgenic Res 2020; 29:135-148. [PMID: 31953798 PMCID: PMC7000536 DOI: 10.1007/s11248-019-00185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 11/01/2022]
Abstract
To inform the ecological risk assessment (ERA) of a transgenic crop with multiple insecticidal traits combined by conventional breeding (breeding stack), a comparative field study is customarily conducted to compare transgenic protein concentrations in a breeding stack to those in corresponding component single events used in the breeding process. This study tests the hypothesis that transgenic protein expression will not significantly increase due to stacking, such that existing margins of exposure erode to unacceptable levels. Corroboration of this hypothesis allows for the use of existing non-target organism (NTO) effects tests results, where doses were based on the estimated environmental concentrations determined for a component single event. Results from over 20 studies comparing expression profiles of insecticidal proteins produced by commercial events in various combinations of conventionally-bred stacks were examined to evaluate applying previously determined no-observed-effect concentrations (NOECs) to stack ERAs. This paper presents a large number of tests corroborating the hypothesis of no significant increase in insecticidal protein expression due to combination by conventional breeding, and much of the variation in protein expression is likely attributed to genetic and environmental factors. All transgenic protein concentrations were well within conservative margins between exposure and corresponding NOEC. This work supports the conclusion that protein expression data generated for single events and the conservative manner for setting NTO effects test concentrations allows for the transportability of existing NOECs to the ERA of conventionally-bred stacks, and that future tests of the stated hypothesis are no longer critically informative for ERA on breeding stacks.
Collapse
Affiliation(s)
- Justin McDonald
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA.
| | - Andrea Burns
- Product Safety, Syngenta Crop Protection, LLC, Research Triangle Park, NC, USA
| | - Alan Raybould
- Science, Technology and Innovation Studies and Global Academy of Agriculture and Food Security, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Viswanathan K, Kumaresan V, Sannasimuthu A, Paray BA, Al-Sadoon MK, Arockiaraj J. Resolving the pathogenicity factors of a novel opportunistic fungus Schizophyllum commune at molecular level. Mol Biol Rep 2019; 46:3877-3886. [PMID: 31016617 DOI: 10.1007/s11033-019-04830-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/17/2019] [Indexed: 11/27/2022]
Abstract
Schizophyllum commune is a well-known mushroom forming fungi which is an edible one due to its nutritive value. It exhibits a special wood degrading mechanism to grow in decay matters by releasing a series of enzymes. These enzymes might make them an opportunistic pathogen which has been reported to infect various animals and human beings too. Although these fungi were identified as human and animal pathogens, their mechanisms of pathogenesis and the key virulence factors involved in disease establishment are not known. In this study, we reported this fungal infection in freshwater fish for the first time and its morphological features. Further, we employed RNA-seq technique to identify the major virulence factors involved in the pathogenesis in fish and the network of interaction between the identified virulence factors were analysed. Also, we confirmed the virulence roles of this fungus during infection by qRT-PCR analysis. This study emphasizes the virulence nature of the common mushroom forming food fungus and the involvement of enzymes such as phosphoinositide phospholipase C, hexosaminidase and few toxins such as pesticidal and insecticidal crystal proteins which opened a new avenue in the virulence nature of edible mushrooms.
Collapse
Affiliation(s)
- Kasi Viswanathan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Venkatesh Kumaresan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Anbazahan Sannasimuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad K Al-Sadoon
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
5
|
Sheppard AE, Nakad R, Saebelfeld M, Masche AC, Dierking K, Schulenburg H. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis. J Invertebr Pathol 2015; 133:34-40. [PMID: 26592941 DOI: 10.1016/j.jip.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods.
Collapse
Affiliation(s)
- Anna E Sheppard
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany.
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Manja Saebelfeld
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
6
|
Keweshan RS, Head GP, Gassmann AJ. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:720-729. [PMID: 26470183 DOI: 10.1093/jee/tov005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 12/14/2014] [Indexed: 06/05/2023]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy.
Collapse
Affiliation(s)
- Ryan S Keweshan
- Department of Entomology, Iowa State University, Ames, IA 50011. Current Address: Department of Biology, Utah State University, Logan, UT 84321
| | | | - Aaron J Gassmann
- Department of Entomology, Iowa State University, Ames, IA 50011.
| |
Collapse
|
7
|
Kelker MS, Berry C, Evans SL, Pai R, McCaskill DG, Wang NX, Russell JC, Baker MD, Yang C, Pflugrath JW, Wade M, Wess TJ, Narva KE. Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PLoS One 2014; 9:e112555. [PMID: 25390338 PMCID: PMC4229197 DOI: 10.1371/journal.pone.0112555] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins.
Collapse
Affiliation(s)
- Matthew S. Kelker
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Steven L. Evans
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Reetal Pai
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | | | - Nick X. Wang
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Joshua C. Russell
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| | - Matthew D. Baker
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Cheng Yang
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - J. W. Pflugrath
- Rigaku Americas Corporation, The Woodlands, Texas, United States of America
| | - Matthew Wade
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Tim J. Wess
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kenneth E. Narva
- Dow AgroSciences, LLC, Indianapolis, Indiana, United States of America
| |
Collapse
|
8
|
Li H, Liu R, Shu C, Zhang Q, Zhao S, Shao G, Zhang X, Gao J. Characterization of one novel cry8 gene from Bacillus thuringiensis strain Q52-7. World J Microbiol Biotechnol 2014; 30:3075-80. [PMID: 25218711 DOI: 10.1007/s11274-014-1734-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022]
Abstract
Bacillus thuringiensis (Bt) is the most widely used insecticidal microbe due to its specific toxicity and safe use with respect to animals and the environment. In this study, we isolated Bt strain Q52-7 from a soil sample collected in the Qian Shan District, Liao Ning Province, China. We observed that the Q52-7 strain produced spherical crystals. The Bt Q52-7 strain had high toxicity against Asian Cockchafer (Holotrichia parallela), exhibiting an LC50 of 3.80 × 10(9) cfu/g, but is not toxic for Anomala corpulenta Motschulsky and Holotrichia oblita. Using general cry8 primers, we amplified a 1.3 kb fragment with the polymerase chain reaction. Specific primers were designed for the amplified fragment to clone the full-length coding region. A novel gene, cry8Na1, had 69 % sequence similarity with cry8Ca1. cry8Na1 gene was successfully expressed in the HD-73(-) acrystalliferous mutant of Bt subsp. Kurstaki HD-73. Bioassays demonstrated that the Cry8Na1 protein is highly toxic for the H. parallela, with a 50 % lethal concentration of 8.18 × 10(10) colony forming units per gram.
Collapse
Affiliation(s)
- Haitao Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Mei X, Xu K, Yang L, Yuan Z, Mahillon J, Hu X. The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis. BMC Microbiol 2014; 14:149. [PMID: 24906385 PMCID: PMC4057527 DOI: 10.1186/1471-2180-14-149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cereulide is a cyclic dodecadepsipeptide ionophore, produced via non-ribosomal peptide synthetases (NRPS), which in rare cases can lead to human death. Early studies had shown that emetic toxin formation belongs to a homogeneous group of Bacillus cereus sensu stricto and the genetic determinants of cereulide (a 24-kb gene cluster of cesHPTABCD) are located on a 270-kb plasmid related to the Bacillus anthracis virulence plasmid pXO1. Results The whole genome sequences from seven emetic isolates, including two B. cereus sensu stricto and five Bacillus weihenstephanensis strains, were compared, and their inside and adjacent DNA sequences of the cereulide biosynthesis gene clusters were analyzed. The sequence diversity was observed, which classified the seven emetic isolates into three clades. Different genomic locations of the cereulide biosynthesis gene clusters, plasmid-borne and chromosome-borne, were also found. Potential mobile genetic elements (MGEs) were identified in the flanking sequences of the ces gene cluster in all three types. The most striking observation was the identification of a putative composite transposon, Tnces, consisting of two copies of ISces element (belonging to IS6 family) in opposite orientations flanking the ces gene cluster in emetic B. weihenstephanensis. The mobility of this element was tested by replacing the ces gene cluster by a KmR gene marker and performing mating-out transposition assays in Escherichia coli. The results showed that Tnces::km transposes efficiently (1.04 × 10-3 T/R) and produces 8-bp direct repeat (DR) at the insertion sites. Conclusions Cereulide biosynthesis gene clusters display sequence diversity, different genomic locations and association with MGEs, in which the transposition capacity of a resistant derivative of the composite transposon Tnces in E. coli was demonstrated. Further study is needed to look for appropriate genetic tools to analysis the transposition of Tnces in Bacillus spp. and the dynamics of other MGEs flanking the ces gene clusters.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
10
|
van Frankenhuyzen K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 2013; 114:76-85. [PMID: 23747826 DOI: 10.1016/j.jip.2013.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
The increasing number of Bacillus thuringiensis proteins with pesticidal activities across orders and phyla raises the question how widespread cross-activities are and if they are of sufficient biological significance to have implications for ecological safety of those proteins in pest control applications. Cross-activity is reported for 27 proteins and 69 taxa and is substantiated by reasonable evidence (mortality estimates) in 19 cases involving 45 taxa. Cross-activities occur in 13 primary rank families across three classes of pesticidal proteins (Cry, Cyt and Vip), and comprise 13 proteins affecting species across two orders, five proteins affecting three orders and one protein affecting four orders, all within the class Insecta. Cross-activity was quantified (LC50 estimates) for 16 proteins and 25 taxa. Compared to toxicity ranges established for Diptera-, Coleoptera-, Lepidoptera- and Nematoda-active proteins, 13 cross-activities are in the low-toxicity range (10-1000μg/ml), 12 in the medium - (0.10-10μg/ml) and two in the high-toxicity range (0.01-0.10μg/ml). Although cross-activities need to be viewed with caution until they are confirmed through independent testing, current evidence suggests that cross-activity of B. thuringiensis pesticidal proteins needs to be taken into consideration when designing and approving their use in pest control applications.
Collapse
Affiliation(s)
- Kees van Frankenhuyzen
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada.
| |
Collapse
|
11
|
Baum JA, Sukuru UR, Penn SR, Meyer SE, Subbarao S, Shi X, Flasinski S, Heck GR, Brown RS, Clark TL. Cotton plants expressing a hemipteran-active Bacillus thuringiensis crystal protein impact the development and survival of Lygus hesperus (Hemiptera: Miridae) nymphs. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:616-624. [PMID: 22606834 DOI: 10.1603/ec11207] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The plant bugs Lygus hesperus Knight (Hemiptera: Miridae) and L. lineolaris (Palisot de Beauvois) have emerged as economic pests of cotton in the United States. These hemipteran species are refractory to the insect control traits found in genetically modified commercial varieties of cotton. In this article, we report the isolation and characterization of a 35 kDa crystal protein from Bacillus thuringiensis, designated TIC807, which causes reduced mass gain and mortality of L. hesperus and L. lineolaris nymphs when presented in an artificial diet feeding assay. Cotton plants expressing the TIC807 protein were observed to impact the survival and development of L. hesperus nymphs in a concentration-dependent manner. These results, demonstrating in planta activity of a Lygus insecticidal protein, represent an important milestone in the development of cotton varieties protected from Lygus feeding damage.
Collapse
Affiliation(s)
- James A Baum
- Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hibbard BE, Clark TL, Ellersieck MR, Meihls LN, El Khishen AA, Kaster V, Steiner HY, Kurtz R. Mortality of western corn rootworm larvae on MIR604 transgenic maize roots: field survivorship has no significant impact on survivorship of F1 progeny on MIR604. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:2187-2196. [PMID: 21309243 DOI: 10.1603/ec10179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mortality of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae due to MIR604 transgenic corn, Zea mays L., expressing the modified Cry3A (mCry3A) protein relative to survivorship on corn with the same genetic background without the gene (isoline corn) was evaluated at three Missouri sites in both 2005 and 2006. We made these comparisons by using wild-type western corn rootworm at three different egg densities (6,000, 3,000, and 1,500 eggs per m) so that the role of density-dependent mortality would be known. The mortality due to the mCry3A protein was 94.88% when averaged across all environments and both years. Fifty percent emergence of beetles was delayed approximately 5.5 d. Beetles were kept alive and their progeny evaluated on MIR604 and isoline corn in the greenhouse to determine whether survivorship on MIR604 in the field for one generation increased survivorship on MIR604 in the greenhouse in the subsequent generation. There was no significant difference in survivorship on MIR604 in greenhouse assays between larvae whose parents survived isoline and larvae whose parents survived MIR604 in the field the previous generation, indicating that many susceptible beetles survived MIR604 in the field the previous season along with any potentially resistant beetles. The data are discussed in terms of rootworm insect resistance management.
Collapse
Affiliation(s)
- Bruce E Hibbard
- USDA-ARS, Plant Genetics Research Unit, 205 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sayed A, Wiechman B, Struewing I, Smith M, French W, Nielsen C, Bagley M. Isolation of transcripts from Diabrotica virgifera virgifera LeConte responsive to the Bacillus thuringiensis toxin Cry3Bb1. INSECT MOLECULAR BIOLOGY 2010; 19:381-389. [PMID: 20337747 DOI: 10.1111/j.1365-2583.2010.00998.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Crystal (Cry) proteins derived from Bacillus thuringiensis (Bt) have been widely used as a method of insect pest management for several decades. In recent years, a transgenic corn expressing the Cry3Bb1 toxin has been successfully used for protection against corn rootworm larvae (genus Diabrotica). The biological action of the Bt toxin in corn rootworms has not yet been clearly defined. Because development of resistance to Bt by corn rootworms will have huge economic and ecological costs, insight into larval response to Bt toxin is highly desirable. We identified 19 unique transcripts that are differentially expressed in D. virgifera virgifera larvae reared on corn transgenic for Cry3Bb1. Putative identities of these genes were consistent with impacts on metabolism and development. Analysis of highly modulated transcripts resulted in the characterization of genes coding for a member of a cysteine-rich secretory protein family and a glutamine-rich membrane protein. A third gene that was isolated encodes a nondescript 132 amino acid protein while a fourth highly modulated transcript could not be further characterized. Expression patterns of these four genes were strikingly different between susceptible and resistant western corn rootworm populations. These genes may provide useful targets for monitoring of Bt exposure patterns and resistance development in pest and non-target insect populations.
Collapse
Affiliation(s)
- A Sayed
- Dynamac Corporation c/o US Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Berne S, Lah L, Sepčić K. Aegerolysins: structure, function, and putative biological role. Protein Sci 2009; 18:694-706. [PMID: 19309687 PMCID: PMC2762582 DOI: 10.1002/pro.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/19/2009] [Accepted: 01/26/2009] [Indexed: 12/13/2022]
Abstract
Aegerolysins, discovered in fungi, bacteria and plants, are highly similar proteins with interesting biological properties. Certain aegerolysins possess antitumoral, antiproliferative, and antibacterial activities. Further possible medicinal applications include their use in the prevention of atherosclerosis, or as vaccines. Additional biotechnological value of fungal aegerolysins lies in their involvement in development, which could improve cultivation of commercially important edible mushrooms. Besides, new insights on microheterogeneity of raft-like membrane domains could be gained by using aegerolysins as specific markers in cell and molecular biology. Although the exact function of aegerolysins in their producing organisms remains to be explained, they are biochemically well characterized all-beta structured proteins sharing the following common features: low isoelectric points, similar molecular weights (15-17 kDa), and stability in a wide pH range.
Collapse
Affiliation(s)
- Sabina Berne
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana1000 Ljubljana, Slovenia
| | - Ljerka Lah
- Ljerka Lah, Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Shu C, Yu H, Wang R, Fen S, Su X, Huang D, Zhang J, Song F. Characterization of two novel cry8 genes from Bacillus thuringiensis strain BT185. Curr Microbiol 2009; 58:389-92. [PMID: 19130127 DOI: 10.1007/s00284-008-9338-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/18/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Two novel cry8-type genes, cry8Ea1 and cry8Fa1, obtained from a Holotrichia parallela-specific Bacillus thuringiensis strain, BT185, were characterized. Findings showed that cry8Ea1 and cry8Fa1 encoded polypeptides of 1164 and 1174 amino acid residues, respectively. The deduced amino acid sequences of both Cry8Ea1 and Cry8Fa1 polypeptides are the most similar to that of Cry8Ba1. Eight conserved blocks (blocks 1-8) exist in Cry8Ea1 and Cry8Fa1 polypeptides compared with known Cry proteins. Cry8Ea1 and the Cry8Fa1 toxins could form spheric crystals when they were expressed in the acrystalliferous mutant strain HD73(-). The spores and crystals from the recombinant strain containing cry8Ea1 were toxic to Holotrichia parallela, with an LC(50) of 0.0875 x 10(8) colony-forming units (CFU)/g. However, Cry8Fa1 expressed in the recombinant strain was not toxic to H. parallela, Anomala corpulenta, or H. oblita.
Collapse
Affiliation(s)
- Changlong Shu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jones GW, Wirth MC, Monnerat RG, Berry C. The Cry48Aa-Cry49Aa binary toxin from Bacillus sphaericus exhibits highly restricted target specificity. Environ Microbiol 2008; 10:2418-24. [PMID: 18484999 PMCID: PMC3638318 DOI: 10.1111/j.1462-2920.2008.01667.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Cry48Aa/Cry49Aa binary toxin of Bacillus sphaericus was recently discovered by its ability to kill Culex quinquefasciatus mosquito larvae through a novel interaction between its two components. We have investigated the target specificity of this toxin and show it to be non-toxic to coleopteran, lepidopteran and other dipteran insects, including closely related Aedes and Anopheles mosquitoes. This represents an unusually restricted target range for crystal toxins from either B. sphaericus or Bacillus thuringiensis. Gut extracts from Culex and Aedes larvae show differential processing of the Cry48Aa protein, with the location of cleavage sites in Culex reflecting those previously shown for the activation of Cry4 toxins in mosquitoes. Pre-activation of Cry48Aa/Cry49Aa with Culex extracts, however, fails to induce toxicity to Aedes larvae. Co-administration of Cry49Aa with Cry4Aa gives higher than predicted toxicity, perhaps suggesting weak synergism against Culex larvae between Cry49Aa and other three-domain Cry toxins.
Collapse
Affiliation(s)
- Gareth W Jones
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK
| | | | | | | |
Collapse
|
17
|
An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl Environ Microbiol 2007; 74:367-74. [PMID: 18024675 DOI: 10.1128/aem.02165-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The western corn rootworm remains one of the most important pests of corn in the United States despite the use of many pest management tools. Cry3A, the first coleopteran-active Bacillus thuringiensis toxin isolated, has not been useful for control of the corn rootworm pest complex. Modification of Cry3A so that it contained a chymotrypsin/cathepsin G protease recognition site in the loop between alpha-helix 3 and alpha-helix 4 of domain I, however, resulted in consistent activity of the toxin ("mCry3A") against neonate western corn rootworm. In vitro chymotrypsin digests showed that there was a substantial difference between the enzyme sensitivity of mCry3A and the enzyme sensitivity of Cry3A, with mCry3A rapidly converted from a 67-kDa form to a approximately 55-kDa form. The introduced protease site was also recognized in vivo, where the approximately 55-kDa form of mCry3A toxin was rapidly generated and associated with the membrane fraction. After a point mutation in mcry3A that resulted in the elimination of the native domain I chymotrypsin site (C terminal to the introduced chymotrypsin/cathepsin G protease site of mCry3A), the in vitro and in vivo digestion patterns remained the same, demonstrating that the introduced site was required for the enhanced activity. Also, 55-kDa mCry3A generated by cleavage with chymotrypsin exhibited specific binding to western corn rootworm brush border membrane, whereas untreated 67-kDa mCry3A did not. These data indicate that the mCry3A toxicity for corn rootworm larvae was due to the introduction of a chymotrypsin/cathepsin G site, which enhanced cleavage and subsequent binding of the activated toxin to midgut cells.
Collapse
|
18
|
Jones GW, Nielsen-Leroux C, Yang Y, Yuan Z, Dumas VF, Monnerat RG, Berry C. A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. FASEB J 2007; 21:4112-20. [PMID: 17646596 DOI: 10.1096/fj.07-8913com] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Highly pathogenic strains of Bacillus sphaericus produce the mosquitocidal Bin proteins, but resistance to this toxin can be produced under laboratory and field conditions. Analysis of strains able to overcome this resistance revealed the presence of a previously undescribed type of two-component toxin. One subunit, Cry48Aa1, is related to the 3-domain crystal toxins of Bacillus thuringiensis. Uniquely for this type of protein, insect toxicity is only achieved in the presence of a second, accessory protein, Cry49Aa1. This protein is itself related to both the binary toxin of B. sphaericus and to Cry35 and Cry36 of B. thuringiensis, none of which require interaction with Cry48Aa1-like proteins for their activity. The necessity for both Cry48Aa1 and Cry49Aa1 components for pathogenicity, therefore, indicates an unprecedented interaction to generate toxicity. Despite high potency for purified Cry48Aa1/Cry49Aa1 proteins (LC50 for third instar Culex quinquefasciatus larvae: 15.9 ng/ml and 6.3 ng/ml respectively), bacteria producing them show suboptimal mosquitocidal activity due to low-level Cry48Aa1 production. This new toxin combination may indicate a fortuitous combination of members of the gene families that encode 3-domain Cry toxins and Binary-like toxins, permitting the "mix-and-match" evolution of a new component in the mosquitocidal armoury.
Collapse
Affiliation(s)
- Gareth W Jones
- Cardiff School of Biosciences, Cardiff University, Museum Ave., Cardiff CF10 3US, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Yu H, Zhang J, Huang D, Gao J, Song F. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela. Curr Microbiol 2006; 53:13-7. [PMID: 16775781 DOI: 10.1007/s00284-005-0097-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 09/30/2005] [Indexed: 11/28/2022]
Abstract
A new Bacillus thuringiensis strain, Bt185, was isolated from HeBei soil samples in China. Observations after transmission electron microscopy found that the strain produced spherical parasporal inclusions similar to that of the B. thuringiensis subsp. japonensis Buibui strain, which showed toxicity to both Anomala corpulenta and Popillia japonica. The plasmid profile seen on an agarose gel revealed that Bt185 contained six large bands of 191 kb, 161 kb, 104 kb, 84 kb, 56 kb, and 37 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed one major band with an estimated molecular mass of 130 kDa. Polymerase chain reaction-restriction fragment length polymorphism results showed that a novel cry8-type gene sequence was found in the Bt185 strain. When we screened for this novel gene sequence, an additional novel cry8-type gene was isolated, having a partial sequence of 2340 bp and encoding a protein of 780 amino acids. Bioassay results showed that Bt185 had no toxicity against several Coleopteran and Lepidopteran pests. However, Bt185 exhibited toxicity against larvae of the Asian cockchafer, Holotrichia parallela. This is the first report of the occurrence of a Bacillus strain that has insecticidal activity against Holotrichia parallela larvae.
Collapse
MESH Headings
- Animals
- Bacillus thuringiensis/genetics
- Bacillus thuringiensis/metabolism
- Bacillus thuringiensis/ultrastructure
- Bacillus thuringiensis Toxins
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/toxicity
- Bacterial Toxins/genetics
- Bacterial Toxins/metabolism
- Bacterial Toxins/toxicity
- Cloning, Molecular
- Coleoptera/drug effects
- Coleoptera/growth & development
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Electrophoresis, Polyacrylamide Gel
- Endotoxins/genetics
- Endotoxins/metabolism
- Endotoxins/toxicity
- Hemolysin Proteins
- Larva/drug effects
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Plasmids/genetics
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Spores, Bacterial/genetics
- Spores, Bacterial/metabolism
- Spores, Bacterial/ultrastructure
Collapse
Affiliation(s)
- Hong Yu
- State Key Laboratory of Biology for Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR, China
| | | | | | | | | |
Collapse
|
20
|
Seale JW. The role of a conserved histidine-tyrosine interhelical interaction in the ion channel domain of δ-endotoxins from Bacillus thuringiensis. Proteins 2005; 63:385-90. [PMID: 16385471 DOI: 10.1002/prot.20798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The delta-endotoxin proteins are produced by Bacillus thuringiensis during the sporulation phase of its life cycle. These proteins exhibit insecticidal activity through receptor-mediated ion channel formation. The mode of action of these proteins requires the conversion of the protein from a water-soluble conformation to a membrane-inserted conformation. While there is X-ray structure information for the soluble protein, no detailed structure exists for the membrane-inserted protein. However, based on peptide studies, an umbrella model for the membrane-inserted state has been proposed. Here, we investigated the role of a conserved hydrogen bond interaction between two helices that are suggested to undergo a large conformational change upon membrane insertion. Mutation of either the histidine or the tyrosine resulted in a protein that has significantly reduced bioactivity, increased overall flexibility, and significantly reduced stability. These data highlight an important role for this interaction in the overall stability of the protein. Additionally, the conservation of histidine and tyrosine in these positions may suggest a functional role for the interaction in the conformational switching from soluble to membrane protein.
Collapse
|
21
|
Schnepf HE, Lee S, Dojillo J, Burmeister P, Fencil K, Morera L, Nygaard L, Narva KE, Wolt JD. Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Appl Environ Microbiol 2005; 71:1765-74. [PMID: 15811999 PMCID: PMC1082557 DOI: 10.1128/aem.71.4.1765-1774.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis crystal proteins of the Cry34 and Cry35 classes function as binary toxins showing activity on the western corn rootworm, Diabrotica virgifera virgifera LeConte. We surveyed 6,499 B. thuringiensis isolates by hybridization for sequences related to cry35A genes, identifying 78 strains. Proteins of the appropriate molecular mass (ca. 44 kDa) for Cry35 were observed in 42 of the strains. Full-length, or nearly full-length, sequences of 34 cry34 genes and 16 cry35 genes were also obtained from cloning, PCR analysis, and DNA sequencing. These included representatives of all known Cry34A, Cry34B, Cry35A, and Cry35B classes, as well as a novel Cry34A/Cry35A-like pair. Bioassay analysis indicated that cry35-hybridizing strains not producing a ca. 14-kDa protein, indicative of Cry34, were not active on corn rootworms, and that the previously identified Cry34A/Cry35A pairs were more active than the Cry34B/Cry35B pairs. The cry35-hybridizing B. thuringiensis strains were found in locales and materials typical for other B. thuringiensis strains. Comparison of the sequences with the geographic origins of the strains showed that identical, or nearly identical, sequences were found in strains from both Australasia and the Americas. Sequence similarity searches revealed that Cry34 proteins are similar to predicted proteins in Photorhabdus luminescens and Dictyostelium discoidium, and that Cry35Ab1 contains a segment similar to beta-trefoil domains that may be a binding motif. The binary Cry34/Cry35 B. thuringiensis crystal proteins thus appear closely related to each other, are environmentally ubiquitous, and share sequence similarities consistent with activity through membrane disruption in target organisms.
Collapse
Affiliation(s)
- H Ernest Schnepf
- Research and Development Laboratories, Dow AgroSciences, Indianapolis, Indiana, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|