1
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Ghanbarpour A, Cohen SE, Fei X, Kinman LF, Bell TA, Zhang JJ, Baker TA, Davis JH, Sauer RT. A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation. Nat Commun 2023; 14:7281. [PMID: 37949857 PMCID: PMC10638403 DOI: 10.1038/s41467-023-43145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
AAA+ proteases degrade intracellular proteins in a highly specific manner. E. coli ClpXP, for example, relies on a C-terminal ssrA tag or other terminal degron sequences to recognize proteins, which are then unfolded by ClpX and subsequently translocated through its axial channel and into the degradation chamber of ClpP for proteolysis. Prior cryo-EM structures reveal that the ssrA tag initially binds to a ClpX conformation in which the axial channel is closed by a pore-2 loop. Here, we show that substrate-free ClpXP has a nearly identical closed-channel conformation. We destabilize this closed-channel conformation by deleting residues from the ClpX pore-2 loop. Strikingly, open-channel ClpXP variants degrade non-native proteins lacking degrons faster than the parental enzymes in vitro but degraded GFP-ssrA more slowly. When expressed in E. coli, these open channel variants behave similarly to the wild-type enzyme in assays of filamentation and phage-Mu plating but resulted in reduced growth phenotypes at elevated temperatures or when cells were exposed to sub-lethal antibiotic concentrations. Thus, channel closure is an important determinant of ClpXP degradation specificity.
Collapse
Affiliation(s)
- Alireza Ghanbarpour
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Steven E Cohen
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Xue Fei
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Laurel F Kinman
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tristan A Bell
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Jia Jia Zhang
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Tania A Baker
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA
| | - Joseph H Davis
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| | - Robert T Sauer
- Department of Biology Massachusetts Institute of Technology Cambridge, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Kemp P, Weber W, Desczyk C, Kaufmann M, Panthel J, Wörmann T, Stein V. Dissecting the Permeability of the Escherichia coli Cell Envelope to a Small Molecule Using Tailored Intensiometric Fluorescent Protein Sensors. ACS OMEGA 2023; 8:39562-39569. [PMID: 37901533 PMCID: PMC10601414 DOI: 10.1021/acsomega.3c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023]
Abstract
Membranes provide a highly selective barrier that defines the boundaries of any cell while providing an interface for communication and nutrient uptake. However, despite their central physiological role, our capacity to study or even engineer the permeation of distinct solutes across biological membranes remains rudimentary. This especially applies to Gram-negative bacteria, where the outer and inner membrane impose two permeation barriers. Addressing this analytical challenge, we exemplify how the permeability of the Escherichia coli cell envelope can be dissected using a small-molecule-responsive fluorescent protein sensor. The approach is exemplified for the biotechnologically relevant macrolide rapamycin, for which we first construct an intensiometric rapamycin detector (iRapTor) while comprehensively probing key design principles in the iRapTor scaffold. Specifically, this includes the scope of minimal copolymeric linkers as a function of topology and the concomitant need for gate post residues. In a subsequent step, we apply iRapTors to assess the permeability of the E. coli cell envelope to rapamycin. Despite its lipophilic character, rapamycin does not readily diffuse across the E. coli envelope but can be enhanced by recombinantly expressing a nanopore in the outer membrane. Our study thus provides a blueprint for studying and actuating the permeation of small molecules across the prokaryotic cell envelope.
Collapse
Affiliation(s)
- Philipp Kemp
- Department
of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Wadim Weber
- Department
of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | | | - Marwan Kaufmann
- Department
of Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | | | - Theresa Wörmann
- Department
of Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | - Viktor Stein
- Department
of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre
for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
4
|
Xu Z, Wang Y, Sheng K, Rosenthal R, Liu N, Hua X, Zhang T, Chen J, Song M, Lv Y, Zhang S, Huang Y, Wang Z, Cao T, Shen Y, Jiang Y, Yu Y, Chen Y, Guo G, Yin P, Weitz DA, Wang Y. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat Commun 2023; 14:5130. [PMID: 37612289 PMCID: PMC10447461 DOI: 10.1038/s41467-023-40137-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Bacteria colonize almost all parts of the human body and can differ significantly. However, the population level transcriptomics measurements can only describe the average bacteria population behaviors, ignoring the heterogeneity among bacteria. Here, we report a droplet-based high-throughput single-microbe RNA-seq assay (smRandom-seq), using random primers for in situ cDNA generation, droplets for single-microbe barcoding, and CRISPR-based rRNA depletion for mRNA enrichment. smRandom-seq showed a high species specificity (99%), a minor doublet rate (1.6%), a reduced rRNA percentage (32%), and a sensitive gene detection (a median of ~1000 genes per single E. coli). Furthermore, smRandom-seq successfully captured transcriptome changes of thousands of individual E. coli and discovered a few antibiotic resistant subpopulations displaying distinct gene expression patterns of SOS response and metabolic pathways in E. coli population upon antibiotic stress. smRandom-seq provides a high-throughput single-microbe transcriptome profiling tool that will facilitate future discoveries in microbial resistance, persistence, microbe-host interaction, and microbiome research.
Collapse
Affiliation(s)
- Ziye Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuting Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Raoul Rosenthal
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiaye Chen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mengdi Song
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuexiao Lv
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shunji Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yingjuan Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Zhaolun Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ting Cao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - David A Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Yongcheng Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
| |
Collapse
|
5
|
Amrofell MB, Moon TS. Characterizing a Propionate Sensor in E. coli Nissle 1917. ACS Synth Biol 2023; 12:1868-1873. [PMID: 37220256 PMCID: PMC10865894 DOI: 10.1021/acssynbio.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Short-chain fatty acids (SCFAs) are commonly found in the large intestine, but generally not in the small intestine, and influence microbiome composition and host physiology. Thus, synthetic biologists are interested in developing engineered probiotics capable of in situ detection of SCFAs as biogeography or disease sensors. One SCFA, propionate, is both sensed and consumed by E. coli. Here, we utilize the E. coli transcription factor PrpR, sensitive to the propionate-derived metabolite (2S,3S)-2-methylcitrate, and its cognate promoter PprpBCDE to detect extracellular propionate with the probiotic chassis bacterium E. coli Nissle 1917. We identify that PrpR-PprpBCDE displays stationary phase leakiness and transient bimodality, and we explain these observations through evolutionary rationales and deterministic modeling, respectively. Our results will help researchers build biogeographically sensitive genetic circuits.
Collapse
Affiliation(s)
- Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Lous, MO, USA 63130
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
6
|
Serebrinsky-Duek K, Barra M, Danino T, Garrido D. Engineered Bacteria for Short-Chain-Fatty-Acid-Repressed Expression of Biotherapeutic Molecules. Microbiol Spectr 2023; 11:e0004923. [PMID: 36939337 PMCID: PMC10101121 DOI: 10.1128/spectrum.00049-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Short-chain fatty acids (SCFA) such as propionate and butyrate are critical metabolites produced by the gut microbiota. Microbiome dysbiosis resulting in altered SCFA profiles is associated with certain diseases, including inflammatory bowel diseases (IBD), characterized by a reduction in butyrate concentration and active intestinal inflammation. There is an increasing interest in the use of engineered bacteria as diagnostic and therapeutic tools for gut diseases. In this study, we developed genetic circuits capable of sensing SCFA concentrations to build biosensors that express a response protein (superfolder green fluorescent protein [sfGFP]) in amounts inversely proportional to the SCFA concentration. We also built biotherapeutics expressing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) using the same logic. The propionate biotherapeutic expressed larger amounts of mouse GM-CSF in the absence of propionate. The butyrate biotherapeutics presented the expected behavior only at the beginning of the kinetics and an accelerated response in the absence of butyrate. Overall, these genetic systems may function as complementary diagnostic tools for measuring SCFAs and as delivery vehicles for biotherapeutic molecules. IMPORTANCE Short-chain fatty acids are key molecules produced by the gut microbiome. Their concentrations are altered in certain diseases. Here, we created molecular biosensors that quantify the absence of propionate and butyrate, using logic "NOT" gates and bacterial promoters. Finally, we show that these genetic systems could be useful for the delivery of therapeutic molecules in the gut, in the absence of these acids.
Collapse
Affiliation(s)
- Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Barra
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Systems-Wide Dissection of Organic Acid Assimilation in Pseudomonas aeruginosa Reveals a Novel Path To Underground Metabolism. mBio 2022; 13:e0254122. [PMID: 36377867 PMCID: PMC9765439 DOI: 10.1128/mbio.02541-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) is one of the most frequent and severe causes of nosocomial infection. This organism is also a major cause of airway infections in people with cystic fibrosis (CF). Pa is known to have a remarkable metabolic plasticity, allowing it to thrive under diverse environmental conditions and ecological niches; yet, little is known about the central metabolic pathways that sustain its growth during infection or precisely how these pathways operate. In this work, we used a combination of 'omics approaches (transcriptomics, proteomics, metabolomics, and 13C-fluxomics) and reverse genetics to provide systems-level insight into how the infection-relevant organic acids succinate and propionate are metabolized by Pa. Moreover, through structural and kinetic analysis of the 2-methylcitrate synthase (2-MCS; PrpC) and its paralogue citrate (CIT) synthase (GltA), we show how these two crucial enzymatic steps are interconnected in Pa organic acid assimilation. We found that Pa can rapidly adapt to the loss of GltA function by acquiring mutations in a transcriptional repressor, which then derepresses prpC expression. Our findings provide a clear example of how "underground metabolism," facilitated by enzyme substrate promiscuity, "rewires" Pa metabolism, allowing it to overcome the loss of a crucial enzyme. This pathogen-specific knowledge is critical for the advancement of a model-driven framework to target bacterial central metabolism. IMPORTANCE Pseudomonas aeruginosa is an opportunistic human pathogen that, due to its unrivalled resistance to antibiotics, ubiquity in the built environment, and aggressiveness in infection scenarios, has acquired the somewhat dubious accolade of being designated a "critical priority pathogen" by the WHO. In this work, we uncover the pathways and mechanisms used by P. aeruginosa to grow on a substrate that is abundant at many infection sites: propionate. We found that if the organism is prevented from metabolizing propionate, the substrate turns from being a convenient nutrient source into a potent poison, preventing bacterial growth. We further show that one of the enzymes involved in these reactions, 2-methylcitrate synthase (PrpC), is promiscuous and can moonlight for another essential enzyme in the cell (citrate synthase). Indeed, mutations that abolish citrate synthase activity (which would normally prevent the cell from growing) can be readily overcome if the cell acquires additional mutations that increase the expression of PrpC. This is a nice example of the evolutionary utility of so-called "underground metabolism."
Collapse
|
8
|
Lebovich M, Andrews LB. Surveying the Genetic Design Space for Transcription Factor-Based Metabolite Biosensors: Synthetic Gamma-Aminobutyric Acid and Propionate Biosensors in E. coli Nissle 1917. Front Bioeng Biotechnol 2022; 10:938056. [PMID: 36091463 PMCID: PMC9452892 DOI: 10.3389/fbioe.2022.938056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Engineered probiotic bacteria have been proposed as a next-generation strategy for noninvasively detecting biomarkers in the gastrointestinal tract and interrogating the gut-brain axis. A major challenge impeding the implementation of this strategy has been the difficulty to engineer the necessary whole-cell biosensors. Creation of transcription factor-based biosensors in a clinically-relevant strain often requires significant tuning of the genetic parts and gene expression to achieve the dynamic range and sensitivity required. Here, we propose an approach to efficiently engineer transcription-factor based metabolite biosensors that uses a design prototyping construct to quickly assay the gene expression design space and identify an optimal genetic design. We demonstrate this approach using the probiotic bacterium Escherichia coli Nissle 1917 (EcN) and two neuroactive gut metabolites: the neurotransmitter gamma-aminobutyric acid (GABA) and the short-chain fatty acid propionate. The EcN propionate sensor, utilizing the PrpR transcriptional activator from E. coli, has a large 59-fold dynamic range and >500-fold increased sensitivity that matches biologically-relevant concentrations. Our EcN GABA biosensor uses the GabR transcriptional repressor from Bacillus subtilis and a synthetic GabR-regulated promoter created in this study. This work reports the first known synthetic microbial whole-cell biosensor for GABA, which has an observed 138-fold activation in EcN at biologically-relevant concentrations. Using this rapid design prototyping approach, we engineer highly functional biosensors for specified in vivo metabolite concentrations that achieve a large dynamic range and high output promoter activity upon activation. This strategy may be broadly useful for accelerating the engineering of metabolite biosensors for living diagnostics and therapeutics.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate, Program University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
9
|
Rottinghaus AG, Ferreiro A, Fishbein SRS, Dantas G, Moon TS. Genetically stable CRISPR-based kill switches for engineered microbes. Nat Commun 2022; 13:672. [PMID: 35115506 PMCID: PMC8813983 DOI: 10.1038/s41467-022-28163-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial biocontainment is an essential goal for engineering safe, next-generation living therapeutics. However, the genetic stability of biocontainment circuits, including kill switches, is a challenge that must be addressed. Kill switches are among the most difficult circuits to maintain due to the strong selection pressure they impart, leading to high potential for evolution of escape mutant populations. Here we engineer two CRISPR-based kill switches in the probiotic Escherichia coli Nissle 1917, a single-input chemical-responsive switch and a 2-input chemical- and temperature-responsive switch. We employ parallel strategies to address kill switch stability, including functional redundancy within the circuit, modulation of the SOS response, antibiotic-independent plasmid maintenance, and provision of intra-niche competition by a closely related strain. We demonstrate that strains harboring either kill switch can be selectively and efficiently killed inside the murine gut, while strains harboring the 2-input switch are additionally killed upon excretion. Leveraging redundant strategies, we demonstrate robust biocontainment of our kill switch strains and provide a template for future kill switch development.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Skye R S Fishbein
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
10
|
Sathesh-Prabu C, Ryu YS, Lee SK. Levulinic Acid-Inducible and Tunable Gene Expression System for Methylorubrum extorquens. Front Bioeng Biotechnol 2022; 9:797020. [PMID: 34976985 PMCID: PMC8714952 DOI: 10.3389/fbioe.2021.797020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Methylorubrum extorquens AM1 is an efficient platform strain possessing biotechnological potential in formate- and methanol-based single carbon (C1) bioeconomy. Constitutive expression or costly chemical-inducible expression systems are not always desirable. Here, several glucose-, xylose-, and levulinic acid (LA)-inducible promoter systems were assessed for the induction of green fluorescent protein (GFP) as a reporter protein. Among them, the LA-inducible gene expression system (HpdR/P hpdH ) showed a strong expression of GFP (51-fold) compared to the control. The system was induced even at a low concentration of LA (0.1 mM). The fluorescence intensity increased with increasing concentrations of LA up to 20 mM. The system was tunable and tightly controlled with meager basal expression. The maximum GFP yield obtained using the system was 42 mg/g biomass, representing 10% of the total protein content. The efficiency of the proposed system was nearly equivalent (90%-100%) to that of the widely used strong promoters such as P mxaF and P L/O4 . The HpdR/P hpdH system worked equally efficiently in five different strains of M. extorquens. LA is a low-cost, renewable, and sustainable platform chemical that can be used to generate a wide range of products. Hence, the reported system in potent strains of M. extorquens is highly beneficial in the C1-biorefinery industry to produce value-added products and bulk chemicals.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Young Shin Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
11
|
Sathesh-Prabu C, Tiwari R, Kim D, Lee SK. Inducible and tunable gene expression systems for Pseudomonas putida KT2440. Sci Rep 2021; 11:18079. [PMID: 34508142 PMCID: PMC8433446 DOI: 10.1038/s41598-021-97550-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022] Open
Abstract
Inducible and tunable expression systems are essential for the microbial production of biochemicals. Five different carbon source- and substrate-inducible promoter systems were developed and further evaluated in Pseudomonas putida KT2440 by analyzing the expression of green fluorescent protein (GFP) as a reporter protein. These systems can be induced by low-cost compounds such as glucose, 3-hydroxypropionic acid (3HP), levulinic acid (LA), and xylose. 3HP-inducible HpdR/PhpdH was also efficiently induced by LA. LvaR/PlvaA and XutR/PxutA systems were induced even at low concentrations of LA (0.1 mM) and xylose (0.5 mM), respectively. Glucose-inducible HexR/Pzwf1 showed weak GFP expression. These inducer agents can be used as potent starting materials for both cell growth and the production of a wide range of biochemicals. The efficiency of the reported systems was comparable to that of conventional chemical-inducible systems. Hence, the newly investigated promoter systems are highly useful for the expression of target genes in the widely used synthetic biology chassis P. putida KT2440 for industrial and medical applications.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Rameshwar Tiwari
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Doyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea. .,Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
12
|
Siebert D, Altenbuchner J, Blombach B. A Timed Off-Switch for Dynamic Control of Gene Expression in Corynebacterium Glutamicum. Front Bioeng Biotechnol 2021; 9:704681. [PMID: 34395409 PMCID: PMC8358305 DOI: 10.3389/fbioe.2021.704681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dynamic control of gene expression mainly relies on inducible systems, which require supplementation of (costly) inducer molecules. In contrast, synthetic regulatory circuits, which allow the timed shutdown of gene expression, are rarely available and therefore represent highly attractive tools for metabolic engineering. To achieve this, we utilized the VanR/P vanABK * regulatory system of Corynebacterium glutamicum, which consists of the transcriptional repressor VanR and a modified promoter of the vanABK operon (P vanABK *). VanR activity is modulated by one of the phenolic compounds ferulic acid, vanillin or vanillic acid, which are co-metabolized with d-glucose. Thus, gene expression in the presence of d-glucose is turned off if one of the effector molecules is depleted from the medium. To dynamically control the expression of the aceE gene, encoding the E1 subunit of the pyruvate dehydrogenase complex that is essential for growth on d-glucose, we replaced the native promoter by vanR/P vanABK * yielding C. glutamicum ΔP aceE ::vanR-P vanABK *. The biomass yield of this strain increased linearly with the supplemented amount of effector. After consumption of the phenolic compounds growth ceased, however, C. glutamicumΔP aceE ::vanR-P vanABK * continued to utilize the residual d-glucose to produce significant amounts of pyruvate, l-alanine, and l-valine. Interestingly, equimolar concentrations of the three phenolic compounds resulted in different biomass yields; and with increasing effector concentration, the product spectrum shifted from pyruvate over l-alanine to l-valine. To further test the suitability of the VanR/P vanABK * system, we overexpressed the l-valine biosynthesis genes ilvBNCE in C. glutamicum ΔP aceE ::vanR-P vanABK *, which resulted in efficient l-valine production with a yield of about 0.36 mol l-valine per mol d-glucose. These results demonstrate that the VanR/P vanABK * system is a valuable tool to control gene expression in C. glutamicum in a timed manner by the cheap and abundant phenolic compounds ferulic acid, vanillin, and vanillic acid.
Collapse
Affiliation(s)
- Daniel Siebert
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Josef Altenbuchner
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| |
Collapse
|
13
|
Lozano Terol G, Gallego-Jara J, Sola Martínez RA, Martínez Vivancos A, Cánovas Díaz M, de Diego Puente T. Impact of the Expression System on Recombinant Protein Production in Escherichia coli BL21. Front Microbiol 2021; 12:682001. [PMID: 34234760 PMCID: PMC8257044 DOI: 10.3389/fmicb.2021.682001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Recombinant protein production for medical, academic, or industrial applications is essential for our current life. Recombinant proteins are obtained mainly through microbial fermentation, with Escherichia coli being the host most used. In spite of that, some problems are associated with the production of recombinant proteins in E. coli, such as the formation of inclusion bodies, the metabolic burden, or the inefficient translocation/transport system of expressed proteins. Optimizing transcription of heterologous genes is essential to avoid these drawbacks and develop competitive biotechnological processes. Here, expression of YFP reporter protein is evaluated under the control of four promoters of different strength (PT7lac, Ptrc, Ptac, and PBAD) and two different replication origins (high copy number pMB1′ and low copy number p15A). In addition, the study has been carried out with the E. coli BL21 wt and the ackA mutant strain growing in a rich medium with glucose or glycerol as carbon sources. Results showed that metabolic burden associated with transcription and translation of foreign genes involves a decrease in recombinant protein expression. It is necessary to find a balance between plasmid copy number and promoter strength to maximize soluble recombinant protein expression. The results obtained represent an important advance on the most suitable expression system to improve both the quantity and quality of recombinant proteins in bioproduction engineering.
Collapse
Affiliation(s)
- Gema Lozano Terol
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Julia Gallego-Jara
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Rosa Alba Sola Martínez
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Adrián Martínez Vivancos
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Manuel Cánovas Díaz
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Teresa de Diego Puente
- Department of Biochemistry and Molecular Biology and Immunology (B), Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| |
Collapse
|
14
|
Rottinghaus AG, Amrofell MB, Moon TS. Biosensing in Smart Engineered Probiotics. Biotechnol J 2020; 15:e1900319. [PMID: 31860168 DOI: 10.1002/biot.201900319] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/05/2019] [Indexed: 01/01/2023]
Abstract
Engineered microbes are exciting alternatives to current diagnostics and therapeutics. Researchers have developed a wide range of genetic tools and parts to engineer probiotic and commensal microbes. Among these tools and parts, biosensors allow the microbes to sense and record or to sense and respond to chemical and environmental signals in the body, enabling them to report on health conditions of the animal host and/or deliver therapeutics in a controlled manner. This review focuses on how biosensing is applied to engineer "smart" microbes for in vivo diagnostic, therapeutic, and biocontainment goals. Hurdles that need to be overcome when transitioning from high-throughput in vitro systems to low-throughput in vivo animal models, new technologies that can be implemented to alleviate this experimental gap, and areas where future advancements can be made to maximize the utility of biosensing for medical applications are also discussed. As technologies for engineering microbes continue to be developed, these engineered organisms will be used to address many medical challenges.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
15
|
Meyer A, Saaem I, Silverman A, Varaljay VA, Mickol R, Blum S, Tobias AV, Schwalm ND, Mojadedi W, Onderko E, Bristol C, Liu S, Pratt K, Casini A, Eluere R, Moser F, Drake C, Gupta M, Kelley-Loughnane N, Lucks JP, Akingbade KL, Lux MP, Glaven S, Crookes-Goodson W, Jewett MC, Gordon DB, Voigt CA. Organism Engineering for the Bioproduction of the Triaminotrinitrobenzene (TATB) Precursor Phloroglucinol (PG). ACS Synth Biol 2019; 8:2746-2755. [PMID: 31750651 DOI: 10.1021/acssynbio.9b00393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organism engineering requires the selection of an appropriate chassis, editing its genome, combining traits from different source species, and controlling genes with synthetic circuits. When a strain is needed for a new target objective, for example, to produce a chemical-of-need, the best strains, genes, techniques, software, and expertise may be distributed across laboratories. Here, we report a project where we were assigned phloroglucinol (PG) as a target, and then combined unique capabilities across the United States Army, Navy, and Air Force service laboratories with the shared goal of designing an organism to produce this molecule. In addition to the laboratory strain Escherichia coli, organisms were screened from soil and seawater. Putative PG-producing enzymes were mined from a strain bank of bacteria isolated from aircraft and fuel depots. The best enzyme was introduced into the ocean strain Marinobacter atlanticus CP1 with its genome edited to redirect carbon flux from natural fatty acid ester (FAE) production. PG production was also attempted in Bacillus subtilis and Clostridium acetobutylicum. A genetic circuit was constructed in E. coli that responds to PG accumulation, which was then ported to an in vitro paper-based system that could serve as a platform for future low-cost strain screening or for in-field sensing. Collectively, these efforts show how distributed biotechnology laboratories with domain-specific expertise can be marshalled to quickly provide a solution for a targeted organism engineering project, and highlights data and material sharing protocols needed to accelerate future efforts.
Collapse
Affiliation(s)
- Adam Meyer
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ishtiaq Saaem
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Adam Silverman
- Center for Synthetic Biology, Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Vanessa A. Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rebecca Mickol
- American Society for Engineering Education, 1818 N Street NW Suite 600, Washington, D.C. 20036, United States
| | - Steven Blum
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Alexander V. Tobias
- U.S. Army Research Laboratory, FCDD-RLS-EB, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Nathan D. Schwalm
- U.S. Army Research Laboratory, FCDD-RLS-EB, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Wais Mojadedi
- Oak Ridge Associate Universities, P.O.
Box 117, MS-29, Oak Ridge, Tennessee 37831, United States
| | - Elizabeth Onderko
- National Research Council, 500 5th Street NW, Washington, D.C. 20001, United States
| | - Cassandra Bristol
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Shangtao Liu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
| | - Katelin Pratt
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo Casini
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Raissa Eluere
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Felix Moser
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carrie Drake
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Maneesh Gupta
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Julius P. Lucks
- Center for Synthetic Biology, Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine L. Akingbade
- U.S. Army Research Laboratory, FCDD-RLS-EB, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Matthew P. Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Sarah Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Wendy Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Michael C. Jewett
- Center for Synthetic Biology, Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - D. Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Foundry, 75 Ames Street, Cambridge Massachusetts 02142, United States
| |
Collapse
|
16
|
Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.02985-18. [PMID: 30635383 DOI: 10.1128/aem.02985-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023] Open
Abstract
Efficient microbial conversion of lignocellulose into valuable products is often hindered by the presence of furfural, a dehydration product of pentoses in hemicellulose sugar syrups derived from woody biomass. For a cost-effective lignocellulose microbial conversion, robust biocatalysts are needed that can tolerate toxic inhibitors while maintaining optimal metabolic activities. A comprehensive plasmid-based library encoding native multidrug resistance (MDR) efflux pumps, porins, and select exporters from Escherichia coli was screened for furfural tolerance in an ethanologenic E. coli strain. Small multidrug resistance (SMR) pumps, such as SugE and MdtJI, as well as a lactate/glycolate:H+ symporter, LldP, conferred furfural tolerance in liquid culture tests. Expression of the SMR pump potentially increased furfural efflux and cellular viability upon furfural assault, suggesting novel activities for SMR pumps as furfural efflux proteins. Furthermore, induced expression of mdtJI enhanced ethanol fermentative production of LY180 in the presence of furfural or 5-hydroxymethylfurfural, further demonstrating the applications of SMR pumps. This work describes an effective approach to identify useful efflux systems with desired activities for nonnative toxic chemicals and provides a platform to further enhance furfural efflux by protein engineering and mutagenesis.IMPORTANCE Lignocellulosic biomass, especially agricultural residues, represents an important potential feedstock for microbial production of renewable fuels and chemicals. During the deconstruction of hemicellulose by thermochemical processes, side products that inhibit cell growth and production, such as furan aldehydes, are generated, limiting cost-effective lignocellulose conversion. Here, we developed a new approach to increase cellular tolerance by expressing multidrug resistance (MDR) pumps with putative efflux activities for furan aldehydes. The developed plasmid library and screening methods may facilitate new discoveries of MDR pumps for diverse toxic chemicals important for microbial conversion.
Collapse
|
17
|
|
18
|
Affiliation(s)
- Paul D. Riggs
- New England Biolabs, Inc., Research; Ipswich Massachusetts
| |
Collapse
|
19
|
Ectopic Expression of Innate Immune Protein, Lipocalin-2, in Lactococcus lactis Protects Against Gut and Environmental Stressors. Inflamm Bowel Dis 2017; 23:1120-1132. [PMID: 28445245 PMCID: PMC5469687 DOI: 10.1097/mib.0000000000001134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lipocalin-2 (Lcn2) is a multifunctional innate immune protein that exhibits antimicrobial activity by the sequestration of bacterial siderophores, regulates iron homeostasis, and augments cellular tolerance to oxidative stress. Studies in the murine model of colitis have demonstrated that Lcn2 deficiency exacerbates colitogenesis; however, the therapeutic potential of Lcn2 supplementation has yet to be elucidated. In light of its potential mucoprotective functions, we, herein, investigated whether expression of Lcn2 in the probiotic bacterium can be exploited to alleviate experimental colitis. METHODS Murine Lcn2 was cloned into the pT1NX plasmid and transformed into Lactococcus lactis to generate L. lactis-expressing Lcn2 (Lactis-Lcn2) or the empty plasmid (Lactis-Con). Lactis-Lcn2 was characterized by immunoblot and enzyme-linked immunosorbent assay and tested for its antimicrobial efficacy on Escherichia coli. The capacity of Lactis-Lcn2 and Lactis-Con to withstand adverse conditions was tested using in vitro viability assays. Dextran sodium sulfate colitis model was used to investigate the colonization ability and therapeutic potential of Lactis-Lcn2 and Lactis-Con. RESULTS Lcn2 derived from Lactis-Lcn2 inhibited the growth of E. coli and reduced the bioactivity of enterobactin (E. coli-derived siderophore) in vitro. Lactis-Lcn2 displayed enhanced tolerance to adverse pH, high concentration of bile acids, and oxidative stress in vitro and survived better in the inflamed gut than Lactis-Con. Consistent with these features, Lactis-Lcn2 displayed better mucoprotection against intestinal inflammation than Lactis-Con when administered into mice with dextran sulfate sodium-induced acute colitis. CONCLUSIONS Our findings suggest that Lcn2 expression can be exploited to enhance the survivability of probiotic bacteria during inflammation, which could further improve its efficacy to treat experimental colitis.
Collapse
|
20
|
Saha P, Yeoh BS, Olvera RA, Xiao X, Singh V, Awasthi D, Subramanian BC, Chen Q, Dikshit M, Wang Y, Parent CA, Vijay-Kumar M. Bacterial Siderophores Hijack Neutrophil Functions. THE JOURNAL OF IMMUNOLOGY 2017; 198:4293-4303. [PMID: 28432145 DOI: 10.4049/jimmunol.1700261] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Neutrophils are the primary immune cells that respond to inflammation and combat microbial transgression. To thrive, the bacteria residing in their mammalian host have to withstand the antibactericidal responses of neutrophils. We report that enterobactin (Ent), a catecholate siderophore expressed by Escherichia coli, inhibited PMA-induced generation of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in mouse and human neutrophils. Ent also impaired the degranulation of primary granules and inhibited phagocytosis and bactericidal activity of neutrophils, without affecting their migration and chemotaxis. Molecular analysis revealed that Ent can chelate intracellular labile iron that is required for neutrophil oxidative responses. Other siderophores (pyoverdine, ferrichrome, deferoxamine) likewise inhibited ROS and NETs in neutrophils, thus indicating that the chelation of iron may largely explain their inhibitory effects. To counter iron theft by Ent, neutrophils rely on the siderophore-binding protein lipocalin 2 (Lcn2) in a "tug-of-war" for iron. The inhibition of neutrophil ROS and NETs by Ent was augmented in Lcn2-deficient neutrophils compared with wild-type neutrophils but was rescued by the exogenous addition of recombinant Lcn2. Taken together, our findings illustrate the novel concept that microbial siderophore's iron-scavenging property may serve as an antiradical defense system that neutralizes the immune functions of neutrophils.
Collapse
Affiliation(s)
- Piu Saha
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Rodrigo A Olvera
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qiuyan Chen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Yanming Wang
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802; and
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, PA 17033
| |
Collapse
|
21
|
Li J, Zhu X, Chen J, Zhao D, Zhang X, Bi C. Construction of a novel anaerobic pathway in Escherichia coli for propionate production. BMC Biotechnol 2017; 17:38. [PMID: 28407739 PMCID: PMC5391575 DOI: 10.1186/s12896-017-0354-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/17/2017] [Indexed: 12/04/2022] Open
Abstract
Background Propionate is widely used as an important preservative and important chemical intermediate for synthesis of cellulose fibers, herbicides, perfumes and pharmaceuticals. Biosynthetic propionate has mainly been produced by Propionibacterium, which has various limitations for industrial application. Results In this study, we engineered E. coli by combining reduced TCA cycle with the native sleeping beauty mutase (Sbm) cycle to construct a redox balanced and energy viable fermentation pathway for anaerobic propionate production. As the cryptic Sbm operon was over-expressed in E. coli MG1655, propionate titer reached 0.24 g/L. To increase precursor supply for the Sbm cycle, genetic modification was made to convert mixed fermentation products to succinate, which slightly increased propionate production. For optimal expression of Sbm operon, different types of promoters were examined. A strong constitutive promoter Pbba led to the highest titer of 2.34 g/L. Methylmalonyl CoA mutase from Methylobacterium extorquens AM1 was added to strain T110(pbba-Sbm) to enhance this rate limiting step. With optimized expression of this additional Methylmalonyl CoA mutase, the highest production strain was obtained with a titer of 4.95 g/L and a yield of 0.49 mol/mol glucose. Conclusions With various metabolic engineering strategies, the propionate titer from fermentation achieved 4.95 g/L. This is the reported highest anaerobic production of propionate by heterologous host. Due to host advantages, such as non-strict anaerobic condition, mature engineering and fermentation techniques, and low cost minimal media, our work has built the basis for industrial propionate production with E. coli chassis. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0354-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xinna Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Dongdong Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
22
|
Marschall L, Sagmeister P, Herwig C. Tunable recombinant protein expression in E. coli: promoter systems and genetic constraints. Appl Microbiol Biotechnol 2017; 101:501-512. [PMID: 27999902 PMCID: PMC5566544 DOI: 10.1007/s00253-016-8045-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Tuning of transcription is a promising strategy to overcome challenges associated with a non-suitable expression rate like outgrowth of segregants, inclusion body formation, metabolic burden and inefficient translocation. By adjusting the expression rate-even on line-to purposeful levels higher product titres and more cost-efficient production processes can be achieved by enabling culture long-term stability and constant product quality. Some tunable systems are registered for patents or already commercially available. Within this contribution, we discuss the induction mechanisms of various Escherichia coli inherent promoter systems with respect to their tunability and review studies using these systems for expression tuning. According to the current level of knowledge, some promoter systems were successfully used for expression tuning, and in some cases, analytical evidence on single-cell level is still pending. However, only a few studies using tunable strains apply a suitable process control strategy. So far, expression tuning has only gathered little attention, but we anticipate that expression tuning harbours great potential for enabling and optimizing the production of a broad spectrum of products in E. coli.
Collapse
Affiliation(s)
- Lukas Marschall
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Christoph Herwig
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria.
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna University of Technology, Gumpendorferstrasse 1a/166-4, A-1060, Vienna, Austria.
| |
Collapse
|
23
|
Simonte FM, Dötsch A, Galego L, Arraiano C, Gescher J. Investigation on the anaerobic propionate degradation byEscherichia coliK12. Mol Microbiol 2016; 103:55-66. [DOI: 10.1111/mmi.13541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Francesca M. Simonte
- Department of Applied Biology; Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Andreas Dötsch
- Department of Microbiology on Natural and Technical Interfaces; Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT); Eggenstein-Leopoldshafen Germany
| | - Lisete Galego
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa; Oeiras Portugal
| | - Cecilia Arraiano
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa; Oeiras Portugal
| | - Johannes Gescher
- Department of Applied Biology; Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT); Eggenstein-Leopoldshafen Germany
| |
Collapse
|
24
|
Binder D, Probst C, Grünberger A, Hilgers F, Loeschcke A, Jaeger KE, Kohlheyer D, Drepper T. Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation. PLoS One 2016; 11:e0160711. [PMID: 27525986 PMCID: PMC4985164 DOI: 10.1371/journal.pone.0160711] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/22/2016] [Indexed: 01/25/2023] Open
Abstract
Recombinant protein production is mostly realized with large-scale cultivations and monitored at the level of the entire population. Detailed knowledge of cell-to-cell variations with respect to cellular growth and product formation is limited, even though phenotypic heterogeneity may distinctly hamper overall production yields, especially for toxic or difficult-to-express proteins. Unraveling phenotypic heterogeneity is thus a key aspect in understanding and optimizing recombinant protein production in biotechnology and synthetic biology. Here, microfluidic single-cell analysis serves as the method of choice to investigate and unmask population heterogeneities in a dynamic and spatiotemporal fashion. In this study, we report on comparative microfluidic single-cell analyses of commonly used E. coli expression systems to uncover system-inherent specifications in the synthetic M9CA growth medium. To this end, the PT7lac/LacI, the PBAD/AraC and the Pm/XylS system were systematically analyzed in order to gain detailed insights into variations of growth behavior and expression phenotypes and thus to uncover individual strengths and deficiencies at the single-cell level. Specifically, we evaluated the impact of different system-specific inducers, inducer concentrations as well as genetic modifications that affect inducer-uptake and regulation of target gene expression on responsiveness and phenotypic heterogeneity. Interestingly, the most frequently applied expression system based on E. coli strain BL21(DE3) clearly fell behind with respect to expression homogeneity and robustness of growth. Moreover, both the choice of inducer and the presence of inducer uptake systems proved crucial for phenotypic heterogeneity. Conclusively, microfluidic evaluation of different inducible E. coli expression systems and setups identified the modified lacY-deficient PT7lac/LacI as well as the Pm/XylS system with conventional m-toluic acid induction as key players for precise and robust triggering of bacterial gene expression in E. coli in a homogeneous fashion.
Collapse
Affiliation(s)
- Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Christopher Probst
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
25
|
Marschall L, Sagmeister P, Herwig C. Tunable recombinant protein expression in E. coli: enabler for continuous processing? Appl Microbiol Biotechnol 2016; 100:5719-28. [PMID: 27170324 PMCID: PMC4957632 DOI: 10.1007/s00253-016-7550-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuning of transcription is a powerful process technological tool for efficient recombinant protein production in Escherichia coli. Many challenges such as product toxicity, formation of inclusion bodies, cell death, and metabolic burden are associated with non-suitable (too high or too low) levels of recombinant protein expression. Tunable expression systems allow adjusting the recombinant protein expression using process technological means. This enables to exploit the cell's metabolic capacities to a maximum. Within this article, we review genetic and process technological aspects of tunable expression systems in E. coli, providing a roadmap for the industrial exploitation of the reviewed technologies. We attempt to differentiate the term "expression tuning" from its inflationary use by providing a concise definition and highlight interesting fields of application for this versatile new technology. Dependent on the type of inducer (metabolizable or non-metabolizable), different process strategies are required in order to achieve tuning. To fully profit from the benefits of tunable systems, an independent control of growth rate and expression rate is indispensable. Being able to tackle problems such as long-term culture stability and constant product quality expression tuning is a promising enabler for continuous processing in biopharmaceutical production.
Collapse
Affiliation(s)
- Lukas Marschall
- Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Christoph Herwig
- Exputec GmbH, Vienna, Austria. .,Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Vienna University of Technology, Gumpendorferstraße 1a/166-4, 1060, Vienna, Austria.
| |
Collapse
|
26
|
|
27
|
Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci U S A 2016; 113:2388-93. [PMID: 26858408 DOI: 10.1073/pnas.1600375113] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Engineering cells to produce valuable metabolic products is hindered by the slow and laborious methods available for evaluating product concentration. Consequently, many designs go unevaluated, and the dynamics of product formation over time go unobserved. In this work, we develop a framework for observing product formation in real time without the need for sample preparation or laborious analytical methods. We use genetically encoded biosensors derived from small-molecule responsive transcription factors to provide a fluorescent readout that is proportional to the intracellular concentration of a target metabolite. Combining an appropriate biosensor with cells designed to produce a metabolic product allows us to track product formation by observing fluorescence. With individual cells exhibiting fluorescent intensities proportional to the amount of metabolite they produce, high-throughput methods can be used to rank the quality of genetic variants or production conditions. We observe production of several renewable plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is indeed an indicator of higher product titer. Using fluorescence as a guide, we identify process parameters that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than previously reported. We also report, to our knowledge, the first engineered route from glucose to acrylate, a plastic precursor with global sales of $14 billion. Finally, we monitor the production of glucarate, a replacement for environmentally damaging detergents, and muconate, a renewable precursor to polyethylene terephthalate and nylon with combined markets of $51 billion, in real time, demonstrating that our method is applicable to a wide range of molecules.
Collapse
|
28
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
29
|
Rogers JK, Guzman CD, Taylor ND, Raman S, Anderson K, Church GM. Synthetic biosensors for precise gene control and real-time monitoring of metabolites. Nucleic Acids Res 2015; 43:7648-60. [PMID: 26152303 PMCID: PMC4551912 DOI: 10.1093/nar/gkv616] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/20/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Characterization and standardization of inducible transcriptional regulators has transformed how scientists approach biology by allowing precise and tunable control of gene expression. Despite their utility, only a handful of well-characterized regulators exist, limiting the complexity of engineered biological systems. We apply a characterization pipeline to four genetically encoded sensors that respond to acrylate, glucarate, erythromycin and naringenin. We evaluate how the concentration of the inducing chemical relates to protein expression, how the extent of induction affects protein expression kinetics, and how the activation behavior of single cells relates to ensemble measurements. We show that activation of each sensor is orthogonal to the other sensors, and to other common inducible systems. We demonstrate independent control of three fluorescent proteins in a single cell, chemically defining eight unique transcriptional states. To demonstrate biosensor utility in metabolic engineering, we apply the glucarate biosensor to monitor product formation in a heterologous glucarate biosynthesis pathway and identify superior enzyme variants. Doubling the number of well-characterized inducible systems makes more complex synthetic biological circuits accessible. Characterizing sensors that transduce the intracellular concentration of valuable metabolites into fluorescent readouts enables high-throughput screening of biological catalysts and alleviates the primary bottleneck of the metabolic engineering design-build-test cycle.
Collapse
Affiliation(s)
- Jameson K Rogers
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02143, USA
| | - Christopher D Guzman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Noah D Taylor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Srivatsan Raman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kelley Anderson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, Boston, MA 02115, USA Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
30
|
Didovyk A, Kanakov OI, Ivanchenko MV, Hasty J, Huerta R, Tsimring L. Distributed classifier based on genetically engineered bacterial cell cultures. ACS Synth Biol 2015; 4:72-82. [PMID: 25349924 PMCID: PMC4304444 DOI: 10.1021/sb500235p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
We
describe a conceptual design of a distributed classifier formed
by a population of genetically engineered microbial cells. The central
idea is to create a complex classifier from a population of weak or
simple classifiers. We create a master population of cells with randomized
synthetic biosensor circuits that have a broad range of sensitivities
toward chemical signals of interest that form the input vectors subject
to classification. The randomized sensitivities are achieved by constructing
a library of synthetic gene circuits with randomized control sequences
(e.g., ribosome-binding sites) in the front element. The training
procedure consists in reshaping of the master population in such a
way that it collectively responds to the “positive”
patterns of input signals by producing above-threshold output (e.g.,
fluorescent signal), and below-threshold output in case of the “negative”
patterns. The population reshaping is achieved by presenting sequential
examples and pruning the population using either graded selection/counterselection
or by fluorescence-activated cell sorting (FACS). We demonstrate the
feasibility of experimental implementation of such system computationally
using a realistic model of the synthetic sensing gene circuits.
Collapse
Affiliation(s)
- Andriy Didovyk
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Oleg I. Kanakov
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Mikhail V. Ivanchenko
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Jeff Hasty
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Ramón Huerta
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Lev Tsimring
- BioCircuits Institute, ‡Department of Bioengineering, §Molecular Biology Section,
Division
of Biological Science, University of California San Diego, La Jolla, California 92093, United States
- Department of Radiophysics, ⊥Department for Bioinformatics, Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| |
Collapse
|
31
|
Jajesniak P, Seng Wong T. From genetic circuits to industrial-scale biomanufacturing: bacterial promoters as a cornerstone of biotechnology. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Liang C, Xiong D, Zhang Y, Mu S, Tang SY. Development of a novel uric-acid-responsive regulatory system in Escherichia coli. Appl Microbiol Biotechnol 2014; 99:2267-75. [DOI: 10.1007/s00253-014-6290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
33
|
Baez A, Majdalani N, Shiloach J. Production of recombinant protein by a novel oxygen-induced system in Escherichia coli. Microb Cell Fact 2014; 13:50. [PMID: 24708849 PMCID: PMC4234026 DOI: 10.1186/1475-2859-13-50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/31/2014] [Indexed: 11/21/2022] Open
Abstract
Background The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. Results The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Conclusions Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.
Collapse
Affiliation(s)
| | | | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
The molecular toolbox for chromosomal heterologous multiprotein expression in Escherichia coli. Biochem Soc Trans 2013; 40:1222-6. [PMID: 23176458 DOI: 10.1042/bst20120143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterologous multiprotein expression is the tool to answer a number of questions in basic science as well as to convert strains into producers and/or consumers of certain compounds in applied sciences. Multiprotein expression can be driven by plasmids with the disadvantages that the gene dosage might, in some cases, lead to toxic effects and that the continuous addition of antibiotics is undesirable. Stable genomic expression of proteins can forgo these problems and is a helpful and promising tool in synthetic biology. In the present paper, we provide an extract of methods from the toolbox for chromosome-based heterologous expression in Escherichia coli.
Collapse
|
35
|
Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb Cell Fact 2013; 12:26. [PMID: 23506076 PMCID: PMC3621392 DOI: 10.1186/1475-2859-12-26] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/01/2013] [Indexed: 11/20/2022] Open
Abstract
Background Production of recombinant proteins in bacteria for academic and commercial purposes is a well established field; however the outcomes of process developments for specific proteins are still often unpredictable. One reason is the limited understanding of the performance of expression cassettes relative to each other due to different genetic contexts. Here we report the results of a systematic study aiming at exclusively comparing commonly used regulator/promoter systems by standardizing the designs of the replicon backbones. Results The vectors used in this study are based on either the RK2- or the pMB1- origin of replication and contain the regulator/promoter regions of XylS/Pm (wild-type), XylS/Pm ML1-17 (a Pm variant), LacI/PT7lac, LacI/Ptrc and AraC/PBAD to control expression of different proteins with various origins. Generally and not unexpected high expression levels correlate with high replicon copy number and the LacI/PT7lac system generates more transcript than all the four other cassettes. However, this transcriptional feature does not always lead to a correspondingly more efficient protein production, particularly if protein functionality is considered. In most cases the XylS/Pm ML1-17 and LacI/PT7lac systems gave rise to the highest amounts of functional protein production, and the XylS/Pm ML1-17 is the most flexible in the sense that it does not require any specific features of the host. The AraC/PBAD system is very good with respect to tightness, and a commonly used bioinformatics prediction tool (RBS calculator) suggested that it has the most translation-efficient UTR. Expression was also studied by flow cytometry in individual cells, and the results indicate that cell to cell heterogeneity is very relevant for understanding protein production at the population level. Conclusions The choice of expression system needs to be evaluated for each specific case, but we believe that the standardized vectors developed for this study can be used to more easily identify the nature of case-specific bottlenecks. By then taking into account the relevant characteristics of each expression cassette it will be easier to make the best choice with respect to the goal of achieving high levels of protein expression in functional or non-functional form.
Collapse
Affiliation(s)
- Simone Balzer
- Department of Biotechnology, NTNU, Sem Sælands vei 6, Trondheim 7491, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Mattozzi MD, Ziesack M, Voges MJ, Silver PA, Way JC. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metab Eng 2013; 16:130-9. [PMID: 23376595 DOI: 10.1016/j.ymben.2013.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 01/11/2023]
Abstract
The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD(-) double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(-)(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.
Collapse
Affiliation(s)
- Matthew d Mattozzi
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
37
|
Lee JM, Lee J, Kim T, Lee SK. Switchable gene expression in Escherichia coli using a miniaturized photobioreactor. PLoS One 2013; 8:e52382. [PMID: 23349683 PMCID: PMC3547951 DOI: 10.1371/journal.pone.0052382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/12/2012] [Indexed: 12/22/2022] Open
Abstract
We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The λ cI repressor gene with an LVA degradation tag was expressed under the control of the ompC promoter on the chromosome. The green fluorescent protein (GFP) gene fused to a λ repressor-repressible promoter was used as a reporter. This light-switchable system allows rapid and reversible induction or repression of expression of the target gene at any desired time. This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system. The miniaturized photobioreactor helps to reduce unintended induction of the light receptor due to environmental disturbances and allows precise control over the duration of induction. This system would be a good tool for switchable, homogenous, strong, and highly regulatable expression of target genes over a wide range of induction times. Hence, it could be applied to study gene function, optimize metabolic pathways, and control biological systems both spatially and temporally.
Collapse
Affiliation(s)
- Jae Myung Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Junhyeong Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Taesung Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Mechanical and Advanced Materials Engineering, UNIST, Ulsan, Republic of Korea
- * E-mail: (SKL); (TK)
| | - Sung Kuk Lee
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- School of Urban and Environmental Engineering, UNIST, Ulsan, Republic of Korea
- * E-mail: (SKL); (TK)
| |
Collapse
|
38
|
Plassmeier JK, Busche T, Molck S, Persicke M, Pühler A, Rückert C, Kalinowski J. A propionate-inducible expression system based on the Corynebacterium glutamicum prpD2 promoter and PrpR activator and its application for the redirection of amino acid biosynthesis pathways. J Biotechnol 2012; 163:225-32. [PMID: 22982516 DOI: 10.1016/j.jbiotec.2012.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/19/2012] [Accepted: 08/10/2012] [Indexed: 11/25/2022]
Abstract
A novel expression system for Corynebacterium glutamicum, based on the transcriptional activator of propionate metabolism genes PrpR and its target promoter/operator sequence, was developed and tested. The activator PrpR is co-activated by propionate added to the growth medium. In a minimal medium a propionate concentration of only 1 mg l⁻¹ was found to be sufficient for full induction (up to 120-fold) of its native target, the propionate metabolism operon prpDBC2. Then, an artificial transcription and translation reporter system, using the cat gene encoding chloramphenicol acetyl transferase was constructed and tested. The induction was found to be as fast and as high as in the natural system, reaching its maximal transcriptional induction rate within 2 min and a significant accumulation of Cat protein at around 30 min. The duration of the induced transcription was found to be controllable by the propionate concentration applied. The prpD2 promoter and PrpR activator based expression system revealed very similar characteristics in minimal and complex media, making it ideal for applications in large scale industrial fermentations. As a proof-of-principle, the expression system was employed for the propionate-inducible redirection of metabolites in a lysine-production C. glutamicum strain at the homoserine dehydrogenase (hom) branching point, which resulted in an up to 2.5-fold increase of the concentrations of the three amino acids (threonine, homoserine and isoleucine) in the supernatant.
Collapse
Affiliation(s)
- Jens K Plassmeier
- Technologieplattform Genomik, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Synthetic biology and the development of tools for metabolic engineering. Metab Eng 2012; 14:189-95. [DOI: 10.1016/j.ymben.2012.01.004] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
|
40
|
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J Bacteriol 2012; 194:3069-77. [PMID: 22493019 DOI: 10.1128/jb.00015-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.
Collapse
|
41
|
Kerner A, Park J, Williams A, Lin XN. A programmable Escherichia coli consortium via tunable symbiosis. PLoS One 2012; 7:e34032. [PMID: 22479509 PMCID: PMC3316586 DOI: 10.1371/journal.pone.0034032] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/20/2012] [Indexed: 11/23/2022] Open
Abstract
Synthetic microbial consortia that can mimic natural systems have the potential to become a powerful biotechnology for various applications. One highly desirable feature of these consortia is that they can be precisely regulated. In this work we designed a programmable, symbiotic circuit that enables continuous tuning of the growth rate and composition of a synthetic consortium. We implemented our general design through the cross-feeding of tryptophan and tyrosine by two E. coli auxotrophs. By regulating the expression of genes related to the export or production of these amino acids, we were able to tune the metabolite exchanges and achieve a wide range of growth rates and strain ratios. In addition, by inverting the relationship of growth/ratio vs. inducer concentrations, we were able to "program" the co-culture for pre-specified attributes with the proper addition of inducing chemicals. This programmable proof-of-concept circuit or its variants can be applied to more complex systems where precise tuning of the consortium would facilitate the optimization of specific objectives, such as increasing the overall efficiency of microbial production of biofuels or pharmaceuticals.
Collapse
Affiliation(s)
- Alissa Kerner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jihyang Park
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Audra Williams
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoxia Nina Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Carothers JM, Goler JA, Juminaga D, Keasling JD. Model-driven engineering of RNA devices to quantitatively program gene expression. Science 2012; 334:1716-9. [PMID: 22194579 DOI: 10.1126/science.1212209] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The models and simulation tools available to design functionally complex synthetic biological devices are very limited. We formulated a design-driven approach that used mechanistic modeling and kinetic RNA folding simulations to engineer RNA-regulated genetic devices that control gene expression. Ribozyme and metabolite-controlled, aptazyme-regulated expression devices with quantitatively predictable functions were assembled from components characterized in vitro, in vivo, and in silico. The models and design strategy were verified by constructing 28 Escherichia coli expression devices that gave excellent quantitative agreement between the predicted and measured gene expression levels (r = 0.94). These technologies were applied to engineer RNA-regulated controls in metabolic pathways. More broadly, we provide a framework for studying RNA functions and illustrate the potential for the use of biochemical and biophysical modeling to develop biological design methods.
Collapse
Affiliation(s)
- James M Carothers
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA
| | | | | | | |
Collapse
|
43
|
Nocadello S, Swennen EF. The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb Cell Fact 2012; 11:3. [PMID: 22222111 PMCID: PMC3274441 DOI: 10.1186/1475-2859-11-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/05/2012] [Indexed: 11/26/2022] Open
Abstract
Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction) prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS) system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene independently from external inducers or drastic changes in metabolic conditions and enabling tight regulation of expression.
Collapse
|
44
|
Choi WS, Kim M, Park S, Lee SK, Kim T. Patterning and transferring hydrogel-encapsulated bacterial cells for quantitative analysis of synthetically engineered genetic circuits. Biomaterials 2012; 33:624-33. [DOI: 10.1016/j.biomaterials.2011.09.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/26/2011] [Indexed: 01/24/2023]
|
45
|
Karig DK, Iyer S, Simpson ML, Doktycz MJ. Expression optimization and synthetic gene networks in cell-free systems. Nucleic Acids Res 2011; 40:3763-74. [PMID: 22180537 PMCID: PMC3333853 DOI: 10.1093/nar/gkr1191] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthetic biology offers great promise to a variety of applications through the forward engineering of biological function. Most efforts in this field have focused on employing living cells, yet cell-free approaches offer simpler and more flexible contexts. Here, we evaluate cell-free regulatory systems based on T7 promoter-driven expression by characterizing variants of TetR and LacI repressible T7 promoters in a cell-free context and examining sequence elements that determine expression efficiency. Using the resulting constructs, we then explore different approaches for composing regulatory systems, leading to the implementation of inducible negative feedback in Escherichia coli extracts and in the minimal PURE system, which consists of purified proteins necessary for transcription and translation. Despite the fact that negative feedback motifs are common and essential to many natural and engineered systems, this simple building block has not previously been implemented in a cell-free context. As a final step, we then demonstrate that the feedback systems developed using our cell-free approach can be implemented in live E. coli as well, illustrating the potential for using cell-free expression to fast track the development of live cell systems in synthetic biology. Our quantitative cell-free component characterizations and demonstration of negative feedback embody important steps on the path to harnessing biological function in a bottom-up fashion.
Collapse
Affiliation(s)
- David K Karig
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | |
Collapse
|
46
|
Ollis AA, Postle K. ExbD mutants define initial stages in TonB energization. J Mol Biol 2011; 415:237-47. [PMID: 22100395 DOI: 10.1016/j.jmb.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Cytoplasmic membrane proteins ExbB and ExbD of the Escherichia coli TonB system couple cytoplasmic membrane protonmotive force (pmf) to TonB. TonB transmits this energy to high-affinity outer membrane active transporters. ExbD is proposed to catalyze TonB conformational changes during energy transduction. Here, the effect of ExbD mutants and changes in pmf on TonB proteinase K sensitivity in spheroplasts was examined. Spheroplasts supported the pmf-dependent formaldehyde cross-link between periplasmic domains of TonB and ExbD, indicating that they constituted a biologically relevant in vivo system to study changes in TonB proteinase K sensitivity. Three stages in TonB energization were identified. In Stage I, ExbD L123Q or TonB H20A prevented proper interaction between TonB and ExbD, rendering TonB sensitive to proteinase K. In Stage II, ExbD D25N supported conversion of TonB to a proteinase-K-resistant form, but not energization of TonB or formation of the pmf-dependent formaldehyde cross-link. Addition of protonophores had the same effect as ExbD D25N. This suggested the existence of a pmf-independent association between TonB and ExbD. TonB proceeded to Stage III when pmf was present, again becoming proteinase K sensitive, but now able to form the pmf-dependent cross-link to ExbD. Absence or presence of pmf toggled TonB between Stage II and Stage III conformations, which were also detected in wild-type cells. ExbD also underwent pmf-dependent conformational changes that were interdependent with TonB. These observations supported the hypothesis that ExbD couples TonB to the pmf, with concomitant transitions of ExbD and TonB periplasmic domains from unenergized to energized heterodimers.
Collapse
Affiliation(s)
- Anne A Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
47
|
Abstract
Efficient biosynthesis of L-tyrosine from glucose is necessary to make biological production economically viable. To this end, we designed and constructed a modular biosynthetic pathway for L-tyrosine production in E. coli MG1655 by encoding the enzymes for converting erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP) to L-tyrosine on two plasmids. Rational engineering to improve L-tyrosine production and to identify pathway bottlenecks was directed by targeted proteomics and metabolite profiling. The bottlenecks in the pathway were relieved by modifications in plasmid copy numbers, promoter strength, gene codon usage, and the placement of genes in operons. One major bottleneck was due to the bifunctional activities of quinate/shikimate dehydrogenase (YdiB), which caused accumulation of the intermediates dehydroquinate (DHQ) and dehydroshikimate (DHS) and the side product quinate; this bottleneck was relieved by replacing YdiB with its paralog AroE, resulting in the production of over 700 mg/liter of shikimate. Another bottleneck in shikimate production, due to low expression of the dehydroquinate synthase (AroB), was alleviated by optimizing the first 15 codons of the gene. Shikimate conversion to L-tyrosine was improved by replacing the shikimate kinase AroK with its isozyme, AroL, which effectively consumed all intermediates formed in the first half of the pathway. Guided by the protein and metabolite measurements, the best producer, consisting of two medium-copy-number, dual-operon plasmids, was optimized to produce >2 g/liter L-tyrosine at 80% of the theoretical yield. This work demonstrates the utility of targeted proteomics and metabolite profiling in pathway construction and optimization, which should be applicable to other metabolic pathways.
Collapse
|
48
|
Gresock MG, Savenkova MI, Larsen RA, Ollis AA, Postle K. Death of the TonB Shuttle Hypothesis. Front Microbiol 2011; 2:206. [PMID: 22016747 PMCID: PMC3191458 DOI: 10.3389/fmicb.2011.00206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/15/2011] [Indexed: 11/23/2022] Open
Abstract
A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.
Collapse
Affiliation(s)
- Michael G. Gresock
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Marina I. Savenkova
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Ray A. Larsen
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Anne A. Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
49
|
The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers. J Bacteriol 2011; 193:6852-63. [PMID: 21984795 DOI: 10.1128/jb.06190-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains of TonB and ExbD. This study identified sites of in vivo homodimeric interactions within ExbD periplasmic domain residues 92 to 121. ExbD was active as a homodimer (ExbD(2)) but not through all Cys substitution sites, suggesting the existence of conformationally dynamic regions in the ExbD periplasmic domain. A subset of homodimeric interactions could not be modeled on the nuclear magnetic resonance (NMR) structure without significant distortion. Most importantly, the majority of ExbD Cys substitutions that mediated homodimer formation also mediated ExbD-TonB heterodimer formation with TonB A150C. Consistent with the implied competition, ExbD homodimer formation increased in the absence of TonB. Although ExbD D25 was not required for their formation, ExbD dimers interacted in vivo with ExbB. ExbD-TonB interactions required ExbD transmembrane domain residue D25. These results suggested a model where ExbD(2) assembled with ExbB undergoes a transmembrane domain-dependent transition and exchanges partners in localized homodimeric interfaces to form an ExbD(2)-TonB heterotrimer. The findings here were also consistent with our previous hypothesis that ExbD guides the conformation of the TonB periplasmic domain, which itself is conformationally dynamic.
Collapse
|
50
|
BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J Biol Eng 2011; 5:12. [PMID: 21933410 PMCID: PMC3189095 DOI: 10.1186/1754-1611-5-12] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As engineered biological systems become more complex, it is increasingly common to express multiple operons from different plasmids and inducible expression systems within a single host cell. Optimizing such systems often requires screening combinations of origins of replication, expression systems, and antibiotic markers. This procedure is hampered by a lack of quantitative data on how these components behave when more than one origin of replication or expression system are used simultaneously. Additionally, this process can be time consuming as it often requires the creation of new vectors or cloning into existing but disparate vectors. RESULTS Here, we report the development and characterization of a library of expression vectors compatible with the BglBrick standard (BBF RFC 21). We have designed and constructed 96 BglBrick-compatible plasmids with a combination of replication origins, antibiotic resistance genes, and inducible promoters. These plasmids were characterized over a range of inducer concentrations, in the presence of non-cognate inducer molecules, and with several growth media, and their characteristics were documented in a standard format datasheet. A three plasmid system was used to investigate the impact of multiple origins of replication on plasmid copy number. CONCLUSIONS The standardized collection of vectors presented here allows the user to rapidly construct and test the expression of genes with various combinations of promoter strength, inducible expression system, copy number, and antibiotic resistance. The quantitative datasheets created for these vectors will increase the predictability of gene expression, especially when multiple plasmids and inducers are utilized.
Collapse
|