1
|
Rafiq M, Hassan N, Rehman M, Hayat M, Nadeem G, Hassan F, Iqbal N, Ali H, Zada S, Kang Y, Sajjad W, Jamal M. Challenges and Approaches of Culturing the Unculturable Archaea. BIOLOGY 2023; 12:1499. [PMID: 38132325 PMCID: PMC10740628 DOI: 10.3390/biology12121499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Since Carl Woese's discovery of archaea as a third domain of life, numerous archaeal species have been discovered, yet archaeal diversity is poorly characterized. Culturing archaea is complicated, but several queries about archaeal cell biology, evolution, physiology, and diversity need to be solved by culturing and culture-dependent techniques. Increasing interest in demand for innovative culturing methods has led to various technological and methodological advances. The current review explains frequent hurdles hindering uncultured archaea isolation and discusses features for more archaeal cultivation. This review also discusses successful strategies and available media for archaeal culturing, which might be helpful for future culturing practices.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- FF Institute (Huzhou) Co., Ltd., Huzhou 313000, China
| | - Noor Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Maliha Rehman
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Jinan 266101, China
| | - Gullasht Nadeem
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Farwa Hassan
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Naveed Iqbal
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta 87100, Pakistan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan
| | - Hazrat Ali
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-College, Pakistan Institute of Engineering and Applied Sciences, Islamabad 44000, Pakistan
| | - Sahib Zada
- Guangzhou Institute of Energy Conservation, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guiyang 550025, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University, Garden Campus, Mardan 23200, Pakistan
| |
Collapse
|
2
|
Hu W, Hou Q, Delgado-Baquerizo M, Stegen JC, Du Q, Dong L, Ji M, Sun Y, Yao S, Gong H, Xiong J, Xia R, Liu J, Aqeel M, Akram MA, Ran J, Deng J. Continental-scale niche differentiation of dominant topsoil archaea in drylands. Environ Microbiol 2022; 24:5483-5497. [PMID: 35706137 DOI: 10.1111/1462-2920.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Archaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e., deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qingqing Hou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, Spain.,Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - James C Stegen
- Ecosystem Science Team, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Qiajun Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mingfei Ji
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan Sun
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shuran Yao
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haiyang Gong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junlan Xiong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rui Xia
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jiayuan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.,School of Economics, Lanzhou University, Lanzhou, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Hu H, Natarajan VP, Wang F. Towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:231-242. [PMID: 37073339 PMCID: PMC10077295 DOI: 10.1007/s42995-021-00092-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 05/03/2023]
Abstract
The archaea that can be readily cultivated in the laboratory are only a small fraction of the total diversity that exists in nature. Although molecular ecology methods, such as metagenomic sequencing, can provide valuable information independent of cell cultivation, it is only through cultivation-based experiments that they may be fully characterized, both for their physiological and ecological properties. Here, we report our efforts towards enriching and isolation of uncultivated archaea from marine sediments using a refined combination of conventional microbial cultivation methods. Initially, cells were retrieved from the sediment samples through a cell extraction procedure and the sediment-free mixed cells were then divided into different size-range fractions by successive filtration through 0.8 µm, 0.6 µm and 0.2 µm membranes. Archaeal 16S rRNA gene analyses indicated noticeable retention of different archaeal groups in different fractions. For each fraction, supplementation with a variety of defined substrates (e.g., methane, sulfate, and lignin) and stepwise dilutions led to highly active enrichment cultures of several archaeal groups with Bathyarchaeota most prominently enriched. Finally, using a roll-bottle technique, three co-cultures consisting of Bathyarchaeota (subgroup-8) and a bacterial species affiliated with either Pseudomonas or Glutamicibacter were obtained. Our results demonstrate that a combination of cell extraction, size fractionation, and roll-bottle isolation methods could be a useful protocol for the successful enrichment and isolation of numerous slow-growing archaeal groups from marine sediments. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00092-0.
Collapse
Affiliation(s)
- Haining Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Vengadesh Perumal Natarajan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
4
|
Ammonia-oxidizing archaea in biological interactions. J Microbiol 2021; 59:298-310. [DOI: 10.1007/s12275-021-1005-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
|
5
|
Taffner J, Laggner O, Wolfgang A, Coyne D, Berg G. Exploring the Microbiota of East African Indigenous Leafy Greens for Plant Growth, Health, and Resilience. Front Microbiol 2020; 11:585690. [PMID: 33329455 PMCID: PMC7710512 DOI: 10.3389/fmicb.2020.585690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/30/2020] [Indexed: 01/04/2023] Open
Abstract
Indigenous leafy green vegetable crops provide a promising nutritious alternative for East African agriculture under a changing climate; they are better able to cope with biotic and abiotic stresses than cosmopolitan vegetable crops. To verify our hypothesis that the associated microbiome is involved, we studied archaeal and bacterial communities of four locally popular leafy green crops in Uganda (Bidens pilosa, Solanum scabrum, Abelmoschus esculentus, and Gynandropsis gynandra) and of four plant microhabitats (phyllosphere, root endosphere, rhizosphere, and soil) by complementary analyses of amplicon and isolate libraries. All plants shared an unusually large core microbiome, comprising 18 procaryotic families but primarily consisting of Bacillus, Sphingobium, Comamonadaceae, Pseudomonas, and one archaeon from the soil crenarchaeotic group. Microbiome composition did not differ significantly for plant species but differed for microhabitats. The diversity was, in general, higher for bacteria (27,697 ASVs/H = 6.91) than for archaea (2,995 ASVs/H = 4.91); both groups form a robust network of copiotrophic bacteria and oligotrophic archaea. Screening of selected isolates for stress and plant health protecting traits showed that strains of Bacillus and Sphingomonas spp. div. constituted a substantial portion (15-31%) of the prokaryotic plant-associated communities. Across plant species, microbiota were characterized by a high proportion of potential copiotrophic and plant-beneficial species, which was not specific by plant species. The use of identified plant-beneficial isolates could provide the basis for the development of consortia of isolates for both abiotic and biotic stress protection to improve plant and ecosystem health, ensuring food security in East Africa.
Collapse
Affiliation(s)
- Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Olivia Laggner
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Danny Coyne
- East Africa Hub, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya.,Nematology Section, Department of Biology, Ghent University, Ghent, Belgium
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Jung J, Kim JS, Taffner J, Berg G, Ryu CM. Archaea, tiny helpers of land plants. Comput Struct Biotechnol J 2020; 18:2494-2500. [PMID: 33005311 PMCID: PMC7516179 DOI: 10.1016/j.csbj.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Archaea are members of most microbiomes. While archaea are highly abundant in extreme environments, they are less abundant and diverse in association with eukaryotic hosts. Nevertheless, archaea are a substantial constituent of plant-associated ecosystems in the aboveground and belowground phytobiome. Only a few studies have investigated the role of archaea in plant health and its potential symbiosis in ecosystems. This review discusses recent progress in identifying how archaea contribute to plant traits such as growth, adaptation to abiotic stresses, and immune activation. We synthesized the most recent functional and molecular data on archaea, including root colonization and the volatile emission to activate plant systemic immunity. These data represent a paradigm shift in our understanding of plant-microbiota interactions.
Collapse
Affiliation(s)
- Jihye Jung
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Jun-Seob Kim
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, KRIBB, Daejeon 34141, South Korea
| |
Collapse
|
7
|
Plant-archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World J Microbiol Biotechnol 2020; 36:133. [PMID: 32772189 DOI: 10.1007/s11274-020-02910-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, temperature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially resulting in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricultural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop production in arid and semi-arid areas.
Collapse
|
8
|
Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on Cultivation Strategies of Archaea. MICROBIAL ECOLOGY 2020; 79:770-784. [PMID: 31432245 DOI: 10.1007/s00248-019-01422-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.
Collapse
Affiliation(s)
- Yihua Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Song GC, Im H, Jung J, Lee S, Jung M, Rhee S, Ryu C. Plant growth‐promoting archaea trigger induced systemic resistance inArabidopsis thalianaagainstPectobacterium carotovorumandPseudomonas syringae. Environ Microbiol 2019; 21:940-948. [DOI: 10.1111/1462-2920.14486] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Geun Cheol Song
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Hyunjoo Im
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| | - Jihye Jung
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
| | - Man‐Young Jung
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Sung‐Keun Rhee
- Department of MicrobiologyChungbuk National University Cheongju 28644 South Korea
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryKRIBB Daejeon 34141 South Korea
- Biosystems and Bioengineering ProgramUniversity of Science and Technology Daejeon 34113 South Korea
| |
Collapse
|
10
|
Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C, Rhee SK. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:983-992. [PMID: 27700018 DOI: 10.1111/1758-2229.12477] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.
Collapse
Affiliation(s)
- Man-Young Jung
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, Utrecht, 3508, TA, The Netherlands
| | - W Irene C Rijpstra
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, P.O. Box 59, AB Den Burg, 1790, The Netherlands
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Heeji Hong
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Ok-Ja Si
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Melina Kerou
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Vienna, A-1090, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, South Korea
| |
Collapse
|
11
|
Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters. World J Microbiol Biotechnol 2015; 31:805-12. [PMID: 25739565 DOI: 10.1007/s11274-015-1834-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.53 % of archaeal sequences were simultaneously affiliated to these lineages. A core of 2 operational taxonomic units (OTUs) representing 0.6 to -33.6 % of all archaeal sequences were defined for the Crenarchaeotes and identified to already known but not yet cultivable organisms in almost half of the digesters sampled. For the Thermoplasmata, apparently less abundant with 0.7 to -4.7 % of the archaeal sequences, 3 OTUs were identified. We showed here that Crenarchaeotes coexist with methanogens and are particularly abundant when Arch I lineage (also called WSA2 by Hugenholtz) is dominant in digesters. Moreover, Thermoplasmata were detected when Crenarchaeota were present. Interactions between methanogens, Crenarchaeotea and Thermoplamata were thus discussed.
Collapse
|
12
|
Gerbl FW, Weidler GW, Wanek W, Erhardt A, Stan-Lotter H. Thaumarchaeal ammonium oxidation and evidence for a nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Front Microbiol 2014; 5:225. [PMID: 24904540 PMCID: PMC4032944 DOI: 10.3389/fmicb.2014.00225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.
Collapse
Affiliation(s)
| | - Gerhard W. Weidler
- Bioanalyticum, Institut für Mikrobiologie und Hygiene, Dr. Reisinger e. U.Perg, Austria
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Angelika Erhardt
- Analytec, Labor für Lebensmitteluntersuchung und UmweltanalytikSalzburg, Austria
| | - Helga Stan-Lotter
- Division of Molecular Biology, University of SalzburgSalzburg, Austria
| |
Collapse
|
13
|
Archaeal assemblages inhabiting temperate mixed forest soil fluctuate in taxon composition and spatial distribution over time. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:870825. [PMID: 23983618 PMCID: PMC3747363 DOI: 10.1155/2013/870825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/26/2013] [Accepted: 06/29/2013] [Indexed: 01/07/2023]
Abstract
This study explored the persistence and spatial distribution of a diverse Archaeal assemblage inhabiting a temperate mixed forest ecosystem. Persistence under native conditions was measured from 2001 to 2010, 2011, and 2012 by comparison of 16S rRNA gene clone libraries. The Archaeal assemblages at each of these time points were found to be significantly different (AMOVA, P < 0.01), and the nature of this difference was dependent on taxonomic rank. For example, the cosmopolitan genus g_Ca. Nitrososphaera (I.1b) was detected at all time points, but within this taxon the abundance of s_SCA1145, s_SCA1170, and s_Ca. N. gargensis fluctuated over time. In addition, spatial heterogeneity (patchiness) was measured at these time points using 1D TRFLP-SSCP fingerprinting to screen soil samples covering multiple spatial scales. This included soil collected from small volumes of 3 cubic centimeters to larger scales—over a surface area of 50 m2, plots located 1.3 km apart, and a separate locality 23 km away. The spatial distribution of Archaea in these samples changed over time, and while g_Ca. Nitrososphaera (I.1b) was dominant over larger scales, patches were found at smaller scales that were dominated by other taxa. This study measured the degree of change for Archaeal taxon composition and patchiness over time in temperate mixed forest soil.
Collapse
|
14
|
Swanson CA, Sliwinski MK. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms. J Microbiol Methods 2013; 94:317-24. [PMID: 23880418 DOI: 10.1016/j.mimet.2013.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 11/19/2022]
Abstract
DNA fingerprinting methods provide a means to rapidly compare microbial assemblages from environmental samples without the need to first cultivate species in the laboratory. The profiles generated by these techniques are able to identify statistically significant temporal and spatial patterns, correlations to environmental gradients, and biological variability to estimate the number of replicates for clone libraries or next generation sequencing (NGS) surveys. Here we describe an improved DNA fingerprinting technique that combines terminal restriction fragment length polymorphisms (TRFLP) and single stranded conformation polymorphisms (SSCP) so that both can be used to profile a sample simultaneously rather than requiring two sequential steps as in traditional two-dimensional (2-D) gel electrophoresis. For the purpose of profiling Archaeal 16S rRNA genes from soil, the dynamic range of this combined 1-D TRFLP-SSCP approach was superior to TRFLP and SSCP. 1-D TRFLP-SSCP was able to distinguish broad taxonomic clades with genetic distances greater than 10%, such as Euryarchaeota and the Thaumarchaeal clades g_Ca. Nitrososphaera (formerly 1.1b) and o_NRP-J (formerly 1.1c) better than SSCP. In addition, 1-D TRFLP-SSCP was able to simultaneously distinguish closely related clades within a genus such as s_SCA1145 and s_SCA1170 better than TRFLP. We also tested the utility of 1-D TRFLP-SSCP fingerprinting of environmental assemblages by comparing this method to the generation of a 16S rRNA clone library of soil Archaea from a restored Tallgrass prairie. This study shows 1-D TRFLP-SSCP fingerprinting provides a rapid and phylogenetically informative screen of Archaeal 16S rRNA genes in soil samples.
Collapse
Affiliation(s)
- Colby A Swanson
- Biology Department, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | | |
Collapse
|
15
|
Ke X, Angel R, Lu Y, Conrad R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 2013; 15:2275-92. [PMID: 23437806 DOI: 10.1111/1462-2920.12098] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season.
Collapse
Affiliation(s)
- Xiubin Ke
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | |
Collapse
|
16
|
Karlsson AE, Johansson T, Bengtson P. Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 2012; 80:305-11. [PMID: 22611550 DOI: 10.1111/j.1574-6941.2012.01298.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Archaea are ubiquitous in forest soils, but little is known about the factors regulating their abundance and distribution. Low molecular weight organic compounds represent an important energy source for archaea in marine environments, and it is reasonable to suspect that archaeal abundance is dependent on such compounds in soils as well, represented by, for example, plant and fungal exudates. To test this hypothesis, we designed a microcosm experiment in which we grew ponderosa pine, sitka spruce, and western hemlock in forest soil. Root and mycorrhizal exudation rates were estimated in a 13C pulse-chase experiment, and the number of archaeal and bacterial 16S rRNA genes was determined by qPCR. Archaeal abundance differed among plant species, and the number of archaeal 16S rRNA genes was generally lower in soil receiving high concentration of exudates. The mycorrhizal fungi of ponderosa pine seemed to favor archaea, while no such effect was found for mycorrhized sitka spruce or western hemlock. The low abundance of archaea in the proximity of roots and mycorrhiza may be a result of slow growth rates and poor competitive ability of archaea vs. bacteria and does not necessarily reflect a lack of heterotrophic abilities of the archaeal community.
Collapse
Affiliation(s)
- Anna E Karlsson
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
17
|
Berlec A. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:96-102. [PMID: 22794922 DOI: 10.1016/j.plantsci.2012.05.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/11/2012] [Accepted: 05/20/2012] [Indexed: 05/12/2023]
Abstract
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications.
Collapse
Affiliation(s)
- Aleš Berlec
- Department of Biotechnology, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012; 78:7501-10. [PMID: 22923400 DOI: 10.1128/aem.01960-12] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, has been suggested to have been a central part of the global biogeochemical nitrogen cycle since the oxygenation of Earth. The cultivation of several ammonia-oxidizing archaea (AOA) as well as the discovery that archaeal ammonia monooxygenase (amo)-like gene sequences are nearly ubiquitously distributed in the environment and outnumber their bacterial counterparts in many habitats fundamentally revised our understanding of nitrification. Surprising insights into the physiological distinctiveness of AOA are mirrored by the recognition of the phylogenetic uniqueness of these microbes, which fall within a novel archaeal phylum now known as Thaumarchaeota. The relative importance of AOA in nitrification, compared to ammonia-oxidizing bacteria (AOB), is still under debate. This minireview provides a synopsis of our current knowledge of the diversity and physiology of AOA, the factors controlling their ecology, and their role in carbon cycling as well as their potential involvement in the production of the greenhouse gas nitrous oxide. It emphasizes the importance of activity-based analyses in AOA studies and formulates priorities for future research.
Collapse
|
19
|
Comparative analysis of 16S rRNA and amoA genes from archaea selected with organic and inorganic amendments in enrichment culture. Appl Environ Microbiol 2012; 78:2137-46. [PMID: 22267662 DOI: 10.1128/aem.06845-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We took advantage of a plant-root enrichment culture system to characterize mesophilic soil archaea selected through the use of organic and inorganic amendments. Comparative analysis of 16S rRNA and amoA genes indicated that specific archaeal clades were selected under different conditions. Three amoA sequence clades were identified, while for a fourth group, identified by 16S rRNA gene analysis alone and referred to as the "root" clade, we detected no corresponding amoA gene. The amoA-containing archaea were present in media with either organic or inorganic amendments, whereas archaea representing the root clade were present only when organic amendment was used. Analysis of amoA gene abundance and expression, together with nitrification-coupled growth assays, indicated potential growth by autotrophic ammonia oxidation for members of two group 1.1b clades. Increased abundance of one of these clades, however, also occurred upon the addition of organic amendment. Finally, although amoA-containing group 1.1a archaea were present in enrichments, we detected neither expression of amoA genes nor evidence for nitrification-coupled growth of these organisms. These data support a model of a diverse metabolic community in mesophilic soil archaea that is just beginning to be characterized.
Collapse
|
20
|
Schippers KJ, Sipkema D, Osinga R, Smidt H, Pomponi SA, Martens DE, Wijffels RH. Cultivation of sponges, sponge cells and symbionts: achievements and future prospects. ADVANCES IN MARINE BIOLOGY 2012; 62:273-337. [PMID: 22664125 DOI: 10.1016/b978-0-12-394283-8.00006-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state of the art for cultivation of whole sponges, sponge cells and sponge symbionts. To date, cultivation of whole sponges has been most successful in situ; however, optimal conditions are species specific. The establishment of sponge cell lines has been limited by the inability to obtain an axenic inoculum as well as the lack of knowledge on nutritional requirements in vitro. Approaches to overcome these bottlenecks, including transformation of sponge cells and using media based on yolk, are elaborated. Although a number of bioactive metabolite-producing microorganisms have been isolated from sponges, and it has been suggested that the source of most sponge-derived bioactive compounds is microbial symbionts, cultivation of sponge-specific microorganisms has had limited success. The current genomics revolution provides novel approaches to cultivate these microorganisms.
Collapse
Affiliation(s)
- Klaske J Schippers
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A 2011; 108:16771-6. [PMID: 21930919 DOI: 10.1073/pnas.1106427108] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, (14)CO(2) fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of (13)CO(2), was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs.
Collapse
|
22
|
Nakaya A, Onodera Y, Nakagawa T, Satoh K, Takahashi R, Sasaki S, Tokuyama T. Analysis of ammonia monooxygenase and archaeal 16S rRNA gene fragments in nitrifying acid-sulfate soil microcosms. Microbes Environ 2011; 24:168-74. [PMID: 21566370 DOI: 10.1264/jsme2.me09104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The present study describes the occurrence of a unique archaeal ammonia monooxygenase alpha subunit (amoA) gene in nitrifying acid-sulfate soil microcosms at pH 3.5. The soil was collected from an abandoned paddy field in Thailand. Microcosms were incubated in the dark at 30°C for 372 days with the following three treatments: addition of ammonium sulfate solution once a month (I) or once a week (II), and addition of only sterilized water (III). A quantitative PCR analysis revealed an increase in abundance of the archaeal amoA gene in microcosm soils in which nitrate concentrations increased after incubation. A phylogenetic analysis indicated a predominance of the novel gene, and a predominance of a betaproteobacterial amoA gene affiliated with the genus Nitrosospira. A 16S rRNA gene-based PCR assay revealed that crenarchaeotic Group I.1d was predominant among the Crenarchaeota in microcosms. These results suggest the presence of ammonia-oxidizing archaea corresponding to the unique amoA lineage in nitrifying acid-sulfate soil microcosms at pH 3.5.
Collapse
Affiliation(s)
- Asami Nakaya
- Graduate School of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Onodera Y, Nakagawa T, Takahashi R, Tokuyama T. Seasonal change in vertical distribution of ammonia-oxidizing archaea and bacteria and their nitrification in temperate forest soil. Microbes Environ 2011; 25:28-35. [PMID: 21576849 DOI: 10.1264/jsme2.me09179] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seasonal change in the vertical distribution of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in temperate forest soil was examined from March 2008 to January 2009 by quantitative PCR of the amoA genes. Abundances of AOA amoA genes (ranging from 2.0×10(8) to 1.2×10(9) copies per gram dry soil) were significantly higher than those of AOB amoA genes (1.9×10(5) to 1.7×10(7) copies). A significant increase in AOB was observed at a depth of 0-5 cm in July when net nitrification was also high in the top soil, while AOA increased significantly at depths of 5-10 cm, 10-15 cm, and over 15 cm in July. Sequencing of the crenarchaeotal amoA gene revealed shifts in major AOA components along the soil depth profile and among sampling dates. Betaproteobacterial amoA clone libraries at 0-5 cm in March, May, and July were dominated by Nitrosospira clusters 1 and 4. A microcosm experiment at 0-5 cm in July revealed a decrease in the ratio of AOA/AOB amoA genes in microcosms. These results suggest that AOB play an important role in net nitrification in the top layer in temperate forest soil.
Collapse
Affiliation(s)
- Yuki Onodera
- Graduate School of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | | | | | | |
Collapse
|
24
|
Okuda Y, Matsumoto T, Ninomiya K, Ninomiya K. Rapid detection for sporeless trait from Pleurotus pulmonarius culture extracts by using real-time PCR. MYCOSCIENCE 2011. [DOI: 10.1007/s10267-010-0078-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yakimov MM, Cono VL, Smedile F, DeLuca TH, Juárez S, Ciordia S, Fernández M, Albar JP, Ferrer M, Golyshin PN, Giuliano L. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME JOURNAL 2011; 5:945-61. [PMID: 21209665 DOI: 10.1038/ismej.2010.197] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mesophilic Crenarchaeota have recently been thought to be significant contributors to nitrogen (N) and carbon (C) cycling. In this study, we examined the vertical distribution of ammonia-oxidizing Crenarchaeota at offshore site in Southern Tyrrhenian Sea. The median value of the crenachaeal cell to amoA gene ratio was close to one suggesting that virtually all deep-sea Crenarchaeota possess the capacity to oxidize ammonia. Crenarchaea-specific genes, nirK and ureC, for nitrite reductase and urease were identified and their affiliation demonstrated the presence of 'deep-sea' clades distinct from 'shallow' representatives. Measured deep-sea dark CO(2) fixation estimates were comparable to the median value of photosynthetic biomass production calculated for this area of Tyrrhenian Sea, pointing to the significance of this process in the C cycle of aphotic marine ecosystems. To elucidate the pivotal organisms in this process, we targeted known marine crenarchaeal autotrophy-related genes, coding for acetyl-CoA carboxylase (accA) and 4-hydroxybutyryl-CoA dehydratase (4-hbd). As in case of nirK and ureC, these genes are grouped with deep-sea sequences being distantly related to those retrieved from the epipelagic zone. To pair the molecular data with specific functional attributes we performed [(14)C]HCO(3) incorporation experiments followed by analyses of radiolabeled proteins using shotgun proteomics approach. More than 100 oligopeptides were attributed to 40 marine crenarchaeal-specific proteins that are involved in 10 different metabolic processes, including autotrophy. Obtained results provided a clear proof of chemolithoautotrophic physiology of bathypelagic crenarchaeota and indicated that this numerically predominant group of microorganisms facilitate a hitherto unrecognized sink for inorganic C of a global importance.
Collapse
Affiliation(s)
- Michail M Yakimov
- Laboratory of Marine Molecular Microbiology, Institute for Coastal Marine Environment, CNR, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nelson DM, Cann IKO, Mackie RI. Response of archaeal communities in the rhizosphere of maize and soybean to elevated atmospheric CO2 concentrations. PLoS One 2010; 5:e15897. [PMID: 21209969 PMCID: PMC3012111 DOI: 10.1371/journal.pone.0015897] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2)]) will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm) and elevated (550 ppm) [CO(2)] in a replicated and field-based study. There was no influence of elevated [CO(2)] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4) plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3) plant, at elevated [CO(2)], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2)] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2)] for soybean. CONCLUSION Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2)] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2)] in the absence of drought.
Collapse
Affiliation(s)
- David M Nelson
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, United States of America.
| | | | | |
Collapse
|
27
|
Brow CN, Johnson RO, Xu M, Johnson RL, Simon HM. Effects of cryogenic preservation and storage on the molecular characteristics of microorganisms in sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8243-8247. [PMID: 20883032 DOI: 10.1021/es101641y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sediment samples from a large physical-model aquifer and laboratory-generated samples were used to systematically assess the effects of whole-sample freezing on the integrity of biomolecules relevant to bioremediation. Impacts of freezing on DNA and RNA were assessed using quantitative polymerase chain reaction (PCR) as well as the community fingerprinting method, PCR single-strand conformation polymorphism (PCR-SSCP). We did not observe any significant degradation of a suite of genes and gene transcripts, including short-lived mRNA transcripts, from P. putida F1 or from B. subtilis JH642 in single-species samples, or from archaea in enrichment culture samples that also contained members of diverse bacterial phyla. Similarly, freezing did not change the relative abundance of dominant phylotypes in enrichment culture samples as measured by PCR-SSCP of bacterial 16S rDNA. Additionally, freezing and storage for 5 months at -80 °C did not affect the microbial community composition of samples from the model aquifer. Of even greater significance is that freezing and storage did not affect the relative abundance of 16S rRNA phylotypes, since in vivo rRNA content is often correlated with cellular growth rate. Thus, we conclude that cryogenic preservation and storage of intact sediment samples can be used for accurate molecular characterization of microbial populations and may facilitate high-resolution capture of biogeochemical interfaces important to bioremediation.
Collapse
Affiliation(s)
- Christina N Brow
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | |
Collapse
|
28
|
Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure. Appl Microbiol Biotechnol 2010; 89:189-200. [PMID: 20809077 DOI: 10.1007/s00253-010-2811-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/17/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Landfills are large sources of CH(4), but a considerable amount of CH(4) can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N(2)O production. To examine the effects of nitrogen and a selective inhibitor on CH(4) oxidation and N(2)O production in situ, 0.5 M of NH(4)Cl and 0.25 M of KNO(3), with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N(2)O production but had no effect on CH(4) oxidation. The addition of phenylacetylene stimulated CH(4) oxidation while reducing N(2)O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N(2)O production by selectively inhibiting AOAs and/or type II methanotrophs.
Collapse
|
29
|
Zerzghi H, Brooks JP, Gerba CP, Pepper IL. Influence of long-term land application of Class B biosolids on soil bacterial diversity. J Appl Microbiol 2010; 109:698-706. [PMID: 20202022 DOI: 10.1111/j.1365-2672.2010.04698.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the effect of long-term annual land applications of Class B biosolids on soil bacterial diversity at University of Arizona Marana Agricultural Field Center, Tucson, Arizona. METHODS AND RESULTS Following the final of 20 consecutive years of application of Class B biosolids in March 2005, followed by cotton growth from April to November 2005 surface soil samples (0-30 cm) were collected from control (unamended) and biosolid-amended plots. Total bacterial community DNA was extracted, amplified using 16S rRNA primers, cloned, and sequenced. All 16S rRNA sequences were identified by 16S rRNA sequence analysis and comparison to known sequences in GenBank (NCBI BlastN and Ribosomal Database Project II, RDP). Results showed that the number of known genera (identifiable > 96%) increased in the high rate biosolid plots compared to control plots. Biosolids-amended soils had a broad phylogenetic diversity comprising more than four major phyla: Proteobacteria (32%), Acidobacteria (21%), Actinobacteria (16%), Firmicutes (7%), and Bacteroidetes (6%) which were typical to bacterial diversity found in the unamended arid southwestern soils. CONCLUSION Bacterial diversity was either enhanced or was not negatively impacted following 20 years of land application of Class B biosolids. SIGNIFICANCE AND IMPACT OF THE STUDY This study illustrates that long-term land application of biosolids to arid southwestern desert soils has no deleterious effect on soil microbial diversity.
Collapse
Affiliation(s)
- H Zerzghi
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - J P Brooks
- USDA-ARS, Genetics and Precision Agriculture Research Unit, Mississippi State, MS, USA
| | - C P Gerba
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - I L Pepper
- Environmental Research Laboratory, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Ayton J, Aislabie J, Barker GM, Saul D, Turner S. Crenarchaeota affiliated with group 1.1b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ Microbiol 2009; 12:689-703. [PMID: 20002141 DOI: 10.1111/j.1462-2920.2009.02111.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.
Collapse
Affiliation(s)
- J Ayton
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
31
|
Nunes da Rocha U, Van Overbeek L, Van Elsas JD. Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 2009; 69:313-28. [DOI: 10.1111/j.1574-6941.2009.00702.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Ghindilis A, Smith M, Schwarzkopf K, Zhan C, Evans D, Baptista A, Simon H. Sensor Array: Impedimetric Label-Free Sensing of DNA Hybridization in Real Time for Rapid, PCR-Based Detection of Microorganisms. ELECTROANAL 2009. [DOI: 10.1002/elan.200904549] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 2009; 75:4993-5000. [PMID: 19502431 DOI: 10.1128/aem.02917-08] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of agricultural management practices on geochemical cycles in moderate ecosystems is by far better understood than in semiarid regions, where fertilizer availability and climatic conditions are less favorable. We studied the impact of different fertilizer regimens in an agricultural long-term observatory in Burkina Faso at three different plant development stages (early leaf development, flowering, and senescence) of sorghum cultivars. Using real-time PCR, we investigated functional microbial communities involved in key processes of the nitrogen cycle (nitrogen fixation, ammonia oxidation, and denitrification) in the rhizosphere. The results indicate that fertilizer treatments and plant development stages combined with environmental factors affected the abundance of the targeted functional genes in the rhizosphere. While nitrogen-fixing populations dominated the investigated communities when organic fertilizers (manure and straw) were applied, their numbers were comparatively reduced in urea-treated plots. In contrast, ammonia-oxidizing bacteria (AOB) increased not only in absolute numbers but also in relation to the other bacterial groups investigated in the urea-amended plots. Ammonia-oxidizing archaea exhibited higher numbers compared to AOB independent of fertilizer application. Similarly, denitrifiers were also more abundant in the urea-treated plots. Our data imply as well that, more than in moderate regions, water availability might shape microbial communities in the rhizosphere, since low gene abundance data were obtained for all tested genes at the flowering stage, when water availability was very limited.
Collapse
|
34
|
Assessment of the diversity, abundance, and ecological distribution of members of candidate division SR1 reveals a high level of phylogenetic diversity but limited morphotypic diversity. Appl Environ Microbiol 2009; 75:4139-48. [PMID: 19395567 DOI: 10.1128/aem.00137-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We used a combination of 16S rRNA gene clone library surveys, quantitative PCR (qPCR) analysis, and fluorescent in situ hybridization to investigate the diversity, abundance, and distribution of members of candidate division SR1 in multiple habitats. Using SR1-specific 16S rRNA gene primers, we identified multiple novel SR1 lineages in four different anaerobic environments: sediments from Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma; inner layers of microbial mats obtained from Sperm Pool, a high-temperature, low-pH pool (55 degrees C, pH 2.5) in Yellowstone National Park; fresh bovine ruminal contents; and anaerobic freshwater pond sediments (Duck Pond) in Norman, Oklahoma. qPCR analysis indicated that SR1 members constitute a small fraction (<0.01%) of the microbial communities in Duck Pond and ruminal samples but constitute a significant fraction (11.6 and 48.7%) of the total number of bacterial 16S rRNA genes in Zodletone Spring and the inner layers of Sperm Pool microbial mat samples, respectively. By using SR1-specific fluorescent probes, filamentous cells were identified as the sole SR1 morphotype in all environments examined, with the exception of Sperm Pool, where a second bacillus morphotype was also identified. Using a full-cycle 16S rRNA approach, we show that each of these two morphotypes corresponds to a specific phylogenetic lineage identified in the Sperm Pool clone library. This work greatly expands the intralineage phylogenetic diversity within candidate division SR1 and provides valuable quantification and visualization tools that could be used for investigating the ecological roles, dynamics, and genomics of this as-yet-uncultured bacterial phylum.
Collapse
|
35
|
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 2009; 68:1-13. [DOI: 10.1111/j.1574-6941.2009.00654.x] [Citation(s) in RCA: 1474] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 2009. [DOI: 10.1111/j.1574-6941.2009.00654.x 1-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Appl Environ Microbiol 2009; 75:3127-36. [PMID: 19304820 DOI: 10.1128/aem.02806-08] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Communities of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in freshwater sediments and those in association with the root system of the macrophyte species Littorella uniflora, Juncus bulbosus, and Myriophyllum alterniflorum were compared for seven oligotrophic to mesotrophic softwater lakes and acidic heathland pools. Archaeal and bacterial ammonia monooxygenase alpha-subunit (amoA) gene diversity increased from oligotrophic to mesotrophic sites; the number of detected operational taxonomic units was positively correlated to ammonia availability and pH and negatively correlated to sediment C/N ratios. AOA communities could be grouped according to lake trophic status and pH; plant species-specific communities were not detected, and no grouping was apparent for AOB communities. Relative abundance, determined by quantitative PCR targeting amoA, was always low for AOB (<0.05% of all prokaryotes) and slightly higher for AOA in unvegetated sediment and AOA in association with M. alterniflorum (0.01 to 2%), while AOA accounted for up to 5% in the rhizospheres of L. uniflora and J. bulbosus. These results indicate that (i) AOA are at least as numerous as AOB in freshwater sediments, (ii) aquatic macrophytes with substantial release of oxygen and organic carbon into their rhizospheres, like L. uniflora and J. bulbosus, increase AOA abundance; and (iii) AOA community composition is generally determined by lake trophy, not by plant species-specific interactions.
Collapse
|
38
|
Bomberg M, Timonen S. Effect of tree species and mycorrhizal colonization on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 2009; 75:308-15. [PMID: 18978075 PMCID: PMC2620727 DOI: 10.1128/aem.01739-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/23/2008] [Indexed: 11/20/2022] Open
Abstract
Group 1.1c Crenarchaeota are the predominating archaeal group in acidic boreal forest soils. In this study, we show that the detection frequency of 1.1c crenarchaeotal 16S rRNA genes in the rhizospheres of the boreal forest trees increased following colonization by the ectomycorrhizal fungus Paxillus involutus. This effect was very clear in the fine roots of Pinus sylvestris, Picea abies, and Betula pendula, the most common forest trees in Finland. The nonmycorrhizal fine roots had a clearly different composition of archaeal 16S rRNA genes in comparison to the mycorrhizal fine roots. In the phylogenetic analysis, the 1.1c crenarchaeotal 16S rRNA gene sequences obtained from the fine roots formed a well-defined cluster separate from the mycorrhizal ones. Alnus glutinosa differed from the other trees by having high diversity and detection levels of Crenarchaeota both on fine roots and on mycorrhizas as well as by harboring a distinct archaeal flora. The similarity of the archaeal populations in rhizospheres of the different tree species was increased upon colonization by the ectomycorrhizal fungus. A minority of the sequences obtained from the mycorrhizas belonged to Euryarchaeota (order Halobacteriales).
Collapse
MESH Headings
- Basidiomycota/growth & development
- Biodiversity
- Crenarchaeota/classification
- Crenarchaeota/genetics
- Crenarchaeota/isolation & purification
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Finland
- Genes, rRNA
- Molecular Sequence Data
- Mycorrhizae/growth & development
- Phylogeny
- Plant Roots/microbiology
- RNA, Archaeal/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
- Trees
Collapse
Affiliation(s)
- Malin Bomberg
- Department of Applied Chemistry and Microbiology, Division of Microbiology, P.O. Box 56, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
39
|
Cell sorting protein homologs reveal an unusual diversity in archaeal cell division. Proc Natl Acad Sci U S A 2008; 105:18653-4. [PMID: 19033202 DOI: 10.1073/pnas.0810505106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Appl Environ Microbiol 2008; 74:5934-42. [PMID: 18723663 DOI: 10.1128/aem.02602-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous results from a 16S rRNA gene library analysis showed high diversity within the prokaryotic community of a subterranean radioactive thermal spring, the "Franz-Josef-Quelle" (FJQ) in Bad Gastein, Austria, as well as evidence for ammonia oxidation by crenarchaeota. This study reports further characterization of the community by denaturing gradient gel electrophoresis (DGGE) analysis, fluorescence in situ hybridization (FISH), and semiquantitative nitrification measurements. DGGE bands from three types of samples (filtered water, biofilms on glass slides, and naturally grown biofilms), including samples collected at two distinct times (January 2005 and July 2006), were analyzed. The archaeal community consisted mainly of Crenarchaeota of the soil-subsurface-freshwater group (group 1.1b) and showed a higher diversity than in the previous 16S rRNA gene library analysis, as was also found for crenarchaeal amoA genes. No bacterial amoA genes were detected. FISH analysis of biofilms indicated the presence of archaeal cells with an abundance of 5.3% (+/-4.5%) in the total 4',6-diamidino-2-phenylindole (DAPI)-stained community. Microcosm experiments of several weeks in duration showed a decline of ammonium that correlated with an increase of nitrite, the presence of crenarchaeal amoA genes, and the absence of bacterial amoA genes. The data suggested that only ammonia-oxidizing archaea (AOA) perform the first step of nitrification in this 45 degrees C environment. The crenarchaeal amoA gene sequences grouped within a novel cluster of amoA sequences from the database, originating from geothermally influenced environments, for which we propose the designation "thermal spring" cluster and which may be older than most AOA from soils on earth.
Collapse
|
41
|
Lesaulnier C, Papamichail D, McCorkle S, Ollivier B, Skiena S, Taghavi S, Zak D, van der Lelie D. Elevated atmospheric CO2affects soil microbial diversity associated with trembling aspen. Environ Microbiol 2008; 10:926-41. [DOI: 10.1111/j.1462-2920.2007.01512.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 2008; 74:3279-83. [PMID: 18344332 DOI: 10.1128/aem.02802-07] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaeal and bacterial ammonia monooxygenase genes (amoA) had similar low relative abundances in freshwater sediment. In the rhizosphere of the submersed macrophyte Littorella uniflora, archaeal amoA was 500- to >8,000-fold enriched compared to bacterial amoA, suggesting that the enhanced nitrification activity observed in the rhizosphere was due to ammonia-oxidizing Archaea.
Collapse
|
43
|
Binga EK, Lasken RS, Neufeld JD. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME JOURNAL 2008; 2:233-41. [PMID: 18256705 DOI: 10.1038/ismej.2008.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial ecology is a field that applies molecular techniques to analyze genes and communities associated with a plethora of unique environments on this planet. In the past, low biomass and the predominance of a few abundant community members have impeded the application of techniques such as PCR, microarray analysis and metagenomics to complex microbial populations. In the absence of suitable cultivation methods, it was not possible to obtain DNA samples from individual microorganisms. Recently, a method called multiple displacement amplification (MDA) has been used to circumvent these limitations by amplifying DNA from microbial communities in low-biomass environments, individual cells from uncultivated microbial species and active organisms obtained through stable isotope probing incubations. This review describes the development and applications of MDA, discusses its strengths and limitations and highlights the impact of MDA on the field of microbial ecology. Whole genome amplification via MDA has increased access to the genomic DNA of uncultivated microorganisms and low-biomass environments and represents a 'power tool' in the molecular toolbox of microbial ecologists.
Collapse
Affiliation(s)
- Erik K Binga
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
44
|
Santoro AE, Francis CA, de Sieyes NR, Boehm AB. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 2008; 10:1068-79. [PMID: 18266758 DOI: 10.1111/j.1462-2920.2007.01547.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Submarine groundwater discharge to coastal waters can be a significant source of both contaminants and biologically limiting nutrients. Nitrogen cycling across steep gradients in salinity, oxygen and dissolved inorganic nitrogen in sandy 'subterranean estuaries' controls both the amount and form of nitrogen discharged to the coastal ocean. We determined the effect of these gradients on betaproteobacterial ammonia-oxidizing bacteria (beta-AOB) and ammonia-oxidizing archaea (AOA) in a subterranean estuary using the functional gene encoding ammonia monooxygenase subunit A (amoA). The abundance of beta-AOB was dramatically lower in the freshwater stations compared with saline stations, while AOA abundance remained nearly constant across the study site. This differing response to salinity altered the ratio of beta-AOB to AOA such that bacterial amoA was 30 times more abundant than crenarchaeal amoA at the oxic marine station, but nearly 10 times less abundant at the low-oxygen fresh and brackish stations. As the location of the brackish mixing zone within the aquifer shifted from landward in winter to oceanward in summer, the location of the transition from a beta-AOB-dominated to an AOA-dominated community also shifted, demonstrating the intimate link between microbial communities and coastal hydrology. Analysis of ammonia-oxidizing enrichment cultures at a range of salinities revealed that AOA persisted solely in the freshwater enrichments where they actively express amoA. Diversity (as measured by total richness) of crenarchaeal amoA was high at all stations and time points, in sharp contrast to betaproteobacterial amoA for which only two sequence types were found. These results offer new insights into the ecology of AOA and beta-AOB by elucidating conditions that may favour the numerical dominance of beta-AOB over AOA in coastal sediments.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
45
|
Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 2008; 9:2603-21. [PMID: 17803783 DOI: 10.1111/j.1462-2920.2007.01377.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous investigations of the salinity effects on the microbial community composition have largely been limited to dynamic estuaries and coastal solar salterns. In this study, the effects of salinity and mineralogy on microbial community composition was studied by using a 900-cm sediment core collected from a stable, inland hypersaline lake, Lake Chaka, on the Tibetan Plateau, north-western China. This core, spanning a time of 17,000 years, was unique in that it possessed an entire range of salinity from freshwater clays and silty sands at the bottom to gypsum and glauberite in the middle, to halite at the top. Bacterial and archaeal communities were studied along the length of this core using an integrated approach combining mineralogy and geochemistry, molecular microbiology (16S rRNA gene analysis and quantitative polymerase chain reaction), cultivation and lipid biomarker analyses. Systematic changes in microbial community composition were correlated with the salinity gradient, but not with mineralogy. Bacterial community was dominated by the Firmicutes-related environmental sequences and known species (including sulfate-reducing bacteria) in the freshwater sediments at the bottom, but by halophilic and halotolerant Betaproteobacteria and Bacteroidetes in the hypersaline sediments at the top. Succession of proteobacterial groups along the salinity gradient, typically observed in free-living bacterial communities, was not observed in the sediment-associated community. Among Archaea, the Crenarchaeota were predominant in the bottom freshwater sediments, but the halophilic Halobacteriales of the Euryarchaeota was the most important group in the hypersaline sediments. Multiple isolates were obtained along the whole length of the core, and their salinity tolerance was consistent with the geochemical conditions. Iron-reducing bacteria were isolated in the freshwater sediments, which were capable of reducing structural Fe(III) in the Fe(III)-rich clay minerals predominant in the source sediment. These data have important implications for understanding how microorganisms respond to increased salinity in stable, inland water bodies.
Collapse
Affiliation(s)
- Hongchen Jiang
- Department of Geology, Miami University, Oxford, OH 45056, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Moissl C, Bruckner JC, Venkateswaran K. Archaeal diversity analysis of spacecraft assembly clean rooms. ISME JOURNAL 2007; 2:115-9. [DOI: 10.1038/ismej.2007.98] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Abstract
Prokaryotic extremophiles were the first representatives of life on Earth and they are responsible for the genesis of geological structures during the evolution and creation of all currently known ecosystems. Flexibility of the genome probably allowed life to adapt to a wide spectrum of extreme environments. As a result, modern prokaryotic diversity formed in a framework of physico-chemical factors, and it is composed of: thermophilic, psychrophilic, acidophilic, alkaliphilic, halophilic, barophilic, and radioresistant species. This artificial systematics cannot reflect the multiple actions of different environmental factors since one organism could unite characteristics of several extreme-groups. In this review we show the current status of studies in all fields of extremophiles and summarize the limits of life for different species of microbial extremophiles. We also discuss the finding of extremophiles from unusual places such as soils, and briefly review recent studies of microfossils in meteorites in the context of the significance of microbial extremophiles to Astrobiology.
Collapse
Affiliation(s)
- Elena V Pikuta
- National Space Sciences and Technology Center, NASA, Astrobiology Laboratory, Huntsville, Alabama 35805, USA.
| | | | | |
Collapse
|
49
|
Kemnitz D, Kolb S, Conrad R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol Ecol 2007; 60:442-8. [PMID: 17391330 DOI: 10.1111/j.1574-6941.2007.00310.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The objective of the study was to elucidate the depth distribution and community composition of Archaea in a temperate acidic forest soil. Numbers of Archaea and Bacteria were measured in the upper 18 cm of the soil, and soil cores were sampled on two separate occasions using quantitative PCR targeting 16S rRNA genes. Maximum numbers of Archaea were 0.6-3.8 x 10(8) 16S rRNA genes per gram of dry soil. Numbers of Bacteria were generally higher, but Archaea always accounted for a high percentage of the total gene numbers (12-38%). The archaeal community structure was analysed by the construction of clone libraries and by terminal restriction length polymorphism (T-RFLP) using the same Archaea-specific primers. With the reverse primer labelled, T-RFLP analysis led to the detection of four T-RFs. Three had lengths of 83, 185 and 218 bp and corresponded to uncultured Crenarchaeota. One (447 bp) was assigned to Thermoplasmales. Labelling of the forward primer allowed further separation of the T-RF into Crenarchaeota Group I.1c and Group I.1b, and indicated that Crenarchaeota of the Group I.1c were the predominant 16S rRNA genotype (<or=85%) in the soil. The abundance of Archaea and concentration of ammonia and nitrate decreased with soil depth. Hence it is unclear if the detected Crenarchaeota Group I.1c participated in ammonia oxidation or had another phenotype.
Collapse
Affiliation(s)
- Dana Kemnitz
- Department of Biogeochemistry, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | |
Collapse
|
50
|
Kowalchuk GA, Speksnijder AGCL, Zhang K, Goodman RM, van Veen JA. Finding the needles in the metagenome haystack. MICROBIAL ECOLOGY 2007; 53:475-85. [PMID: 17345132 PMCID: PMC1915608 DOI: 10.1007/s00248-006-9201-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 12/11/2006] [Accepted: 12/16/2006] [Indexed: 05/14/2023]
Abstract
In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth's diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments.
Collapse
Affiliation(s)
- George A Kowalchuk
- Centre for Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 40, 6666 ZG, Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|