1
|
Helou M, Mahdi A, Abou Fayad A, Sleiman A, Matar GM, Zoghbi S, Madani T, Husni R. Antimicrobial effects of chlorine dioxide in a hospital setting. Sci Rep 2023; 13:22866. [PMID: 38129523 PMCID: PMC10739700 DOI: 10.1038/s41598-023-49997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Chlorine dioxide is a powerful disinfectant with strong antibacterial properties. We conducted a study at different sites of the Lebanese American University Medical Center-Rizk Hospital to determine the efficacy of the ECOM air mask in decreasing the particle load. Air cultures were obtained from three different locations, namely the patients' elevator, visitors' elevator and mobile clinic and the number of colonies grown on each type of agar was determined. We also measured particle counts at the three sites both at baseline and after placement of the ECOM air mask. After 7 days of ECOM air mask use, the numbers of colonies grown on all types of media was decreased by 20-100% versus the baseline values. The counts of particles of different diameters (0.3, 0.5 and 5 µm) were decreased at all three sampled sites. This study highlighted the efficacy of the ECOM air mask. The utility of the gaseous form of ClO2 as an antiseptic in the hospital setting appears promising.
Collapse
Affiliation(s)
- Mariana Helou
- Division of Emergency, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ahmad Mahdi
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Antoine Abou Fayad
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ahmad Sleiman
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Ghassan M Matar
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Sanaa Zoghbi
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Tarek Madani
- Infection Control Program, Lebanese American University Medical Center, Beirut, Lebanon
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Lebanese American University, Beirut, Lebanon.
- Lebanese American University-Rizk Hospital, Beirut, Lebanon.
| |
Collapse
|
2
|
Chlorine Dioxide: Friend or Foe for Cell Biomolecules? A Chemical Approach. Int J Mol Sci 2022; 23:ijms232415660. [PMID: 36555303 PMCID: PMC9779649 DOI: 10.3390/ijms232415660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
This review examines the role of chlorine dioxide (ClO2) on inorganic compounds and cell biomolecules. As a disinfectant also present in drinking water, ClO2 helps to destroy bacteria, viruses, and some parasites. The Environmental Protection Agency EPA regulates the maximum concentration of chlorine dioxide in drinking water to be no more than 0.8 ppm. In any case, human consumption must be strictly regulated since, given its highly reactive nature, it can react with and oxidize many of the inorganic compounds found in natural waters. Simultaneously, chlorine dioxide reacts with natural organic matter in water, including humic and fulvic acids, forming oxidized organic compounds such as aldehydes and carboxylic acids, and rapidly oxidizes phenolic compounds, amines, amino acids, peptides, and proteins, as well as the nicotinamide adenine dinucleotide NADH, responsible for electron and proton exchange and energy production in all cells. The influence of ClO2 on biomolecules is derived from its interference with redox processes, modifying the electrochemical balances in mitochondrial and cell membranes. This discourages its use on an individual basis and without specialized monitoring by health professionals.
Collapse
|
3
|
Ge Y, Zhang X, Shu L, Yang X. Kinetics and Mechanisms of Virus Inactivation by Chlorine Dioxide in Water Treatment: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:560-567. [PMID: 33629148 PMCID: PMC7904506 DOI: 10.1007/s00128-021-03137-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Chlorine dioxide (ClO2), an alternative disinfectant to chlorine, has been widely applied in water and wastewater disinfection. This paper aims at presenting an overview of the inactivation kinetics and mechanisms of ClO2 with viruses. The inactivation efficiencies vary greatly among different virus species. The inactivation rates for different serotypes within a family of viruses can differ by over 284%. Generally, to achieve a 4-log removal, the exposure doses, also being referred to as Ct values (mutiplying the concentration of ClO2 and contact time) vary in the range of 0.06-10 mg L-1 min. Inactivation kinetics of viruses show two phases: an initial rapid inactivation phase followed by a tailing phase. Inactivation rates of viruses increase as pH or temperature increases, but show different trends with increasing concentrations of dissolved organic matter (DOM). Both damages in viral proteins and in the 5' noncoding region within the genome contribute to virus inactivation upon ClO2 disinfection.
Collapse
Affiliation(s)
- Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Alarcón LV, Allepuz A, Mateu E. Biosecurity in pig farms: a review. Porcine Health Manag 2021; 7:5. [PMID: 33397483 PMCID: PMC7780598 DOI: 10.1186/s40813-020-00181-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
The perception of the importance of animal health and its relationship with biosecurity has increased in recent years with the emergence and re-emergence of several diseases difficult to control. This is particularly evident in the case of pig farming as shown by the recent episodes of African swine fever or porcine epidemic diarrhoea. Moreover, a better biosecurity may help to improve productivity and may contribute to reducing the use of antibiotics. Biosecurity can be defined as the application of measures aimed to reduce the probability of the introduction (external biosecurity) and further spread of pathogens within the farm (internal biosecurity). Thus, the key idea is to avoid transmission, either between farms or within the farm. This implies knowledge of the epidemiology of the diseases to be avoided that is not always available, but since ways of transmission of pathogens are limited to a few, it is possible to implement effective actions even with some gaps in our knowledge on a given disease. For the effective design of a biosecurity program, veterinarians must know how diseases are transmitted, the risks and their importance, which mitigation measures are thought to be more effective and how to evaluate the biosecurity and its improvements. This review provides a source of information on external and internal biosecurity measures that reduce risks in swine production and the relationship between these measures and the epidemiology of the main diseases, as well as a description of some systems available for risk analysis and the assessment of biosecurity. Also, it reviews the factors affecting the successful application of a biosecurity plan in a pig farm.
Collapse
Affiliation(s)
- Laura Valeria Alarcón
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina.
| | - Alberto Allepuz
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Enric Mateu
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Travessera dels Turons s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain.,Centre de Recerca en Sanitat Animal (CreSA-IRTA-UAB), campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
5
|
Park HW, Chen G, Hwang CA, Huang L. Effect of water activity on inactivation of Listeria monocytogenes using gaseous chlorine dioxide - A kinetic analysis. Food Microbiol 2020; 95:103707. [PMID: 33397625 DOI: 10.1016/j.fm.2020.103707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of water activity (aw) on inactivation of Listeria monocytogenes using gaseous chlorine dioxide (ClO2 (g)) under room temperature. Surface-inoculated tryptic soy agar (TSA) plates adjusted to 9 different water activity levels ranging from 0.994 to 0.429 were used as samples exposed to ClO2 (g) at 150, 250, and 350 ppm for different durations of treatment time. Results showed that the antimicrobial effect of ClO2 (g) significantly decreases as the aw level and ClO2 (g) concentration decrease. Nonlinear models, such as the modified Chick model and the Weibull model, were used to describe the inactivation kinetics of L. monocytogenes. The results showed that the modified Chick model, which is based on chemical reaction kinetics, was more suitable to describe the inactivation of L. monocytogenes (RMSE < 0.5 log CFU/g) than the Weibull model (RMSE < 1.0 log CFU/g). A multiple regression model was developed for the describing the effect of aw and ClO2 (g) concentration on bacterial inactivation. The results of this study may be used to design ClO2 (g) treatment processes to inactivate L. monocytogenes in low-moisture foods.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, 24341, South Korea
| | - Guoying Chen
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Cheng-An Hwang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA
| | - Lihan Huang
- Eastern Regional Research Center, USDA Agricultural Research Service, Wyndmoor, PA, 19038, USA.
| |
Collapse
|
6
|
Oliveira M, Tiwari BK, Duffy G. Emerging Technologies for Aerial Decontamination of Food Storage Environments to Eliminate Microbial Cross-Contamination. Foods 2020; 9:E1779. [PMID: 33266230 PMCID: PMC7759774 DOI: 10.3390/foods9121779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Air is recognized as an important source of microbial contamination in food production facilities and has the potential to contaminate the food product causing food safety and spoilage issues for the food industry. Potential for aerial microbial contamination of food can be a particular issue during storage in cold rooms when the food is not packaged and is exposed to contaminated air over a prolonged period. Thus, there are potential benefits for the food industry for an aerial decontamination in cold storage facilities. In this paper, aerial decontamination approaches are reviewed and challenges encountered for their applications are discussed. It is considered that current systems may not be completely effective and environmentally friendly, therefore, it is of great significance to consider the development of nonresidual and verified decontamination technologies for the food industry and, in particular, for the cold storage rooms.
Collapse
Affiliation(s)
- Márcia Oliveira
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Brijesh K. Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Geraldine Duffy
- Food Safety Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
7
|
Shin W, Jung G, Hong S, Jeong Y, Park J, Kim D, Jang D, Kwon D, Bae JH, Park BG, Lee JH. Proposition of deposition and bias conditions for optimal signal-to-noise-ratio in resistor- and FET-type gas sensors. NANOSCALE 2020; 12:19768-19775. [PMID: 32966525 DOI: 10.1039/d0nr04406g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the field of gas sensor studies, most researchers are focusing on improving the response of the sensors to detect a low concentration of gas. However, factors that make a large response, such as abundant or strong adsorption sites, also work as a source of noise, resulting in a trade-off between response and noise. Thus, the response alone cannot fully evaluate the performance of sensors, and the signal-to-noise-ratio (SNR) should additionally be considered to design gas sensors with optimal performance. In this regard, thin-film-type sensing materials are good candidates thanks to their moderate response and noise level. In this paper, we investigate the effects of radio frequency (RF) sputtering power for deposition of sensing materials on the SNR of resistor- and field-effect transistor (FET)-type gas sensors fabricated on the same Si wafer. In the case of resistor-type gas sensors, the deposition conditions that improve the response also worsen the noise either by increasing the scattering at the bulk or damaging the interface of the sensing material. Among resistor-type gas sensors with sensing materials deposited with different RF powers, a sensor with low noise shows the largest SNR despite its small response. However, the noise of FET-type gas sensors is not affected by changes in RF power and thus there is no trade-off between response and noise. The results reveal different noise sources depending on the deposition conditions of the sensing material, and provide design guidelines for resistor- and FET-type gas sensors considering noise for optimal performance.
Collapse
Affiliation(s)
- Wonjun Shin
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ge Y, Lei Y, Lei X, Gan W, Shu L, Yang X. Exploration of reaction rates of chlorine dioxide with tryptophan residue in oligopeptides and proteins. J Environ Sci (China) 2020; 93:129-136. [PMID: 32446448 DOI: 10.1016/j.jes.2020.03.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Chlorine dioxide (ClO2), an alternative disinfectant to chlorine, has a superior ability to inactivate microorganisms, in which protein damage has been considered as the main inactivation mechanism. However, the reactivity of ClO2 with amino acid residues in oligopeptides and proteins remains poorly investigated. In this research, we studied the reaction rate constants of ClO2 with tryptophan residues in five heptapeptides and four proteins using stopped-flow or competition kinetic method. Each heptapeptide and protein contain only one tryptophan residue and the reactivity of tryptophan residue with ClO2 was lower than that of free tryptophan (3.88 × 104 (mol/L)-1sec-1 at pH 7.0). The neighboring amino acid residues affected the reaction rates through promoting inter-peptide aggregation, changing electron density, shifting pKa values or inducing electron transfer via redox reactions. A single amino acid residue difference in oligopeptides can make the reaction rate constants differ by over 60% (e.g. 3.01 × 104 (mol/L)-1sec-1 for DDDWNDD and 1.85 × 104 (mol/L)-1sec-1 for DDDWDDD at pH 7.0 (D: aspartic acid, W: tryptophan, N: asparagine)). The reaction rates of tryptophan-containing oligopeptides were also highly pH-dependent with higher reactivity for deprotonated tryptophan than the neutral specie. Tryptophan residues in proteins spanned a 4-fold range reactivity toward ClO2 (i.e. 0.84 × 104 (mol/L)-1sec-1 for ribonuclease T1 and 3.21 × 104 (mol/L)-1sec-1 for melittin at pH 7.0) with accessibility to the oxidant as the determinating factor. The local environment surrounding the tryptophan residue in proteins can also accelerate the reaction rates by increasing the electron density of the indole ring of tryptophan or inhibit the reaction rates by inducing electron transfer reactions. The results are of significance in advancing understanding of ClO2 oxidative reactions with proteins and microbial inactivation mechanisms.
Collapse
Affiliation(s)
- Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhui Gan
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
De Corato U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit Rev Food Sci Nutr 2019; 60:940-975. [DOI: 10.1080/10408398.2018.1553025] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ugo De Corato
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development – Department of Biotechnology, Agroindustry and Health Protection, Trisaia Research Centre, Matera, Italy
| |
Collapse
|
10
|
Jain R, Abbasi R, Nelson K, Busche D, Lynn DM, Abbott NL. Generation of Gaseous ClO 2 from Thin Films of Solid NaClO 2 by Sequential Exposure to Ultraviolet Light and Moisture. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16594-16603. [PMID: 28409922 DOI: 10.1021/acsami.6b16570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report that thin films of solid sodium chlorite (NaClO2) can be photochemically activated by irradiation with ultraviolet (UV) light to generate gaseous chlorine dioxide (ClO2) upon subsequent exposure to moisture. The limiting role of water in the reaction is evidenced by an increase in yield of ClO2 with relative humidity of the gas stream passed over the UV-activated salt. The UV-activated state of the NaClO2 was found to possess a half-life of 48 h, revealing the presence of long-lived UV activated species that subsequently react with water to produce gaseous ClO2. The yield of ClO2 was determined to be proportional to the surface area of NaClO2 particles projected to the incident illumination, consistent with activation of a ∼10 nm-thick layer of NaClO2 at the surface of the micrometer-sized salt crystals (for an activation wavelength of 254 nm). We also found that the quantity of ClO2 released can be tuned ∼10-fold by varying wavelength of UV irradiation and relative humidity of the gas stream passed over the UV-activated NaClO2. The UV-activated species were not detectable by electron paramagnetic resonance spectroscopy, indicating that the activated intermediate is not an excited triplet state of ClO2-. Additionally, neither X-ray photoelectron spectroscopy, nor Raman spectroscopy, nor attenuated total reflection infrared spectroscopy revealed the identity of the activated intermediate species. The ability to preactivate solid phase chlorite salt for subsequent generation of ClO2 upon exposure to moisture suggests the basis of new materials and methods that permit triggered release of ClO2 in contexts that use its disinfectant properties.
Collapse
Affiliation(s)
- Rishabh Jain
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
- Bemis Company, Inc. , 2301 Industrial Drive, Neenah, Wisconsin 54956, United States
| | - Reza Abbasi
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Kevin Nelson
- Bemis Company, Inc. , 2301 Industrial Drive, Neenah, Wisconsin 54956, United States
| | - David Busche
- Bemis Company, Inc. , 2301 Industrial Drive, Neenah, Wisconsin 54956, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Ahmed ST, Bostami AR, Mun HS, Yang CJ. Efficacy of chlorine dioxide gas in reducing Escherichia coli and Salmonella from broiler house environments. J APPL POULTRY RES 2017. [DOI: 10.3382/japr/pfw048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Shirasaki Y, Matsuura A, Uekusa M, Ito Y, Hayashi T. A study of the properties of chlorine dioxide gas as a fumigant. Exp Anim 2016; 65:303-10. [PMID: 27041456 PMCID: PMC4976244 DOI: 10.1538/expanim.15-0092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Chlorine dioxide (ClO2) is a strong oxidant that possesses an antimicrobial activity. We demonstrated here that ClO2 gas is easily generated by mixing 3.35% sodium chlorite solution (Purogene) and 85% phosphoric acid at a 10:1 volume ratio without using an expensive machine. In a test room (87 m(3)), experiments were carried out using various amounts of sodium chlorite solution (0.25 ml/m(3) to 20.0 ml/m(3)). The gas concentration increased in a sodium chlorite volume-dependent manner and reached peak values of from 0.8 ppm to 40.8 ppm at 2 h-3 h, and then gradually decreased. No differences in gas concentrations were observed between 0.1 and 2.5 m above the floor, indicating that the gas was evenly distributed. Under high-humidity (approximately 80% relative humidity), colony formation of both Staphylococcus aureus and Escherichia coli was completely inhibited by ClO2 gas exposure at 1.0 ml/m(3) sodium chlorite solution (mean maximal concentration of 3.0 ppm). Exposure at 4.0 ml/m(3) sodium chlorite solution (mean maximal concentration of 10.6 ppm) achieved complete inactivation of Bacillus atrophaeus spores. In contrast, without humidification, the efficacy of ClO2 gas was apparently attenuated, suggesting that the atmospheric moisture is indispensable. Delicate electronic devices (computer, camera, etc.) operated normally, even after being subjected to more than 20 times of fumigation. Considering that our method for gas generation is simple, reproducible, and highly effective at decontaminating microbes, our approach is expected to serve as an inexpensive alternative method for cleaning and disinfecting animal facilities.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- Biological Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan
| | | | | | | | | |
Collapse
|
13
|
Inactivation Kinetics and Mechanism of a Human Norovirus Surrogate on Stainless Steel Coupons via Chlorine Dioxide Gas. Appl Environ Microbiol 2015; 82:116-23. [PMID: 26475110 DOI: 10.1128/aem.02489-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Acute gastroenteritis caused by human norovirus is a significant public health issue. Fresh produce and seafood are examples of high-risk foods associated with norovirus outbreaks. Food contact surfaces also have the potential to harbor noroviruses if exposed to fecal contamination, aerosolized vomitus, or infected food handlers. Currently, there is no effective measure to decontaminate norovirus on food contact surfaces. Chlorine dioxide (ClO2) gas is a strong oxidizer and is used as a decontaminating agent in food processing plants. The objective of this study was to determine the kinetics and mechanism of ClO2 gas inactivation of a norovirus surrogate, murine norovirus 1 (MNV-1), on stainless steel (SS) coupons. MNV-1 was inoculated on SS coupons at the concentration of 10(7) PFU/coupon. The samples were treated with ClO2 gas at 1, 1.5, 2, 2.5, and 4 mg/liter for up to 5 min at 25°C and a relative humidity of 85%, and virus survival was determined by plaque assay. Treatment of the SS coupons with ClO2 gas at 2 mg/liter for 5 min and 2.5 mg/liter for 2 min resulted in at least a 3-log reduction in MNV-1, while no infectious virus was recovered at a concentration of 4 mg/liter even within 1 min of treatment. Furthermore, it was found that the mechanism of ClO2 gas inactivation included degradation of viral protein, disruption of viral structure, and degradation of viral genomic RNA. In conclusion, treatment with ClO2 gas can serve as an effective method to inactivate a human norovirus surrogate on SS contact surfaces.
Collapse
|
14
|
Mateus DN, Willian LC, Jos eacute MRL, Maria CMK. Effects of lithium compounds on the growth of white-rot fungi. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Decontamination of the Hospital Environment: New Technologies for Infection Control. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Hinenoya A, Awasthi SP, Yasuda N, Shima A, Morino H, Koizumi T, Fukuda T, Miura T, Shibata T, Yamasaki S. Chlorine Dioxide is a Better Disinfectant than Sodium Hypochlorite against Multi-Drug Resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii. Jpn J Infect Dis 2015; 68:276-9. [DOI: 10.7883/yoken.jjid.2014.294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Atsushi Hinenoya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | | | - Noritomo Yasuda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Ayaka Shima
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | | | | | | | | | | | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
17
|
Sun X, Bai J, Ference C, Wang Z, Zhang Y, Narciso J, Zhou K. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J Food Prot 2014; 77:1127-32. [PMID: 24988018 DOI: 10.4315/0362-028x.jfp-13-554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202, USA; U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, USA
| | - Jinhe Bai
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, USA
| | - Christopher Ference
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, USA
| | - Zhe Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, USA
| | - Yifan Zhang
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202, USA
| | - Jan Narciso
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, Florida 34945, USA.
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
18
|
Edmonds JM, Sabol JP, Rastogi VK. Decontamination efficacy of three commercial-off-the-shelf (COTS) sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis. PLoS One 2014; 9:e99827. [PMID: 24940605 PMCID: PMC4062434 DOI: 10.1371/journal.pone.0099827] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/18/2014] [Indexed: 12/04/2022] Open
Abstract
In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation’s remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types.
Collapse
Affiliation(s)
- Jason M. Edmonds
- U.S. Army - Edgewood Chemical Biological Center, Research, Development and Engineering Command, Aberdeen Proving Ground, Maryland, United States of America
| | | | - Vipin K. Rastogi
- U.S. Army - Edgewood Chemical Biological Center, Research, Development and Engineering Command, Aberdeen Proving Ground, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Trinetta V, Linton RH, Morgan MT. Use of chlorine dioxide gas for the postharvest control of Alternaria alternata and Stemphylium vesicarium on Roma tomatoes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3330-3. [PMID: 23596000 DOI: 10.1002/jsfa.6180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/08/2013] [Accepted: 04/17/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Tomatoes and potatoes are the top produce affected in terms of value lost in the USA. Postharvest losses can occur anywhere from the time of harvest to the consumers' decision to eat or discard the food. These data support the importance of finding sustainable strategies to minimise food waste and preserve resources. This study evaluated the potential application of chlorine dioxide gas (ClO2 ) technology to control the postharvest spoilage of Roma tomatoes by Alternaria alternata and Stemphylium vesicarium. RESULTS Data analysis showed that exposure time was a significant factor for fungal disease control (P < 0.05). After 3 min of treatment, mycelial growth was completely inhibited for A. alternata and S. vesicarium. Similar results were observed for conidial germination. The efficacy of ClO2 treatments was also studied under in vivo conditions. While untreated Roma tomatoes developed white moulds and black spots after 5 days of storage, produce decay was significantly (P < 0.05) delayed after 5 and 7 min treatments for S. vesicarium and A. alternata respectively. CONCLUSION The use of ClO2 in the food industry is regulated by both the FDA and the EPA. Currently, only acidified sodium chlorite solutions are approved for the control of micro-organisms in water used to wash fruits and vegetables. No direct applications of ClO2 gas on fresh fruits and vegetables can be found in the regulations. More data are required by the two agencies to demonstrate that residues of ClO2 on produce surfaces are acceptable for human consumption.
Collapse
Affiliation(s)
- Valentina Trinetta
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
20
|
Morino H, Koizumi T, Miura T, Fukuda T, Shibata T. [Inactivation of feline calicivirus by chlorine dioxide gas-generating gel]. YAKUGAKU ZASSHI 2013; 133:1017-22. [PMID: 23995810 DOI: 10.1248/yakushi.13-00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Noroviruses are one of the most important causes of acute gastroenteritis throughout the world. The aim of this study is to evaluate the efficacy of a chlorine dioxide gas-generating gel (ClO2 gel, 60 g) against feline calicivirus (FCV), a norovirus surrogate, in the wet state on glass dishes in a test sink (43 cm long, 75 cm wide, and 29 cm deep). The ClO2 gel permits sustained release of gaseous ClO2 (1.7 mg/h at 25°C), and was placed in one corner of the test sink. The glass dishes containing FCV suspension were placed at three positions in the test sink. We demonstrated that FCV was inactivated within 5h (>2 or >3 log10 reductions at three positions, n=20) in the test sink where the ClO2 gel was placed. These small quantities of ClO2 gel might be a useful tool for reducing the risk of infection by norovirus in wet environments such as kitchens and bathrooms under optimal condition.
Collapse
|
21
|
Differential Chlorate Inhibition of Chaetomium globosum Germination, Hyphal Growth, and Perithecia Synthesis. Mycopathologia 2012; 174:475-87. [DOI: 10.1007/s11046-012-9572-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
|
22
|
Peitzsch M, Bloom E, Haase R, Must A, Larsson L. Remediation of mould damaged building materials--efficiency of a broad spectrum of treatments. ACTA ACUST UNITED AC 2012; 14:908-15. [PMID: 22286589 DOI: 10.1039/c2em10806b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compared the efficiency of some commercially available products and methods used for remediation of mould-contaminated building materials. Samples of gypsum board and pinewood were artificially contaminated with toxin-producing isolates of Stachybotrys chartarum and Aspergillus versicolor, respectively, then, ten different remediation treatments were applied according to the manufacturers' instructions. Microbial and chemical analyses of the infested materials were carried out both immediately before and after treatment, after six weeks of drying at room temperature, and after another six weeks of remoistening. The aim of the study was to determine whether the investigated methods could inhibit the mould growth and destroy some selected mycotoxins produced by the moulds. None of the decontamination methods tested could completely eliminate viable moulds. Some methods, especially boron based chemicals, ammonium based chemicals, and oxidation reduced the contents of mycotoxins produced by S. chartarum (satratoxin G and H, verrucarol), whereas the one which uses an ammonium based chemical reduced the amount of sterigmatocystin produced by A. versicolor with statistical significance. No remediation treatment eliminated all the toxins from the damaged materials. These results emphasize the importance to work preventively with moisture safety throughout the construction processes and management to prevent mould growth on building materials.
Collapse
Affiliation(s)
- Mirko Peitzsch
- Lund University, Department of Laboratory Medicine, Division of Medical Microbiology, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
23
|
Hsu CS, Lu MC, Huang DJ. Application of chlorine dioxide for disinfection of student health centers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:741-747. [PMID: 21452077 DOI: 10.1007/s10661-011-1998-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
In Taiwan, the immediate health care requirements of students and faculty members are satisfied by on-campus medical service centers. The air quality within these centers should comply with the guidelines laid down by the Taiwan Environmental Protection Agency (EPA). Accordingly, this study performed an experimental investigation into the efficiency of various chlorine dioxide applications in disinfecting a local student health center (SHC). The air quality before and after disinfection were evaluated in terms of the bioaerosol levels of bacteria and fungi. The average background levels of bacteria and fungi before disinfection were found to be 1,142 ± 455.4 CFU/m(3) and 520 ± 442.4 CFU/m(3), respectively. Chlorine dioxide (0.3 mg/m(3)) was applied using three different methods, namely a single, one-off application, multiple applications within a single day, and regular (daily) applications. Among the three disinfection methods, the regular application method was found to yield a high disinfection efficiency for both bacteria and fungi, i.e., 6.5 ± 0.7% and 4.2 ± 0.3%, respectively. The average residual bacteria and fungi levels after regular daily interval disinfection were 318.8 ± 51.5 CFU/m(3) and 254.0 ± 43.8 CFU/m(3), respectively. Therefore, the results suggest that the air quality guidelines prescribed by the Taiwan EPA for SHCs and other healthcare facilities can best be achieved by applying chlorine dioxide at regular (daily) intervals.
Collapse
Affiliation(s)
- Ching-Shan Hsu
- Department of Environmental Resource Management, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | | | | |
Collapse
|
24
|
|
25
|
Morino H, Fukuda T, Miura T, Shibata T. Effect of low-concentration chlorine dioxide gas against bacteria and viruses on a glass surface in wet environments. Lett Appl Microbiol 2011; 53:628-34. [PMID: 21950421 PMCID: PMC7199474 DOI: 10.1111/j.1472-765x.2011.03156.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aims: To evaluate the efficacy of low‐concentration chlorine dioxide (ClO2) gas against model microbes in the wet state on a glass surface. Methods and Results: We set up a test room (39 m3) and the ClO2 gas was produced by a ClO2 gas generator that continuously releases a constant low‐concentration ClO2 gas. Influenza A virus (Flu‐A), feline calicivirus (FCV), Staphylococcus aureus and Escherichia coli were chosen as the model microbes. The low‐concentration ClO2 gas (mean 0·05 ppmv, 0·14 mg m−3) inactivated Flu‐A and E. coli (>5 log10 reductions) and FCV and S. aureus (>2 log10 reductions) in the wet state on glass dishes within 5 h. Conclusions: The treatment of wet environments in the presence of human activity such as kitchens and bathrooms with the low‐concentration ClO2 gas would be useful for reducing the risk of infection by bacteria and viruses residing on the environmental hard surfaces without adverse effects. Significance and Impact of the Study: This study demonstrates that the low‐concentration ClO2 gas (mean 0·05 ppmv) inactivates various kinds of microbes such as Gram‐positive and Gram‐negative bacteria, enveloped and nonenveloped viruses in the wet state.
Collapse
Affiliation(s)
- H Morino
- Research and Development Department, Taiko Pharmaceutical Co., Ltd, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
26
|
Beswick AJ, Farrant J, Makison C, Gawn J, Frost G, Crook B, Pride J. Comparison of Multiple Systems for Laboratory Whole Room Fumigation. APPLIED BIOSAFETY 2011. [DOI: 10.1177/153567601101600303] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alan J. Beswick
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - J. Farrant
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - C. Makison
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - J. Gawn
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - G. Frost
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - B. Crook
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| | - J. Pride
- The Health and Safety Laboratory, Derbyshire, United Kingdom
| |
Collapse
|
27
|
Byrns G, Fuller TP. The risks and benefits of chemical fumigation in the health care environment. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2011; 8:104-112. [PMID: 21253983 DOI: 10.1080/15459624.2011.547453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fumigation of hospital rooms with high concentrations of toxic chemicals has been proposed to reduce microbial agents on hospital surfaces and to control infections. Chemical fumigation has been used effectively in other areas, such as building decontamination after bioterrorism events, in agriculture, and in residential structures. However, even in these situations, there have been incidents where fumigants have escaped, causing illness and death to exposed workers and the public. Before expanding the use of a potentially hazardous technology in areas where there are vulnerable individuals, it is important to fully weigh benefits and risks. This article reviews the effectiveness of fumigation as a method of inactivating microbes on environmental surfaces and in reducing patient infection rates against the potential risks. Peer-reviewed literature, consensus documents, and government reports were selected for review. Studies have demonstrated that fumigation can be effective in inactivating microbes on environmental surfaces. However, the current consensus of the infection control community is that the most important source of patient infection is direct contact with health care workers or when patients auto-infect themselves. Only one peer-reviewed, before-after study, at one hospital reported a significant reduction in infection rates following chemical fumigation. The limitations of this study were such that the authors acknowledged that they could not attribute the rate reduction to the fumigation intervention. A serious concern in the peer-reviewed literature is a lack of evidence of environmental monitoring of either occupational or non-occupational exposures during fumigation. Currently, there are neither consensus documents on safe fumigation exposure levels for vulnerable bedridden patients nor sampling methods with an acceptable limit of detection for this population. Until additional peer-reviewed studies are published, demonstrating significant reductions in patient infection rates following chemical fumigation and consensus guidance on the safe exposure levels and monitoring methods, chemical fumigation in health care should be conducted only in the most stringently controlled research settings.
Collapse
Affiliation(s)
- George Byrns
- Health Sciences, Illinois State University, Normal, Illinois 61790, USA.
| | | |
Collapse
|
28
|
Hubbard H, Poppendieck D, Corsi RL. Chlorine dioxide reactions with indoor materials during building disinfection: surface uptake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:1329-1335. [PMID: 19350899 DOI: 10.1021/es801930c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chlorine dioxide received attention as a building disinfectant in the wake of Bacillus anthracis contamination of several large buildings in the fall of 2001. It is increasingly used for the disinfection of homes and other indoor environments afflicted by mold. However, little is known regarding the interaction of chlorine dioxide and indoor materials, particularly as related to the removal of chlorine dioxide from air. Such removal may be undesirable with respect to the subsequent formation of localized zones of depleted disinfectant concentrations and potential reductions in disinfection effectiveness in a building. The focus of this paper is on chlorine dioxide removal from air to each of 24 different indoor materials. Experiments were completed with materials housed in flow-through 48-L stainless steel chambers under standard conditions of 700 ppm chlorine dioxide inlet concentration, 75% relative humidity, 24 degrees C, and 0.5 h(-1) air changes. Chlorine dioxide concentration profiles, deposition velocities, and reaction probabilities are described in this paper. Deposition velocities and reaction probabilities varied over approximately 2 orders of magnitude across all materials. For most materials, deposition velocity decreased significantly over a 16-h disinfection period; that is, materials became smaller sinks for chlorine dioxide with time. Four materials (office partition, ceiling tile, medium density fiberboard, and gypsum wallboard) accounted for the most short- and long-term consumption of chlorine dioxide. Deposition velocity was observed to be a strong function of chlorine dioxide inlet concentration, suggesting the potential importance of chemical reactions on or within test materials.
Collapse
Affiliation(s)
- Heidi Hubbard
- Research Triangle Park, United States Environmental Protection Agency, North Carolina 27711, USA
| | | | | |
Collapse
|
29
|
MORINO HIROFUMI, FUKUDA TOSHIAKI, MIURA TAKANORI, LEE CHEOLSUNG, SHIBATA TAKASHI, SANEKATA TAKESHI. Inactivation of Feline Calicivirus, a Norovirus Surrogate, by Chlorine Dioxide Gas. Biocontrol Sci 2009; 14:147-53. [DOI: 10.4265/bio.14.147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
30
|
Meneghin SP, Reis FC, de Almeida PG, Ceccato-Antonini SR. Chlorine dioxide against bacteria and yeasts from the alcoholic fermentation. Braz J Microbiol 2008; 39:337-43. [PMID: 24031227 PMCID: PMC3768403 DOI: 10.1590/s1517-838220080002000026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/27/2007] [Accepted: 04/25/2008] [Indexed: 11/22/2022] Open
Abstract
The ethanol production in Brazil is carried out by fed-batch or continuous process with cell recycle, in such way that bacterial contaminants are also recycled and may be troublesome due to the substrate competition. Addition of sulphuric acid when inoculum cells are washed can control the bacterial growth or alternatively biocides are used. This work aimed to verify the effect of chlorine dioxide, a well-known biocide for bacterial decontamination of water and equipments, against contaminant bacteria (Bacillus subtilis, Lactobacillus plantarum, Lactobacillus fermentum and Leuconostoc mesenteroides) from alcoholic fermentation, through the method of minimum inhibitory concentration (MIC), as well as its effect on the industrial yeast inoculum. Lower MIC was found for B. subtilis (10 ppm) and Leuconostoc mesenteroides (50 ppm) than for Lactobacillus fermentum (75 ppm) and Lactobacillus plantarum (125 ppm). Additionally, these concentrations of chlorine dioxide had similar effects on bacteria as 3 ppm of Kamoran® (recommended dosage for fermentation tanks), exception for B. subtilis, which could not be controlled at this Kamoran® dosage. The growth of industrial yeasts was affected when the concentration of chlorine dioxide was higher than 50 ppm, but the effect was slightly dependent on the type of yeast strain. Smooth yeast colonies (dispersed cells) seemed to be more sensitive than wrinkled yeast colonies (clustered cells/pseudohyphal growth), both isolated from an alcohol-producing unit during the 2006/2007 sugar cane harvest. The main advantage in the usage of chlorine dioxide that it can replace antibiotics, avoiding the selection of resistant populations of microorganisms.
Collapse
Affiliation(s)
- Silvana Perissatto Meneghin
- Departamento de Biotecnologia Vegetal, Centro de Ciências Agrárias, Universidade Federal de São Carlos , Araras, SP , Brasil; ; Universidade Estadual Paulista, Microbiologia Aplicada , Rio Claro, SP , Brasil
| | | | | | | |
Collapse
|
31
|
Ogata N, Shibata T. Protective effect of low-concentration chlorine dioxide gas against influenza A virus infection. J Gen Virol 2008; 89:60-67. [DOI: 10.1099/vir.0.83393-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infection is one of the major causes of human morbidity and mortality. Between humans, this virus spreads mostly via aerosols excreted from the respiratory system. Current means of prevention of influenza virus infection are not entirely satisfactory because of their limited efficacy. Safe and effective preventive measures against pandemic influenza are greatly needed. We demonstrate that infection of mice induced by aerosols of influenza A virus was prevented by chlorine dioxide (ClO2) gas at an extremely low concentration (below the long-term permissible exposure level to humans, namely 0.1 p.p.m.). Mice in semi-closed cages were exposed to aerosols of influenza A virus (1 LD50) and ClO2 gas (0.03 p.p.m.) simultaneously for 15 min. Three days after exposure, pulmonary virus titre (TCID50) was 102.6±1.5 in five mice treated with ClO2, whilst it was 106.7±0.2 in five mice that had not been treated (P=0.003). Cumulative mortality after 16 days was 0/10 mice treated with ClO2 and 7/10 mice that had not been treated (P=0.002). In in vitro experiments, ClO2 denatured viral envelope proteins (haemagglutinin and neuraminidase) that are indispensable for infectivity of the virus, and abolished infectivity. Taken together, we conclude that ClO2 gas is effective at preventing aerosol-induced influenza virus infection in mice by denaturing viral envelope proteins at a concentration well below the permissible exposure level to humans. ClO2 gas could therefore be useful as a preventive means against influenza in places of human activity without necessitating evacuation.
Collapse
Affiliation(s)
- Norio Ogata
- Research Institute, Taiko Pharmaceutical Co. Ltd, 3-34-14 Uchihonmachi, Suita, Osaka 564-0032, Japan
| | - Takashi Shibata
- Research Institute, Taiko Pharmaceutical Co. Ltd, 3-34-14 Uchihonmachi, Suita, Osaka 564-0032, Japan
| |
Collapse
|
32
|
Morino H, Matsubara A, Fukuda T, Shibata T. Inhibition of Hyphal Growth of the Fungus Alternaria alternata by Chlorine Dioxide Gas at Very Low Concentrations. YAKUGAKU ZASSHI 2007; 127:773-7. [PMID: 17409710 DOI: 10.1248/yakushi.127.773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The efficacy of chlorine dioxide (ClO(2)) gas at very low concentrations for hyphal growth of Alternaria alternata related to fungal allergy was evaluated using a fungus detector. The fungus detector is a plastic sheet with a drop of spore-suspending medium, and it makes possible clear observations of hyphal growth with a light microscope. ClO(2) gas (average 0.075 ppm, 0.21 microg/l) inhibited hyphal growth of the fungus, but not germination of fungal spores. The hyphal length was more than 1780 mum under air conditions (control) and 49+/-17 microm under ClO(2) gas conditions for 72 h. According to the international chemical safety card, threshold limit values for ClO(2) gas are 0.1 ppm as an 8-h time-weight average and 0.3 ppm as a 15 min short-term exposure limit. From these data, we propose that treatment with ClO(2) gas at very low concentrations in space is a useful tool for the growth inhibition of fungi in the fields of food, medicine, etc. without adverse effects.
Collapse
|