1
|
Li ZT, Zhao HP. Sulfate-driven microbial collaboration for synergistic remediation of chloroethene-heavy metal pollution. WATER RESEARCH 2024; 268:122738. [PMID: 39504699 DOI: 10.1016/j.watres.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The treatment of heavy metal(loid) (HM) composite pollution has long posed a challenge for the bioremediation of organohalide-contaminated sites. Given the prevalent cohabitation of sulfate-reducing bacteria (SRB) with organohalide-respiring bacteria (OHRB), we proposed a sulfate-amendment strategy to achieve synergistic remediation of trichloroethene and diverse HMs [50μM of As(III), Ni(II), Cu(II), Pb(II)]. Correspondingly, 50-75 μM sulfate was introduced to HM inhibitory batches to investigate the enhancement effect of sulfate amendment on bio-dechlorination. Dechlorination kinetics and MATLAB modeling indicated that sulfate amendment comprehensively improved the reductive dechlorination performance in the presence of As(III), Ni(II), Pb(II) and mixed HMs, while no enhancement was observed under Cu(II) exposure. Additionally, sulfate introduction effectively accelerated the detoxification of Ni(II), Pb(II), Cu(II), and As(III), achieving removal efficiencies of 76.87 %, 64.01 %, 86.37 %, and 95.50 % within the first three days, respectively. Meanwhile, propionate dynamics and acetogenesis indicated enhanced carbon source and e-donor supply. 16S rRNA gene sequencing and metagenomic analysis results demonstrated that HM sequestration was accomplished jointly by SRB and HM-resistant bacteria via extracellular precipitation (metal sulfide) and intracellular sequestration, while their contribution depended on the specific coexisting HM species present. This study highlights the critical role of sulfate in the concurrent bioremediation of HM-organohalide composite contamination and provides insights for developing a cost-effective in-situ bioremediation strategy.
Collapse
Affiliation(s)
- Zheng-Tao Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310030, PR China.
| |
Collapse
|
2
|
Xu G, Zhao S, He J. Underexplored Organohalide-Respiring Bacteria in Sewage Sludge Debrominating Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031078 DOI: 10.1021/acs.est.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with Dehalococcoides isolated from e-waste polluted sites. The occurrence of PBDE debromination in other ecosystems and underpinning OHRB are underexplored. Here we found that debromination of PBDEs is a common trait of sewage sludge microbiota, and diphenyl ether was produced as the end-product at varying quantities (0.6-52.9% mol of the parent PBDEs) in 76 of 84 cultures established with bioreactor sludge. Diverse debromination pathways converting PBDEs to diphenyl ether, including several new routes, were identified. Although Dehalococcoides contributed to PBDE debromination, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia likely played more important roles than previously recognized. Multiple reductive dehalogenase genes (including bdeA, pcbA4, pteA, and tceA) were also prevalent and coexisted in bioreactor sludge. Collectively, these findings contribute to enhancing our comprehension of the environmental fate of PBDEs, expanding the diversity of microorganisms catalyzing PBDE debromination, and developing consortia for bioremediation application.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| |
Collapse
|
3
|
Xu G, Zhao S, Rogers MJ, Chen C, He J. Global prevalence of organohalide-respiring bacteria dechlorinating polychlorinated biphenyls in sewage sludge. MICROBIOME 2024; 12:54. [PMID: 38491554 PMCID: PMC10943849 DOI: 10.1186/s40168-024-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore.
| |
Collapse
|
4
|
Xu G, Zhao S, Chen C, Zhang N, He J. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15112-15122. [PMID: 37772791 DOI: 10.1021/acs.est.3c04535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ning Zhang
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
5
|
Hnatko JP, Liu C, Elsey JL, Dong S, Fortner JD, Pennell KD, Abriola LM, Cápiro NL. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216485 DOI: 10.1021/acs.est.2c04815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ bioremediation are a critical concern for comingled PFAA-chlorinated ethene plumes. Batch reactor (no soil) and microcosm (with soil) experiments, containing a PFAA mixture and bioaugmented with KB-1, were completed to assess the impact of PFAAs on chlorinated ethene organohalide respiration. In batch reactors, PFAAs delayed complete biodegradation of cis-1,2-dichloroethene (cis-DCE) to ethene. Maximum substrate utilization rates (a metric for quantifying biodegradation rates) were fit to batch reactor experiments using a numerical model that accounted for chlorinated ethene losses to septa. Fitted values for cis-DCE and vinyl chloride biodegradation were significantly lower (p < 0.05) in batch reactors containing ≥50 mg/L PFAAs. Examination of reductive dehalogenase genes implicated in ethene formation revealed a PFAA-associated change in the Dhc community from cells harboring the vcrA gene to those harboring the bvcA gene. Organohalide respiration of chlorinated ethenes was not impaired in microcosm experiments with PFAA concentrations of 38.7 mg/L and less, suggesting that a microbial community containing multiple strains of Dhc is unlikely to be inhibited by PFAAs at lower, environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jason P Hnatko
- Environmental Resources Management (ERM), Boston, Massachusetts 02108, United States
| | - Chen Liu
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jack L Elsey
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sheng Dong
- Department of Civil and Environmental Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Wu Z, Yu X, Liu G, Li W, Lu L, Li P, Xu X, Jiang J, Wang B, Qiao W. Sustained detoxification of 1,2-dichloroethane to ethylene by a symbiotic consortium containing Dehalococcoides species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 325:121443. [PMID: 36921661 DOI: 10.1016/j.envpol.2023.121443] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
1,2-Dichloroethane (1,2-DCA) is a ubiquitous volatile halogenated organic pollutant in groundwater and soil, which poses a serious threat to the ecosystem and human health. Microbial reductive dechlorination has been recognized as an environmentally-friendly strategy for the remediation of sites contaminated with 1,2-DCA. In this study, we obtained an anaerobic microbiota derived from 1,2-DCA contaminated groundwater, which was able to sustainably convert 1,2-DCA into non-toxic ethylene with an average dechlorination rate of 30.70 ± 11.06 μM d-1 (N = 6). The microbial community profile demonstrated that the relative abundance of Dehalococcoides species increased from 0.53 ± 0.08% to 44.68 ± 3.61% in parallel with the dechlorination of 1,2-DCA. Quantitative PCR results showed that the Dehalococcoides species 16S rRNA gene increased from 2.40 ± 1.71 × 108 copies∙mL-1 culture to 4.07 ± 2.45 × 108 copies∙mL-1 culture after dechlorinating 110.69 ± 30.61 μmol of 1,2-DCA with a growth yield of 1.55 ± 0.93 × 108 cells per μmol Cl- released (N = 6), suggesting that Dehalococcoides species used 1,2-DCA for organohalide respiration to maintain cell growth. Notably, the relative abundances of Methanobacterium sp. (p = 0.0618) and Desulfovibrio sp. (p = 0.0001995) also increased significantly during the dechlorination of 1,2-DCA and were clustered in the same module with Dehalococcoides species in the co-occurrence network. These results hinted that Dehalococcoides species, the obligate organohalide-respiring bacterium, exhibited potential symbiotic relationships with Methanobacterium and Desulfovibrio species. This study illustrates the importance of microbial interactions within functional microbiota and provides a promising microbial resource for in situ bioremediation in sites contaminated with 1,2-DCA.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Pengfa Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baozhan Wang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Salom D, Fernández-Verdejo D, Moral-Vico J, Font X, Marco-Urrea E. Combining nanoscale zero-valent iron and anaerobic dechlorinating bacteria to degrade chlorinated methanes and 1,2-dichloroethane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45231-45243. [PMID: 36705832 PMCID: PMC10076415 DOI: 10.1007/s11356-023-25376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has the potential to degrade a diversity of chlorinated compounds, and it is widely used for remediation of contaminated groundwaters. However, some frequently detected contaminants such as dichloromethane (DCM) and 1,2-dichloroethane (1,2-DCA) have shown nearly no reactivity with nZVI. Here, we tested the feasibility of combining anaerobic dechlorinating bacteria, Dehalobacterium and Dehalogenimonas, and nZVI as a treatment train to detoxify chlorinated methanes (i.e., chloroform-CF- and DCM), and 1,2-DCA. First, we showed that CF (500 μM) was fully degraded by 1 g/L nZVI to DCM as a major by-product, which was susceptible to fermentation by Dehalobacterium to innocuous products. Our results indicate that soluble compounds released by nZVI might cause an inhibitory impact on Dehalobacterium activity, avoiding DCM depletion. The DCM dechlorination activity was recovered when transferred to a fresh medium without nZVI. The increase in H2 production and pH was discarded as potential inhibitors. Similarly, a Dehalogenimonas-containing culture was unable to dichloroeliminate 1,2-DCA when exposed to 1 g/L nZVI, but dechlorinating activity was also recovered when transferred to nZVI-free media. The recovery of the dechlorinating activity of Dehalobacterium and Dehalogenimonas suggests that combination of nZVI and bioremediation techniques can be feasible under field conditions where dilution processes can alleviate the impact of the potential inhibitory soluble compounds.
Collapse
Affiliation(s)
- Dani Salom
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - David Fernández-Verdejo
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Javier Moral-Vico
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Xavier Font
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
8
|
Xu G, He J. Resilience of organohalide-detoxifying microbial community to oxygen stress in sewage sludge. WATER RESEARCH 2022; 224:119055. [PMID: 36126627 DOI: 10.1016/j.watres.2022.119055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Organohalide pollutants are prevalent in the environment, causing harms to wildlife and human. Organohalide-respiring bacteria (OHRB) could detoxify these pollutants in anaerobic environments, but the most competent OHRB (i.e., Dehalococcoides) is susceptible to oxygen. This study reports exceptional resistance and resilience of sewage sludge microbial communities to oxygen stress for attenuation of structurally distinct organohalide pollutants, including tetrachloroethene, tetrabromobisphenol A, and polybrominated diphenyl ethers. The dehalogenation rate constant of these organohalide pollutants in oxygen-exposed sludge microcosms was maintained as 74-120% as that in the control without oxygen exposure. Subsequent top-down experiments clarified that sludge flocs and non-OHRB contributed to alleviating oxygen stress on OHRB. In the dehalogenating microcosms, multiple OHRB (Dehahlococcoides, Dehalogenimonas, and Sulfurospirillum) harboring distinct reductive dehalogenase genes (pceA, pteA, tceA, vcrA, and bdeA) collaborated to detoxify organohalide pollutants but responded differentially to oxygen stress. Comprehensive microbial community analyses (taxonomy, diversity, and structure) demonstrated certain resilience of the sludge-derived dehalogenating microbial communities to oxygen stress. Additionally, microbial co-occurrence networks were intensified by oxygen stress in most microcosms, as a possible stress mitigation strategy. Altogether the mechanistic and ecological findings in this study contribute to remediation of organohalide-contaminated sites encountering oxygen disturbance.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore.
| |
Collapse
|
9
|
Fernández-Verdejo D, Cortés P, Guisasola A, Blánquez P, Marco-Urrea E. Bioelectrochemically-assisted degradation of chloroform by a co-culture of Dehalobacter and Dehalobacterium. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100199. [PMID: 36157346 PMCID: PMC9500365 DOI: 10.1016/j.ese.2022.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
Using bioelectrochemical systems (BESs) to provide electrochemically generated hydrogen is a promising technology to provide electron donors for reductive dechlorination by organohalide-respiring bacteria. In this study, we inoculated two syntrophic dechlorinating cultures containing Dehalobacter and Dehalobacterium to sequentially transform chloroform (CF) to acetate in a BES using a graphite fiber brush as the electrode. In this co-culture, Dehalobacter transformed CF to stoichiometric amounts of dichloromethane (DCM) via organohalide respiration, whereas the Dehalobacterium-containing culture converted DCM to acetate via fermentation. BES were initially inoculated with Dehalobacter, and sequential cathodic potentials of -0.6, -0.7, and -0.8 V were poised after consuming three CF doses (500 μM) per each potential during a time-span of 83 days. At the end of this period, the accumulated DCM was degraded in the following seven days after the inoculation of Dehalobacterium. At this point, four consecutive amendments of CF at increasing concentrations of 200, 400, 600, and 800 μM were sequentially transformed by the combined degradation activity of Dehalobacter and Dehalobacterium. The Dehalobacter 16S rRNA gene copies increased four orders of magnitude during the whole period. The coulombic efficiencies associated with the degradation of CF reached values > 60% at a cathodic potential of -0.8 V when the degradation rate of CF achieved the highest values. This study shows the advantages of combining syntrophic bacteria to fully detoxify chlorinated compounds in BESs and further expands the use of this technology for treating water bodies impacted with pollutants.
Collapse
Affiliation(s)
- David Fernández-Verdejo
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Facultat de BioCiències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Albert Guisasola
- GENOCOV, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Paqui Blánquez
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Ernest Marco-Urrea
- Biorem UAB, Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Qiao W, Liu G, Li M, Su X, Lu L, Ye S, Wu J, Edwards EA, Jiang J. Complete Reductive Dechlorination of 4-Hydroxy-chlorothalonil by Dehalogenimonas Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12237-12246. [PMID: 35951369 DOI: 10.1021/acs.est.2c02574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile, TePN) is one of the most widely used fungicides all over the world. Its major environmental transformation product 4-hydroxy-chlorothalonil (4-hydroxy-2,5,6-trichloroisophthalonitrile, 4-OH-TPN) is more persistent, mobile, and toxic and is frequently detected at a higher concentration in various habitats compared to its parent compound TePN. Further microbial transformation of 4-OH-TPN has never been reported. In this study, we demonstrated that 4-OH-TPN underwent complete microbial reductive dehalogenation to 4-hydroxy-isophthalonitrile via 4-hydroxy-dichloroisophthalonitrile and 4-hydroxy-monochloroisophthalonitrile. 16S rRNA gene amplicon sequencing demonstrated that Dehalogenimonas species was enriched from 6% to 17-22% after reductive dechlorination of 77.24 μmol of 4-OH-TPN. Meanwhile, Dehalogenimonas copies increased by one order of magnitude and obtained a yield of 1.78 ± 1.47 × 108 cells per μmol Cl- released (N = 6), indicating that 4-OH-TPN served as the terminal electron acceptor for organohalide respiration of Dehalogenimonas species. A draft genome of Dehalogenimonas species was assembled through metagenomic sequencing, which harbors 30 putative reductive dehalogenase genes. Syntrophobacter, Acetobacterium, and Methanosarcina spp. were found to be the major non-dechlorinating populations in the microbial community, who might play important roles in the reductive dechlorination of 4-OH-TPN by the Dehalogenimonas species. This study first reports that Dehalogenimonas sp. can also respire on the seemingly dead-end product of TePN, paving the way to complete biotransformation of the widely present TePN and broadening the substrate spectrum of Dehalogenimonas sp. to polychlorinated hydroxy-benzonitrile.
Collapse
Affiliation(s)
- Wenjing Qiao
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengya Li
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojing Su
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Wang Q, Guo S, Ali M, Song X, Tang Z, Zhang Z, Zhang M, Luo Y. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128749. [PMID: 35364527 DOI: 10.1016/j.jhazmat.2022.128749] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Thermally enhanced bioremediation (TEB), a new concept proposed in recent years, explores the combination of thermal treatment and bioremediation to address the challenges of the low efficiency and long duration of bioremediation. This study presented a comprehensive review regarding the fundamentals of TEB and its applications in soil and groundwater remediation. The temperature effects on the bioremediation of contaminants were systematically reviewed. The thermal effects on the physical, chemical and biological characteristics of soil, and the corresponding changes of contaminants bioavailability and microbial metabolic activities were summarized. Specifically, the increase in temperature within a suitable range can proliferate enzymes enrichment, extracellular polysaccharides and biosurfactants production, and further enhancing bioremediation. Furthermore, a systematic evaluation of TEB applications by utilizing traditional in situ heating technologies, as well as renewable energy (e.g., stored aquifer thermal energy and solar energy), was provided. Additionally, TEB has been applied as a biological polishing technology post thermal treatment, which can be a cost-effective method to address the contaminants rebounds in groundwater remediation. However, there are still various challenges to be addressed in TEB, and future research perspectives to further improve the basic understanding and applications of TEB for the remediation of contaminated soil and groundwater are presented.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Siwei Guo
- Zhejiang University, Hangzhou, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Underwood JC, Akob DM, Lorah MM, Imbrigiotta TE, Harvey RW, Tiedeman CR. Microbial Community Response to a Bioaugmentation Test to Degrade Trichloroethylene in a Fractured Rock Aquifer, Trenton, N.J. FEMS Microbiol Ecol 2022; 98:6617591. [PMID: 35749571 DOI: 10.1093/femsec/fiac077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022] Open
Abstract
Bioaugmentation is a promising strategy for enhancing trichloroethylene (TCE) degradation in fractured rock. However, slow or incomplete biodegradation can lead to stalling at degradation byproducts such as 1,2-dichloroethene (cis-DCE) and vinyl chloride (VC). Over the course of 7 years, we examined the response of groundwater microbial populations in a bioaugmentation test where an emulsified vegetable oil solution (EOS®) and a dechlorinating consortium (KB-1®), containing the established dechlorinator Dehalococcoides, were injected into a TCE-contaminated fractured rock aquifer. Indigenous microbial communities responded within 2 days to added substrate and outcompeted KB-1®, and over the years of monitoring, several other notable turnover events were observed. Concentrations of ethene, the end product in reductive dechlorination, had the strongest correlations (p< 0.05) with members of Candidatus Colwellbacteria but their involvement in reductive dechlorination is unknown and warrants further investigation. Dehalococcoides never exceeded 0.6% relative abundance of groundwater microbial communities, despite its previously presumed importance at the site. Increased concentrations of carbon dioxide, acetic acid, and methane were positively correlated with increasing ethene concentrations; however, concentrations of cis-DCE and VC remained high by the end of the monitoring period suggesting preferential enrichment of indigenous partial dechlorinators over bioaugmented complete dechlorinators. This study highlights the importance of characterizing in situ microbial populations to understand how they can potentially enhance or inhibit augmented TCE degradation.
Collapse
Affiliation(s)
- J C Underwood
- U.S. Geological Survey, Water Mission Area, Boulder CO 80303USA
| | - D M Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, 12201 Sunrise Valley Drive, Mailstop 954, Reston, VA 20192USA
| | - M M Lorah
- U.S. Geological Survey, MD-DE-DC Water Science Center, 5522 Research Park Drive, Baltimore, MD 21228USA
| | - T E Imbrigiotta
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648USA
| | - R W Harvey
- U.S. Geological Survey, Water Mission Area, Boulder CO 80303USA
| | - C R Tiedeman
- U.S. Geological Survey, Water Mission Area, Menlo Park, CA 94025USA
| |
Collapse
|
13
|
Jeong WG, Kim JG, Baek K. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128253. [PMID: 35033913 DOI: 10.1016/j.jhazmat.2022.128253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Among the chlorinated aliphatic hydrocarbons, 1,2-dichloroethane (1,2-DCA) is widely used for the synthesis of vinyl chloride monomers. Despite the high demand for 1,2-DCA, it poses a risk to the environment because it is persistent and carcinogenic. Therefore, in this study, several reagents (dithionite, hydrosulfide, sulfite, persulfate, sulfate radicals, and hydroxyl radicals) were evaluated for the degradation of 1,2-DCA. Among these, the hydroxyl radicals generated by the Fenton reaction were the most suitable oxidant, decomposing 92% of 1,2-DCA. Chloride, one of the final oxidized products, was observed, which supported the oxidation reaction. Moreover, with an increasing concentration of hydroxyl radicals, the degradation of 1,2-DCA increased. Furthermore, sufficient amounts of hydrogen peroxide were more important than Fe(II) in the decomposition of 1,2-DCA. The radical reaction can generate larger molecules via the degradation of 1,2-DCA, which are degraded over time. The applicability of Fenton oxidation was evaluated using real 1,2-DCA-contaminated groundwater. Although the degradation of target contaminant was lowered due to the alkaline pH and the presence of chloride and bicarbonate ions in groundwater, the Fenton reaction was still efficient to oxidize 1,2-DCA. These results indicate that Fenton oxidation is an effective technique for the treatment of 1,2-DCA in contaminated groundwater.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
14
|
Jiang L, Yang Y, Jin H, Wang H, Swift CM, Xie Y, Schubert T, Löffler FE, Yan J. Geobacter sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3430-3440. [PMID: 35239320 DOI: 10.1021/acs.est.1c05952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorinated ethanes, including 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA), are widespread groundwater contaminants. Enrichment cultures XRDCA and XRTCA derived from river sediment dihaloeliminated 1,2-DCA to ethene and 1,1,2-TCA to vinyl chloride (VC), respectively. The XRTCA culture subsequently converted VC to ethene via hydrogenolysis. Microbial community profiling demonstrated the enrichment of Geobacter 16S rRNA gene sequences in both the XRDCA and XRTCA cultures, and Dehalococcoides mccartyi (Dhc) sequences were only detected in the ethene-producing XRTCA culture. The presence of a novel Geobacter population, designated as Geobacter sp. strain IAE, was identified by the 16S rRNA gene-targeted polymerase chain reaction and Sanger sequencing. Time-resolved population dynamics attributed the dihaloelimination activity to strain IAE, which attained the growth yields of 0.93 ± 0.06 × 107 and 1.18 ± 0.14 × 107 cells per μmol Cl- released with 1,2-DCA and 1,1,2-TCA as electron acceptors, respectively. In contrast, Dhc growth only occurred during VC-to-ethene hydrogenolysis. Our findings discover a Geobacter sp. strain capable of respiring multiple chlorinated ethanes and demonstrate the involvement of a broader diversity of organohalide-respiring bacteria in the detoxification of 1,2-DCA and 1,1,2-TCA.
Collapse
Affiliation(s)
- Lisi Jiang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cynthia M Swift
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torsten Schubert
- Research Group Anaerobic Microbiology, Friedrich Schiller University, Jena 07743, Germany
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
15
|
Cao S, Davis A, Kjellerup BV. Presence of bacteria capable of PCB biotransformation in stormwater bioretention cells. FEMS Microbiol Ecol 2022; 97:6492079. [PMID: 34978329 DOI: 10.1093/femsec/fiab159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Core samples from bioretention cell media as well as surface stormwater sediment samples from seven urban areas were collected to assess the potential for biotransformation activity of polychlorinated biphenyls (PCBs). The presence of putative organohalide-respiring bacteria in these samples was studied. Based on extracted DNA, Dehalobacter, Dehalogenimonas and Dehalococcoides were detected. Other organohalide-respiring bacteria like Desulfitobacterium and Sulfurospirillum were not studied. Bacteria containing the genes encoding for biphenyl 2,3-dioxygenase (bphA) or 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC) were detected in 29 of the 32 samples. These genes are key factors in PCB aerobic degradation. Transcribed bacterial genes from putative organohalide-respiring bacteria as well as genes encoding for bphA and bphC were obtained from the microbial community, thus showing the potential of organohalide respiration of PCBs and aerobic PCB degradation under both aerobic and anaerobic conditions in the surface samples collected at the bioretention site. Presence and concentrations of 209 PCB congeners in the bioretention media were also assessed. The total PCB concentration ranged from 38.4 ± 2.3 ng/g at the top layer of the inlet to 11.6 ± 1.2 ng/g at 20-30 cm at 3 m from the inlet. These results provide documentation that bacteria capable of PCB transformation, including both anaerobic dechlorination and aerobic degradation, were present and active in the bioretention.
Collapse
Affiliation(s)
- Siqi Cao
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Allen Davis
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| |
Collapse
|
16
|
Heterologous expression of active Dehalobacter spp. respiratory reductive dehalogenases in Escherichia coli. Appl Environ Microbiol 2021; 88:e0199321. [PMID: 34851719 DOI: 10.1128/aem.01993-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reductive dehalogenases (RDases) are a family of redox enzymes that are required for anaerobic organohalide respiration, a microbial process that is useful in bioremediation. Structural and mechanistic studies of these enzymes have been greatly impeded due to challenges in RDase heterologous expression, potentially because of their cobamide-dependence. There have been a few successful attempts at RDase production in unconventional heterologous hosts, but a robust method has yet to be developed. Here we outline a novel respiratory RDase expression system using Escherichia coli. The overexpression of E. coli's cobamide transport system, btu, and anaerobic expression conditions were found to be essential for production of active RDases from Dehalobacter - an obligate organohalide respiring bacterium. The expression system was validated on six enzymes with amino acid sequence identities as low as 28%. Dehalogenation activity was verified for each RDase by assaying cell-free extracts of small-scale expression cultures on various chlorinated substrates including chloroalkanes, chloroethenes, and hexachlorocyclohexanes. Two RDases, TmrA from Dehalobacter sp. UNSWDHB and HchA from Dehalobacter sp. HCH1, were purified by nickel affinity chromatography. Incorporation of the cobamide and iron-sulfur cluster cofactors was verified; though, the precise cobalamin incorporation could not be determined due to variance between methodologies, and the specific activity of TmrA was consistent with that of the native enzyme. The heterologous expression of respiratory RDases, particularly from obligate organohalide respiring bacteria, has been extremely challenging and unreliable. Here we present a relatively straightforward E. coli expression system that has performed well for a variety of Dehalobacter spp. RDases. IMPORTANCE Understanding microbial reductive dehalogenation is important to refine the global halogen cycle and to improve bioremediation of halogenated contaminants; however, studies of the family of enzymes responsible are limited. Characterization of reductive dehalogenase enzymes has largely eluded researchers due to the lack of a reliable and high-yielding production method. We are presenting an approach to express reductive dehalogenase enzymes from Dehalobacter, a key group of organisms used in bioremediation, in E. coli. This expression system will propel the study of reductive dehalogenases by facilitating their production and isolation, allowing researchers to pursue more in-depth questions about the activity and structure of these enzymes. This platform will also provide a starting point to improve the expression of reductive dehalogenases from many other organisms.
Collapse
|
17
|
Xu G, Zhao X, Zhao S, He J. Acceleration of polychlorinated biphenyls remediation in soil via sewage sludge amendment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126630. [PMID: 34293691 DOI: 10.1016/j.jhazmat.2021.126630] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation of polychlorinated biphenyls (PCBs) is impeded by difficulties in massively cultivating bioinoculant. Meanwhile, sewage sludge is rich in pollutant-degrading microorganisms and nutrients, drawing our attention to investigate their potential to be used as a supplement for bioremediation of PCBs. Here we reported extensive microbial reductive dechlorination of PCBs by waste activated sludge (WAS) and digestion sludge (DS), which were identified to harbor multiple putative organohalide-respiring bacteria (i.e., Dehalococcoides, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia) and PCB reductive dehalogenase genes (i.e., pcbA4 and pcbA5). Consequently, amendment of 1-20% (w/w) fresh WAS/DS enhanced the attenuation of PCBs by 126-544% in a soil microcosm compared with the control soil, with the fastest dechlorination of PCBs being achieved when spiked with 20% fresh WAS. Notably, dechlorination pathways of PCBs were also changed by sludge amendment. Microbial and physicochemical analyses revealed that the enhanced dechlorination of PCBs by sludge amendment was largely attributed to the synergistic effects of sludge-derived nutrients, PCB-dechlorinating bacteria, and stimulated growth of beneficial microorganisms (e.g., fermenters). Finally, risk assessment of heavy metals suggests low potential ecological risks of sludge amendment in soil. Collectively, our study demonstrates that sewage sludge amendment could be an efficient, cost-effective and environment-friendly approach for in situ bioremediation of PCBs.
Collapse
Affiliation(s)
- Guofang Xu
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Xuejie Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore.
| |
Collapse
|
18
|
Siggins A, Thorn C, Healy MG, Abram F. Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123676. [PMID: 33264877 DOI: 10.1016/j.jhazmat.2020.123676] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/25/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Trichloroethylene (TCE) is a human carcinogen that is commonly found in landfill leachate. Contaminated leachate plumes may be intercepted prior to reaching groundwater and treated in situ using permeable reactive barriers (PRB). This study used a packed column system containing herbal pomace and spruce biochar, previously shown to have TCE adsorptive capabilities. Influent containing raw or autoclaved landfill leachate was used to investigate the potential for environmental micro-organisms to establish a TCE-dechlorinating biofilm on the biochar, in order to prolong the operational life span of the system. TCE removal ≥ 99.7 % was observed by both biochars. No dichloroethylene (DCE) isomers were present in the column effluents, but cis-1,2 DCE was adsorbed to the biochar treating raw landfill leachate, indicating that dechlorination was occurring biologically in these columns. Known microbial species that are individually capable of complete dechlorination of TCE to ethene were not detected by 16S rRNA gene sequencing, but several species capable of partial TCE dechlorination (Desulfitobacterium spp., Sulfurospirillium spp. and Desulfuromonas spp) were present in the biofilms of the columns treating raw landfill leachate. These data demonstrate that biochar from waste material may be capable of supporting a dechlorinating biofilm to promote bioremediation of TCE.
Collapse
Affiliation(s)
- Alma Siggins
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Camilla Thorn
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Mark G Healy
- Civil Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Florence Abram
- School of Natural Sciences, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
19
|
Yang MI, Previdsa M, Edwards EA, Sleep BE. Two distinct Dehalobacter strains sequentially dechlorinate 1,1,1-trichloroethane and 1,1-dichloroethane at a field site treated with granular zero valent iron and guar gum. WATER RESEARCH 2020; 186:116310. [PMID: 32858243 DOI: 10.1016/j.watres.2020.116310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated ethanes are environmental pollutants found frequently at many contaminated industrial sites. 1,1,1-Trichloroethane (1,1,1-TCA) can be dechlorinated and detoxified via abiotic transformation or biologically by the action of dechlorinating microorganisms such as Dehalobacter (Dhb). At a field site, it is challenging to distinguish abiotic vs. biotic mechanisms as both processes share common transformation products. In this study, we evaluated using the Dhb 16S rRNA gene and specific reductive dehalogenase genes as biomarkers for 1,1,1-TCA and 1,1-dichloroethane (1,1-DCA) dechlorination. We analyzed samples from laboratory groundwater microcosms and from an industrial site where a mixture of granular zero valent iron (ZVI) and guar gum was injected for 1,1,1-TCA remediation. Abiotic and biotic transformation products were monitored and the changes in dechlorinating organisms were tracked using quantitative PCR (qPCR) with primers targeting the Dhb 16S rRNA gene and two functional genes cfrA and dcrA encoding enzymes that dechlorinate 1,1,1-TCA to 1,1-DCA and 1,1-DCA to chloroethane (CA), respectively. The abundance of the cfrA- and dcrA-like genes confirmed that the two dechlorination steps were carried out by two distinct Dhb populations at the site. The biomarkers used in this study proved useful for monitoring different Dhb populations responsible for step-wise dechlorination and tracking biodegradation of 1,1,1-TCA and 1,1-DCA where both abiotic (e.g., with ZVI) and biotic processes co-occur.
Collapse
Affiliation(s)
- M Ivy Yang
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Michael Previdsa
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada.
| | - Brent E Sleep
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, M5S 1A4, Canada.
| |
Collapse
|
20
|
Sprocati R, Flyvbjerg J, Tuxen N, Rolle M. Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122787. [PMID: 32388097 DOI: 10.1016/j.jhazmat.2020.122787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This study presents a process-based modeling analysis of electrokinetic-enhanced bioremediation (EK-Bio) to illuminate the complex interactions between physical, electrostatic and biogeochemical processes occurring during the application of this remediation technique. The features of the proposed model include: (i) multidimensional electrokinetic transport in saturated porous media by electromigration and electroosmosis, (ii) charge interactions, (iii) degradation kinetics, (iv) microbial populations dynamics of indigenous and specialized exogenous degraders, (v) mass transfer limitations, and (vi) geochemical reactions. A scenario modeling investigation is presented, which was inspired by an EK-Bio pilot application conducted in a clayey aquitard at the Skuldelev site (Denmark) contaminated by chlorinated ethenes. Lactate and specialized degraders are delivered under conservative and reactive transport conditions. In the considered setup, transport of lactate using electrokinetics results in more than fourfold increase in the distribution efficiency with respect to a diffusion-only scenario. Moreover, EK transport by electromigration and electroosmosis yields fluxes at least two orders of magnitude larger than diffusive fluxes. Quantitative metrics are also defined and used to assess the amendment distribution and the enhanced contaminant biodegradation in the different conservative and reactive transport scenarios.
Collapse
Affiliation(s)
- Riccardo Sprocati
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark
| | - John Flyvbjerg
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Nina Tuxen
- Centre for Regional Development, Capital Region of Denmark, Kongens Vænge 2, 3400, Hillerød, Denmark
| | - Massimo Rolle
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
21
|
Hnatko JP, Yang L, Pennell KD, Abriola LM, Cápiro NL. Bioenhanced back diffusion and population dynamics of Dehalococcoides mccartyi strains in heterogeneous porous media. CHEMOSPHERE 2020; 254:126842. [PMID: 32957273 DOI: 10.1016/j.chemosphere.2020.126842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Diffusion, sorption-desorption, and biodegradation influence chlorinated solvent storage in, and release (mass flux) from, low-permeability media. Although bioenhanced dissolution of non-aqueous phase liquids has been well-documented, less attention has been directed towards biologically-mediated enhanced diffusion from low-permeability media. This process was investigated using a heterogeneous aquifer cell, packed with 20-30 mesh Ottawa sand and lenses of varying permeability (1.0 × 10-12-1.2 × 10-11 m2) and organic carbon (OC) content (<0.1%-2%), underlain by trichloroethene (TCE)-saturated clay. Initial contaminant loading was attained by flushing with 0.5 mM TCE. Total chlorinated ethenes removal by hydraulic flushing was then compared for abiotic and bioaugmented systems (KB-1® SIREM; Guelph, ON). A numerical model incorporating coupled diffusion and (de)sorption facilitated quantification of bio-enhanced TCE release from low-permeability lenses, which ranged from 6% to 53%. Although Dehalococcoides mccartyi (Dhc) 16S rRNA genes were uniformly distributed throughout the porous media, strain-specific distribution, as indicated by the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA, was influenced by physical and chemical heterogeneity. Cells harboring the bvcA gene comprised 44% of the total RDase genes in the lower clay layer and media surrounding high OC lenses, but only 2% of RDase genes at other locations. Conversely, cells harboring the vcrA gene comprised 50% of RDase genes in low-permeability media compared with 85% at other locations. These results demonstrate the influence of microbial processes on back diffusion, which was most evident in regions with pronounced contrasts in permeability and OC content. Bioenhanced mass transfer and changes in the relative abundance of Dhc strains are likely to impact bioremediation performance in heterogeneous systems.
Collapse
Affiliation(s)
- Jason P Hnatko
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Lurong Yang
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Linda M Abriola
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA; Department of Civil Engineering, Environmental Engineering Program, Auburn University, Auburn, AL, USA.
| |
Collapse
|
22
|
Barnum TP, Cheng Y, Hill KA, Lucas LN, Carlson HK, Coates JD. Identification of a parasitic symbiosis between respiratory metabolisms in the biogeochemical chlorine cycle. THE ISME JOURNAL 2020; 14:1194-1206. [PMID: 32024948 PMCID: PMC7174294 DOI: 10.1038/s41396-020-0599-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
A key step in the chlorine cycle is the reduction of perchlorate (ClO4-) and chlorate (ClO3-) to chloride by microbial respiratory pathways. Perchlorate-reducing bacteria and chlorate-reducing bacteria differ in that the latter cannot use perchlorate, the most oxidized chlorine compound. However, a recent study identified a bacterium with the chlorate reduction pathway dominating a community provided only perchlorate. Here we confirm a metabolic interaction between perchlorate- and chlorate-reducing bacteria and define its mechanism. Perchlorate-reducing bacteria supported the growth of chlorate-reducing bacteria to up to 90% of total cells in communities and co-cultures. Chlorate-reducing bacteria required the gene for chlorate reductase to grow in co-culture with perchlorate-reducing bacteria, demonstrating that chlorate is responsible for the interaction, not the subsequent intermediates chlorite and oxygen. Modeling of the interaction suggested that cells specialized for chlorate reduction have a competitive advantage for consuming chlorate produced from perchlorate, especially at high concentrations of perchlorate, because perchlorate and chlorate compete for a single enzyme in perchlorate-reducing cells. We conclude that perchlorate-reducing bacteria inadvertently support large populations of chlorate-reducing bacteria in a parasitic relationship through the release of the intermediate chlorate. An implication of these findings is that undetected chlorate-reducing bacteria have likely negatively impacted efforts to bioremediate perchlorate pollution for decades.
Collapse
Affiliation(s)
- Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yiwei Cheng
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kaisle A Hill
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Lauren N Lucas
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
23
|
Qiao W, Puentes Jácome LA, Tang X, Lomheim L, Yang MI, Gaspard S, Avanzi IR, Wu J, Ye S, Edwards EA. Microbial Communities Associated with Sustained Anaerobic Reductive Dechlorination of α-, β-, γ-, and δ-Hexachlorocyclohexane Isomers to Monochlorobenzene and Benzene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:255-265. [PMID: 31830788 DOI: 10.1021/acs.est.9b05558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intensive historical and worldwide use of pesticide formulations containing hexachlorocyclohexane (HCH) has led to widespread contamination. We derived four anaerobic enrichment cultures from HCH-contaminated soil capable of sustainably dechlorinating each of α-, β-, γ-, and δ-HCH isomers stoichiometrically to benzene and monochlorobenzene (MCB). For each isomer, the dechlorination rates, inferred from production rates of the dechlorinated products, MCB and benzene, increased progressively from <3 to ∼12 μM/day over 2 years. The molar ratio of benzene to MCB produced was a function of the substrate isomer and ranged from β (0.77 ± 0.15), α (0.55 ± 0.09), γ (0.13 ± 0.02), to δ (0.06 ± 0.02) in accordance with pathway predictions based on prevalence of antiperiplanar geometry. Data from 16S rRNA gene amplicon sequencing and quantitative PCR revealed significant increases in the absolute abundances of Pelobacter and Dehalobacter, most notably in the α-HCH and δ-HCH cultures. Cultivation with a different HCH isomer resulted in distinct bacterial communities, but similar archaeal communities. This study provides the first direct comparison of shifts in anaerobic microbial communities induced by the dechlorination of distinct HCH isomers. It also uncovers candidate microorganisms responsible for the dechlorination of α-, β-, γ-, and δ-HCH, a key step toward better understanding and monitoring of natural attenuation processes and improving bioremediation technologies for HCH-contaminated sites.
Collapse
Affiliation(s)
- Wenjing Qiao
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Xianjin Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Minqing Ivy Yang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Sarra Gaspard
- Laboratory COVACHIMM2E, EA 3592, Université des Antilles, Pointe à Pitre 97157, Guadeloupe, French West-Indies, France
| | - Ingrid Regina Avanzi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
- Laboratory of Biomaterial and Tissue Engineering, Federal University of Sao Paulo, 136 Silva Jardim Street, Santos 11015-020, São Paulo, Brazil
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Shujun Ye
- Key Laboratory of Surficial Geochemistry, Ministry of Education; School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| |
Collapse
|
24
|
Wang X, Aulenta F, Puig S, Esteve-Núñez A, He Y, Mu Y, Rabaey K. Microbial electrochemistry for bioremediation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 1:100013. [PMID: 36160374 PMCID: PMC9488016 DOI: 10.1016/j.ese.2020.100013] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
Lack of suitable electron donors or acceptors is in many cases the key reason for pollutants to persist in the environment. Externally supplementation of electron donors or acceptors is often difficult to control and/or involves chemical additions with limited lifespan, residue formation or other adverse side effects. Microbial electrochemistry has evolved very fast in the past years - this field relates to the study of electrochemical interactions between microorganisms and solid-state electron donors or acceptors. Current can be supplied in such so-called bioelectrochemical systems (BESs) at low voltage to provide or extract electrons in a very precise manner. A plethora of metabolisms can be linked to electrical current now, from metals reductions to denitrification and dechlorination. In this perspective, we provide an overview of the emerging applications of BES and derived technologies towards the bioremediation field and outline how this approach can be game changing.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria Km 29,300, 00015, Monterotondo, RM, Italy
| | - Sebastià Puig
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Analytical Chemistry and Chemical Engineering, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona Km 33.600, 28871, Alcalá de Henares, Spain
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse (SKL-PCRR), School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, China
| | - Yang Mu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
- Corresponding author. Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium. http://www.capture-resources.be
| |
Collapse
|
25
|
Johnson LA, Hug LA. Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radic Biol Med 2019; 140:93-102. [PMID: 30930298 DOI: 10.1016/j.freeradbiomed.2019.03.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 11/25/2022]
Abstract
Bacteria are the most diverse and numerous organisms on the planet, inhabiting environments from the deep subsurface to particles in clouds. Across this range of conditions, bacteria have evolved a diverse suite of enzymes to mitigate cellular damage from reactive oxygen species (ROS). Here, we review the diversity and distribution of ROS enzymatic defense mechanisms across the domain Bacteria, using both peer-reviewed literature and publicly available genome databases. We describe the specific strategies used by well-characterized organisms in order to highlight differences in oxidative stress responses between aerobic, facultatively anaerobic, and anaerobic lifestyles. We present evidence from genome minimization experiments to suggest that ROS defenses are obligately required for life. This review clarifies the variability in ROS defenses across Bacteria, including the novel diversity found in currently uncharacterized Candidate Phyla.
Collapse
Affiliation(s)
- Lisa A Johnson
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
26
|
Berrelleza-Valdez F, Parades-Aguilar J, Peña-Limón CE, Certucha-Barragán MT, Gámez-Meza N, Serrano-Palacios D, Medina-Juárez LA, Calderón K. A novel process of the isolation of nitrifying bacteria and their development in two different natural lab-scale packed-bed bioreactors for trichloroethylene bioremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:211-218. [PMID: 31004998 DOI: 10.1016/j.jenvman.2019.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Trichloroethylene (TCE) is a carcinogenic compound that is commonly present in groundwater and has been detected in drinking water sources for Mexican towns in the Mexico-US border area. Nitrifying bacteria, such as Nitrosomonas europaea, have been shown to be capable of degrading halogenated compounds, including TCE, but it is difficult to obtain high cell concentrations of these bacteria. The aim of the present study was to generate biomass of a nitrifying bacterial consortium from the sludge of an urban wastewater treatment plant (WWTP) and evaluate its capacity to biodegrade TCE in two different natural lab-scaled packed bed bioreactors. The consortium was isolated by a novel method using a continuous stirred-tank bioreactor inoculated with activated sludge from the Domos WWTP located in Cd. Obregón, Sonora, Mexico. The bioreactor was fed with specific media to cultivate ammonia-oxidizing bacteria at a dilution rate near the maximum specific growth rate reported for Nitrosomonas europaea. Optical density and suspended solids measurements were performed to determine the culture biomass production, and the presence of inorganic nitrogen species was determined by spectrophotometry. The presence of nitrifying ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was confirmed by PCR amplification, and biofilm formation was observed by scanning electron microscopy. Batch-scale experiments confirmed the biodegradative activity of the isolated consortium, which was subsequently fixed in an inorganic carrier as zeolite and a synthetic carrier such as polyurethane to both be used as lab-scale packed-bed bioreactors, with up to 58.63% and 62.7% of TCE biodegradation achieved, respectively, demonstrating a possible alternative for TCE bioremediation in environmental and engineering systems.
Collapse
Affiliation(s)
- Fernando Berrelleza-Valdez
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Jonathan Parades-Aguilar
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Carlos E Peña-Limón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| | - María Teresa Certucha-Barragán
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Nohemí Gámez-Meza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, Antonio Caso S/N. C.P., 85130, Ciudad Obregón, Sonora, Mexico
| | - Luis Angel Medina-Juárez
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
27
|
Rosell M, Palau J, Mortan SH, Caminal G, Soler A, Shouakar-Stash O, Marco-Urrea E. Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:422-429. [PMID: 30121041 DOI: 10.1016/j.scitotenv.2018.08.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Chlorinated ethanes are frequent groundwater contaminants but compound specific isotope analysis (CSIA) has been scarcely applied to investigate their degradation pathways. In this study, dual carbon and chlorine isotope fractionation was used to investigate for the first time the anoxic biodegradation of 1,1,2-trichloroethane (1,1,2-TCA) using a Dehalogenimonas-containing culture. The isotopic fractionation values obtained for the biodegradation of 1,1,2-TCA were ɛC = -6.9 ± 0.4‰ and ɛCl = -2.7 ± 0.3‰. The detection of vinyl chloride (VC) as unique byproduct and a closed carbon isotopic mass balance corroborated that dichloroelimination was the degradation pathway used by this strain. Combining the values of δ13C and δ37Cl resulted in a dual element C-Cl isotope slope of Λ = 2.5 ± 0.2‰. Investigation of the apparent kinetic isotope effects (AKIEs) expected for cleavage of a CCl bond showed an important masking of the intrinsic isotope fractionation. Theoretical calculation of Λ suggested that dichloroelimination of 1,1,2-TCA was taking place via simultaneous cleavage of two CCl bonds (concerted reaction mechanism). The isotope data obtained in this study can be useful to monitor natural attenuation of 1,1,2-TCA via dichloroelimination and provide insights into the source and fate of VC in contaminated groundwaters.
Collapse
Affiliation(s)
- Mònica Rosell
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Jordi Palau
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Hydrogeology Group (UPC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo, Ontario N2 V 1Z5, Canada
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
28
|
Tabernacka A, Zborowska E, Pogoda K, Żołądek M. Removal of tetrachloroethene from polluted air by activated sludge. ENVIRONMENTAL TECHNOLOGY 2019; 40:470-479. [PMID: 29098945 DOI: 10.1080/09593330.2017.1397759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
A one-step technological system containing activated sludge fed with synthetic domestic wastewater was applied to treat waste air polluted with tetrachloroethene (PCE). In the first stage of the experiment, air passed through a bioscrubber; in the second and third stages, it passed through the bioreactor containing activated sludge and bacteria immobilised in oak chips. These bacteria are active in PCE biodegradation. Process efficiency in the final stage of the experiment was high; the elimination capacity was 0.23 g m-3 h-1 with the PCE mass loading rate of 0.58 g m-3 h-1. It has been shown that in the activated sludge bioreactor, bacteria adapted to PCE biodegradation and the wood chips protected microorganisms from the toxic effects of pollution. The dominant strains of bacteria immobilised in wood chips have been identified. Most of them were Gram-negative rods - Pseudomonas aeruginosa, Pseudomonas putida, Ralstonia pickettii and Ochrobactrum anthropii. Only one strain was Gram-positive and of cylindrical shape. The results of the study indicate the potential of immobilised bacteria capable of degrading chlorinated aliphatic hydrocarbons for the air and wastewater treatment. The low cost of the treatment process is an advantage.
Collapse
Affiliation(s)
- Agnieszka Tabernacka
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Ewa Zborowska
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Katarzyna Pogoda
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Marcin Żołądek
- a Biology Division, Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| |
Collapse
|
29
|
Lima GDP, Meyer JR, Khosla K, Dunfield KE, Parker BL. Spatial variability of microbial communities in a fractured sedimentary rock matrix impacted by a mixed organics plume. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 218:110-119. [PMID: 30342835 DOI: 10.1016/j.jconhyd.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 05/20/2023]
Abstract
Dissolved phase contaminants, transported by diffusion into the low permeability matrix of fractured sedimentary rock, pose a challenge to groundwater cleanup efforts because this stored mass may persist even when the upgradient source zone is removed. In this context, if contaminant biodegradation takes place within the low permeability matrix, plume persistence may be substantially reduced. Therefore, it is important to characterize microbial communities within the low permeability, rock matrix pores, instead of only from groundwater samples, which represent biomass from fast flowing fractures. This research relies on depth-discrete data from both core and groundwater samples collected from two locations representing a mid-plume and plume front condition within an aged, mixed organic contaminant plume in a sedimentary rock aquifer. Results from multiple analyte measurements on rock and groundwater indicate that biodegradation in the lower permeability matrix of fractured sedimentary rocks and the microbial consortia is spatially variable due to differences in hydrochemistry, redox conditions, and contaminant concentrations. Dechlorinating microorganisms were detected in the sandstone matrix at both locations, but the detected microbial diversity calculated with PCR-DGGE was significantly higher in samples collected from the core located closer to the source zone, where contaminant concentrations are higher and contaminant compositions more diverse, compared to samples from the plume front location.
Collapse
Affiliation(s)
- Gláucia da P Lima
- G(360) Institute for Groundwater Research at the University of Guelph, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| | - Jessica R Meyer
- G(360) Institute for Groundwater Research at the University of Guelph, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| | - Kamini Khosla
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| | - Kari E Dunfield
- School of Environmental Sciences, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| | - Beth L Parker
- G(360) Institute for Groundwater Research at the University of Guelph, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
30
|
Wanner P, Parker BL, Chapman SW, Lima G, Gilmore A, Mack EE, Aravena R. Identification of Degradation Pathways of Chlorohydrocarbons in Saturated Low-Permeability Sediments Using Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7296-7306. [PMID: 29865795 DOI: 10.1021/acs.est.8b01173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aims to investigate whether compound-specific carbon isotope analysis (CSIA) can be used to differentiate the degradation pathways of chlorohydrocarbons in saturated low-permeability sediments. For that purpose, a site was selected, where a complex mixture of chlorohydrocarbons contaminated an aquifer-aquitard system. Almost 50 years after contaminant releases, high-resolution concentration, CSIA, and microbial profiles were determined. The CSIA profiles showed that in the aquitard cis-dichloroethene (cDCE), first considered as a degradation product of trichloroethene (TCE), is produced by the dichloroelimination of 1,1,2,2-tetrachloroethane (TeCA). In contrast, TeCA degrades to TCE via dehydrohalogenation in the aquifer, indicating that the aquifer-aquitard interface separates two different degradation pathways for TeCA. Moreover, the CSIA profiles showed that chloroform (CF) is degraded to dichloromethane (DCM) via hydrogenolysis in the aquitard and, to a minor degree, produced by the degradation of carbon tetrachloride (CT). Several microorganisms capable of degrading chlorohydrocarbons were detected in the aquitard, suggesting that aquitard degradation is microbially mediated. Furthermore, numerical simulations reproduced the aquitard concentration and CSIA profiles well, which allowed the determination of degradation rates for each transformation pathway. This improves the prediction of contaminant fate in the aquitard and potential magnitude of impacts on the adjacent aquifer due to back-diffusion.
Collapse
Affiliation(s)
- Philipp Wanner
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Beth L Parker
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Steven W Chapman
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
| | - Glaucia Lima
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
- Department of Civil Engineering , University of Toronto , 35 Saint George Street , Toronto , Ontario , Canada , M5S 1A4
| | - Adam Gilmore
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
- Regional Municipality of Halton , 1151 Bronte Road , Oakville , Ontario , Canada L6M 3L1
| | - E Erin Mack
- DuPont , 974 Centre Road , Wilmington , Delaware 19805 , United States
| | - Ramon Aravena
- G360 Institute for Groundwater Research, College of Engineering and Physical Sciences , University of Guelph , 50 Stone Road East , Guelph , Ontario , Canada N1G 2W1
- Department of Earth and Environmental Sciences , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3GI
| |
Collapse
|
31
|
Puentes Jácome LA, Edwards EA. A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture. FEMS Microbiol Ecol 2018; 93:4569067. [PMID: 29088371 DOI: 10.1093/femsec/fix141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Chlorobenzenes are soil and groundwater pollutants of concern that can be reductively dehalogenated by organohalide-respiring bacteria from the genera Dehalococcoides and Dehalobacter. The bioaugmentation culture KB-1® harbours Dehalococcoides mccartyi spp. that reductively dehalogenate trichloroethene to ethene. It contains more than 30 reductive dehalogenase genes; some of them are highly similar to genes found in the chlorobenzene-respiring Dehalococcoides mccartyi strain CBDB1. We explored the chlorobenzene dehalogenation capability of the KB-1 enrichment culture using 1,2,4-trichlorobenzene (1,2,4-TCB). We achieved adaptation of KB-1 to 1,2,4-TCB that is dehalogenated to a mixture of dichlorobenzenes, and subsequently to monochlorobenzene and benzene. Surprisingly, a native Dehalobacter population, and not a Dehalococcoides population, couples the dechlorination of 1,2,4-TCB to growth achieving an average yield of 1.1 ± 0.6 × 1013 cells per mole of Cl- released. Interestingly, the dechlorination of 1,2,4-TCB occurs alongside the complete dechlorination of trichloroethene to ethene in cultures fed both electron acceptors. Dehalobacter was not previously identified as a major player in KB-1, but its ecological niche was favoured by the introduction of 1,2,4-TCB. Based on 16S rRNA phylogeny, Dehalobacter populations seem to cluster into specialised clades, and are likely undergoing substrate specialisation as a strategy to reduce competition for electron acceptors.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
32
|
Nobre RCM, Nobre MMM, Campos TMP, Ogles D. In-situ biodegradation potential of 1,2-DCA and VC at sites with different hydrogeological settings. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:417-426. [PMID: 28743073 DOI: 10.1016/j.jhazmat.2017.07.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
This paper investigates the feasibility of applying in-situ Bioremediation (ISB) to three sites contaminated with vinyl chloride and/or chlorinated alkanes such as 1,2-DCA and 1,1,2-TCA, presenting distinct hydrogeological settings and history of contaminant loading. Biotransformation of these compounds is well established in laboratory studies and pure cultures. Due to confidential aspects, however, few field data are available to support real case studies to the predictability of their fate and lifetime in soil and groundwater. Bio-Trap® In Situ Microcosm (ISM) studies were performed in selected monitoring wells, and consisted of a control unit which simulated Monitored Natural Attenuation conditions and other units which were amended with either lactate, emulsified vegetable oil (EVO) or molasses as electron donors. For wells with moderate Dhc counts, the ISM study demonstrated that electron donor addition could stimulate further growth of Dhc and enhance reductive dechlorination. Conversely, for wells with high population counts, substrate addition did not alter results significantly. Site-specific determining factors that most influenced the biodegradation results were microbial activity, soil texture and presence of organic matter, site pH, redox conditions and presence of free phase.
Collapse
Affiliation(s)
- R C M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - M M M Nobre
- Universidade Federal de Alagoas, IGDEMA/UFAL, BR-104, Maceio, AL, Brazil.
| | - T M P Campos
- Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Brazil.
| | - D Ogles
- Microbial Insights, Knoxville, TN, USA.
| |
Collapse
|
33
|
Mortan SH, Martín-González L, Vicent T, Caminal G, Nijenhuis I, Adrian L, Marco-Urrea E. Detoxification of 1,1,2-trichloroethane to ethene in a bioreactor co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:218-225. [PMID: 28273571 DOI: 10.1016/j.jhazmat.2017.02.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/30/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
1,1,2-Trichloroethane (1,1,2-TCA) is a non-flammable organic solvent and common environmental contaminant in groundwater. Organohalide-respiring bacteria are key microorganisms to remediate 1,1,2-TCA because they can gain metabolic energy during its dechlorination under anaerobic conditions. However, all current isolates produce hazardous end products such as vinyl chloride, monochloroethane or 1,2-dichloroethane that accumulate in the medium. Here, we constructed a syntrophic co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains to achieve complete detoxification of 1,1,2-TCA to ethene. In this co-culture, Dehalogenimonas transformed 1,1,2-TCA via dihaloelimination to vinyl chloride, whereas Dehalococcoides reduced vinyl chloride via hydrogenolysis to ethene. Molasses, pyruvate, and lactate supported full dechlorination of 1,1,2-TCA in serum bottle co-cultures. Scale up of the cultivation to a 5-L bioreactor operating for 76d in fed-batch mode was successful with pyruvate as substrate. This synthetic combination of bacteria with known complementary metabolic capabilities demonstrates the potential environmental relevance of microbial cooperation to detoxify 1,1,2-TCA.
Collapse
Affiliation(s)
- Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Lucía Martín-González
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC) CSIC, Barcelona, Spain
| | - Ivonne Nijenhuis
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
34
|
Hieke ASC, Brinkmeyer R, Yeager KM, Schindler K, Zhang S, Xu C, Louchouarn P, Santschi PH. Widespread Distribution of Dehalococcoides mccartyi in the Houston Ship Channel and Galveston Bay, Texas, Sediments and the Potential for Reductive Dechlorination of PCDD/F in an Estuarine Environment. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:630-644. [PMID: 27844293 DOI: 10.1007/s10126-016-9723-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/04/2016] [Indexed: 05/14/2023]
Abstract
Sediments in the Houston Ship Channel and upper Galveston Bay, Texas, USA, are polluted with polychlorinated dibenzo-p-dioxins/furans (PCDD/F; ≤46,000 ng/kg dry weight (wt.)) with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener, contributing >50 % of the total toxic equivalents (TEQ) at most locations. We measured PCDD/F concentrations in sediments and evaluated the potential for enhanced in situ biodegradation by surveying for Dehalococcoides mccartyi, an obligate organohalide respiring bacterium. Dehalococcoides spp. (98 % similar to D. mccartyi) and 22 other members of the class Dehalococcoidia were predominant 16S ribosomal RNA (rRNA) phylotypes. Dehalococcoides spp. were also present in the active fraction of the bacterial community. Presence/absence PCR screening detected D. mccartyi in sediment cores and sediment grab samples having at least 1 ng/kg dry wt. TEQ at salinities ranging from 0.6 to 19.5 PSU, indicating that they are widespread in the estuarine environment. Organic carbon-only and organic carbon + sulfate-amended sediment microcosm experiments resulted in ∼60 % reduction of ambient 2,3,7,8-TCDD in just 24 months leading to reductions in total TEQs by 38.4 and 45.0 %, respectively, indicating that 2,3,7,8-TCDD degradation is occurring at appreciable rates.
Collapse
Affiliation(s)
- Anne-Sophie Charlotte Hieke
- Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX, 77843, USA.
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX, 77843, USA.
| | - Robin Brinkmeyer
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Kevin M Yeager
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, Lexington, KY, 40506, USA
| | - Kimberly Schindler
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Research Building, Lexington, KY, 40506, USA
| | - Saijin Zhang
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Chen Xu
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Patrick Louchouarn
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University, 200 Seawolf Parkway, Galveston, TX, 77553, USA
| |
Collapse
|
35
|
Stedtfeld RD, Stedtfeld TM, Samhan F, Kanitkar YH, Hatzinger PB, Cupples AM, Hashsham SA. Direct loop mediated isothermal amplification on filters for quantification of Dehalobacter in groundwater. J Microbiol Methods 2016; 131:61-67. [PMID: 27720723 DOI: 10.1016/j.mimet.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
Nucleic acid amplification of biomarkers is increasingly used to monitor microbial activity and assess remedial performance in contaminated aquifers. Previous studies described the use of filtration, elution, and direct isothermal amplification (i.e. no DNA extraction and purification) as a field-able means to quantify Dehalococcoides spp. in groundwater. This study expands previous work with direct loop mediated isothermal amplification (LAMP) for the detection and quantification of Dehalobacter spp. in groundwater. Experiments tested amplification of DNA with and without crude lysis and varying concentrations of humic acid. Three separate field-able methods of biomass concentration with eight aquifer samples were also tested, comparing direct LAMP with traditional DNA extraction and quantitative PCR (qPCR). A new technique was developed where filters were amplified directly within disposable Gene-Z chips. The direct filter amplification (DFA) method eliminated an elution step and provided a detection limit of 102Dehalobacter cells per 100mL. LAMP with crudely lysed Dehalobacter had a negligible effect on threshold time and sensitivity compared to lysed samples. The LAMP assay was more resilient than traditional qPCR to humic acid in sample, amplifying with up to 100mg per L of humic acid per reaction compared to 1mg per L for qPCR. Of the tested field-able concentrations methods, DFA had the lowest coefficient of variation among Dehalobacter spiked groundwater samples and lowest threshold time indicating high capture efficiency and low inhibition. While demonstrated with Dehalobacter, the DFA method can potentially be used for a number of applications requiring field-able, rapid (<60min) and highly sensitive quantification of microorganisms in environmental water samples.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Tiffany M Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Farag Samhan
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Water Pollution Control, National Research Centre, 33 El-Bohouth, P.O. 12622, Ad-Doqi, Giza, Egypt
| | - Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Mondal PK, Lima G, Zhang D, Lomheim L, Tossell RW, Patel P, Sleep BE. Evaluation of peat and sawdust as permeable reactive barrier materials for stimulating in situ biodegradation of trichloroethene. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:37-48. [PMID: 27054663 DOI: 10.1016/j.jhazmat.2016.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/29/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Two low cost solid organic materials, sawdust and peat, were tested in laboratory batch microcosm and flow-through column experiments to determine their suitability for application in permeable reactive barriers (PRBs) supporting biodegradation of trichloroethene (TCE). In microcosms with peat, TCE (∼30μM) was sequentially and completely degraded to cis-dichloroethene (cDCE), vinyl chloride, and ethene through reductive dechlorination. In microcosms with sawdust, reductive dechlorination of TCE stopped at cDCE and high methane production (up to 3000μM) was observed. 16S rRNA gene copy numbers of Dehalobacter and Archaea were higher (1000 and 10 times, respectively) in sawdust microcosms than those in peat microcosms. Dehalococcoides and vcrA gene copy numbers were 10 times higher in peat microcosms than in sawdust microcosms. These gene copy number differences are consistent with the extent of TCE degradation and production of methane in the microcosms. Flow-through column experiments showed that hydraulic conductivity reduction with time was consistently greater in the sawdust column compared to the peat column. The greater conductivity reduction was likely due to biofouling and methane gas bubble formation. The experimental observations indicate that peat has potential to be a better solid organic material than sawdust to support reductive dechlorination of TCE in PRB applications.
Collapse
Affiliation(s)
- Pulin K Mondal
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Glaucia Lima
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - David Zhang
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Line Lomheim
- BioZone, University of Toronto, 200 College Avenue, Toronto, Ontario M5S 3E5, Canada
| | - Robert W Tossell
- Pinchin Ltd., 2470 Milltower Court, Mississauga, Ontario L5 N 7W5, Canada
| | - Paresh Patel
- Pinchin Ltd., 2470 Milltower Court, Mississauga, Ontario L5 N 7W5, Canada
| | - Brent E Sleep
- Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada.
| |
Collapse
|
37
|
Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M. Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. CHEMOSPHERE 2016; 157:276-285. [PMID: 27236848 DOI: 10.1016/j.chemosphere.2016.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 04/11/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Application of Fenton's reagent and enhanced reductive dechlorination are currently the most common remediation strategies resulting in removal of chlorinated ethenes. In this study, the influence of such techniques on organohalide-respiring bacteria was assessed at a site contaminated by chlorinated ethenes using a wide spectrum of molecular genetic markers, including 16S rRNA gene of the organohalide-respiring bacteria Dehaloccocoides spp., Desulfitobacterium and Dehalobacter; reductive dehalogenase genes (vcrA, bvcA) responsible for dechlorination of vinyl chloride and sulphate-reducing and denitrifying bacteria. In-situ application of hydrogen peroxide to induce a Fenton-like reaction caused an instantaneous decline in all markers below detection limit. Two weeks after application, the bvcA gene and Desulfitobacterium relative abundance increased to levels significantly higher than those prior to application. No significant decrease in the concentration of a range of chlorinated ethenes was observed due to the low hydrogen peroxide dose used. A clear increase in marker levels was also observed following in-situ application of sodium lactate, which resulted in a seven-fold increase in Desulfitobacterium and a three-fold increase in Dehaloccocoides spp. after 70 days. An increase in the vcrA gene corresponded with increase in Dehaloccocoides spp. Analysis of selected markers clearly revealed a positive response of organohalide-respiring bacteria to biostimulation and unexpectedly fast recovery after the Fenton-like reaction.
Collapse
Affiliation(s)
- Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Marie Czinnerová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Vojtěch Stejskal
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
38
|
Koenig JC, Boparai HK, Lee MJ, O'Carroll DM, Barnes RJ, Manefield MJ. Particles and enzymes: Combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. JOURNAL OF HAZARDOUS MATERIALS 2016; 308:106-112. [PMID: 26808236 DOI: 10.1016/j.jhazmat.2015.12.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/16/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Nanoscale zero valent iron (nZVI) and organochlorine respiring bacteria (ORB) are two technologies used to detoxify chlorinated aliphatic hydrocarbons (CAHs). nZVI can rapidly detoxify high CAH concentrations, but is quickly oxidised and unable to degrade certain CAHs (e.g., 1,2-dichlorothane). In contrast, ORB can dechlorinate CAHs resistant to nZVI (e.g., 1,2-dichlorothane) but are inhibited by other CAHs of concern degradable by nZVI (e.g., chloroform and carbon tetrachloride). Combining the two was proposed as a unique treatment train to overcome each technology's shortcomings. In this study, this combined remedy was investigated using a mixture of 1,2-dichloroethane, degradable by ORB but not nZVI, and 1,1,2-trichloroethane, susceptible to both. Results indicated that nZVI rapidly dechlorinated 1,1,2-trichloroethane when supplied above 0.5 g/L, however ORB were inhibited and unable to dechlorinate 1,2-dichloroethane. pH increase and ionic species associated with nZVI did not significantly impact ORB, pinpointing Fe(0) particles as responsible for ORB inhibition. Below 0.05 g/L nZVI, ORB activity was stimulated. Results suggest that combining ORB and nZVI at appropriate doses can potentially treat a wider range of CAHs than each individual remedy. At field sites where nZVI was applied, it is likely that in situ nZVI concentrations were below the threshold of negative consequences.
Collapse
Affiliation(s)
- Joanna C Koenig
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
| | - Hardiljeet K Boparai
- Dept. of Civil and Environmental Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Matthew J Lee
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, The University of New South Wales, Manly Vale, Sydney, NSW 2093, Australia
| | - Robert J Barnes
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - Michael J Manefield
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
39
|
Patterson BM, Lee M, Bastow TP, Wilson JT, Donn MJ, Furness A, Goodwin B, Manefield M. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 188:1-11. [PMID: 26934432 DOI: 10.1016/j.jconhyd.2016.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/05/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170±20 mg L(-1) to 39±11 mg L(-1), the degradation half-life decreased 5-fold to 0.83±0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from -14.6±0.7‰ to -0.72±0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.
Collapse
Affiliation(s)
- Bradley M Patterson
- CSIRO Land and Water Flagship, Private Bag No. 5, Wembley, WA 6913, Australia; School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia.
| | - Matthew Lee
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| | - Trevor P Bastow
- CSIRO Land and Water Flagship, Private Bag No. 5, Wembley, WA 6913, Australia
| | - John T Wilson
- Scissortail Environment Solutions, LLC. Ada, OK 74821, USA
| | - Michael J Donn
- CSIRO Land and Water Flagship, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Andrew Furness
- CSIRO Land and Water Flagship, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Bryan Goodwin
- Goodwin Remediation Consulting, Victoria 3018, Australia
| | - Mike Manefield
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Wong YK, Holland SI, Ertan H, Manefield M, Lee M. Isolation and characterization ofDehalobacter sp.strain UNSWDHB capable of chloroform and chlorinated ethane respiration. Environ Microbiol 2016; 18:3092-105. [DOI: 10.1111/1462-2920.13287] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Yie K. Wong
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Sophie I. Holland
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
- Department of Molecular Biology and Genetics; Istanbul University; Turkey
| | - Mike Manefield
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney Australia
| |
Collapse
|
41
|
Jugder BE, Ertan H, Bohl S, Lee M, Marquis CP, Manefield M. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation. Front Microbiol 2016; 7:249. [PMID: 26973626 PMCID: PMC4771760 DOI: 10.3389/fmicb.2016.00249] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non- or lesser-halogenated compounds that are mostly less toxic to the environment or more easily degraded. At the heart of these processes are reductive dehalogenases (RDases), which are membrane bound enzymes coupled with other components that facilitate dehalogenation of organohalides to generate cellular energy. This review focuses on RDases, concentrating on those which have been purified (partially or wholly) and functionally characterized. Further, the paper reviews the major bacteria involved in organohalide breakdown and the evidence for microbial evolution of RDases. Finally, the capacity for using ORB in a bioremediation and bioaugmentation capacity are discussed.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Molecular Biology and Genetics, Istanbul UniversityIstanbul, Turkey
| | - Susanne Bohl
- School of Biotechnology and Biomolecular Sciences, University of New South WalesSydney, NSW, Australia; Department of Biotechnology, Mannheim University of Applied SciencesMannheim, Germany
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
42
|
Tang S, Wang PH, Higgins SA, Löffler FE, Edwards EA. Sister Dehalobacter Genomes Reveal Specialization in Organohalide Respiration and Recent Strain Differentiation Likely Driven by Chlorinated Substrates. Front Microbiol 2016; 7:100. [PMID: 26903979 PMCID: PMC4751268 DOI: 10.3389/fmicb.2016.00100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
The genomes of two closely related Dehalobacter strains (strain CF and strain DCA) were assembled from the metagenome of an anaerobic enrichment culture that reductively dechlorinates chloroform (CF), 1,1,1-trichloroethane (1,1,1-TCA) and 1,1-dichloroethane (1,1-DCA). The 3.1 Mbp genomes of strain CF (that dechlorinates CF and 1,1,1-TCA) and strain DCA (that dechlorinates 1,1-DCA) each contain 17 putative reductive dehalogenase homologous (rdh) genes. These two genomes were systematically compared to three other available organohalide-respiring Dehalobacter genomes (Dehalobacter restrictus strain PER-K23, Dehalobacter sp. strain E1 and Dehalobacter sp. strain UNSWDHB), and to the genomes of Dehalococcoides mccartyi strain 195 and Desulfitobacterium hafniense strain Y51. This analysis compared 42 different metabolic and physiological categories. The genomes of strains CF and DCA share 90% overall average nucleotide identity and >99.8% identity over a 2.9 Mbp alignment that excludes large insertions, indicating that these genomes differentiated from a close common ancestor. This differentiation was likely driven by selection pressures around two orthologous reductive dehalogenase genes, cfrA and dcrA, that code for the enzymes that reduce CF or 1,1,1-TCA and 1,1-DCA. The many reductive dehalogenase genes found in the five Dehalobacter genomes cluster into two small conserved regions and were often associated with Crp/Fnr transcriptional regulators. Specialization is on-going on a strain-specific basis, as some strains but not others have lost essential genes in the Wood-Ljungdahl (strain E1) and corrinoid biosynthesis pathways (strains E1 and PER-K23). The gene encoding phosphoserine phosphatase, which catalyzes the last step of serine biosynthesis, is missing from all five Dehalobacter genomes, yet D. restrictus can grow without serine, suggesting an alternative or unrecognized biosynthesis route exists. In contrast to D. mccartyi, a complete heme biosynthesis pathway is present in the five Dehalobacter genomes. This pathway corresponds to a newly described alternative heme biosynthesis route first identified in Archaea. This analysis of organohalide-respiring Firmicutes and Chloroflexi reveals profound evolutionary differences despite very similar niche-specific metabolism and function.
Collapse
Affiliation(s)
- Shuiquan Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Po Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| | - Steven A Higgins
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA
| | - Frank E Löffler
- Department of Microbiology, University of TennesseeKnoxville, TN, USA; Center for Environmental Biotechnology, University of TennesseeKnoxville, TN, USA; University of Tennessee and Oak Ridge National Laboratory Joint Institute for Biological Sciences and Biosciences Division, Oak Ridge National LaboratoryOak Ridge, TN, USA; Department of Civil and Environmental Engineering, University of TennesseeKnoxville, TN, USA
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
43
|
Leitão P, Rossetti S, Nouws HPA, Danko AS, Majone M, Aulenta F. Bioelectrochemically-assisted reductive dechlorination of 1,2-dichloroethane by a Dehalococcoides-enriched microbial culture. BIORESOURCE TECHNOLOGY 2015; 195:78-82. [PMID: 26099437 DOI: 10.1016/j.biortech.2015.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to verify the possibility to use a polarized graphite electrode as an electron donor for the reductive dechlorination of 1,2-dichloroethane, an ubiquitous groundwater contaminant. The rate of 1,2-DCA dechlorination almost linearly increased by decreasing the set cathode potential over a broad range of set cathode potentials (i.e., from -300 mV to -900 mV vs. the standard hydrogen electrode). This process was primarily dependent on electrolytic H2 generation. On the other hand, reductive dechlorination proceeded (although quite slowly) with a very high Coulombic efficiency (near 70%) at a set cathode potential of -300 mV, where no H2 production occurred. Under this condition, reductive dechlorination was likely driven by direct electron uptake from the surface of the polarized electrode. Taken as a whole, this study further extends the range of chlorinated contaminants which can be treated with bioelectrochemical systems.
Collapse
Affiliation(s)
- Patrícia Leitão
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy; CERENA, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE/LAQV, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy
| | - Henri P A Nouws
- REQUIMTE/LAQV, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Anthony S Danko
- CERENA, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy.
| |
Collapse
|
44
|
Yang C, Kublik A, Weidauer C, Seiwert B, Adrian L. Reductive Dehalogenation of Oligocyclic Phenolic Bromoaromatics by Dehalococcoides mccartyi Strain CBDB1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8497-8505. [PMID: 26101958 DOI: 10.1021/acs.est.5b01401] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dehalococcoides mccartyi strains transform many halogenated compounds and are used for bioremediation. Such anaerobic transformations were intensively studied with chlorinated and simply structured compounds such as chlorinated benzenes, ethenes, and ethanes. However, many halogenated oligocyclic aromatic compounds occur in nature as either naturally produced materials or as part of commercial products such as pharmaceuticals, pesticides, or flame retardants. Here, we demonstrate that the D. mccartyi strain CBDB1 reductively debrominated two oligocyclic aromatic phenolic compounds, tetrabromobisphenol A (TBBPA) and bromophenol blue (BPB). The strain CBDB1 completely converted TBBPA to bisphenol A and BPB to phenol red with a stepwise removal of all bromide substituents. Debromination (but no cell growth) was detected in the cultures cultivated with TBBPA. In contrast, strain CBDB1 grew when interacting with BPB, demonstrating that this substrate was used as an electron acceptor for organobromine respiration. High doses of BPB delayed debromination and inhibited growth in the early cultivation phase. A higher toxicity of TBBPA compared with that of BPB might be due to the higher lipophilicity of TBBPA. Mass spectrometric analyses of whole-cell extracts demonstrated that two proteins encoded by the reductive dehalogenase homologous genes CbdbA1092 and CbdbA1503 were specifically induced by the used oligocyclic compounds, whereas others (e.g., CbdbA84 (CbrA)) were downregulated.
Collapse
Affiliation(s)
- Chao Yang
- †Department of Isotope Biogeochemistry and ‡Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Anja Kublik
- †Department of Isotope Biogeochemistry and ‡Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Cindy Weidauer
- †Department of Isotope Biogeochemistry and ‡Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- †Department of Isotope Biogeochemistry and ‡Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Lorenz Adrian
- †Department of Isotope Biogeochemistry and ‡Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
45
|
Identity and Substrate Specificity of Reductive Dehalogenases Expressed in Dehalococcoides-Containing Enrichment Cultures Maintained on Different Chlorinated Ethenes. Appl Environ Microbiol 2015; 81:4626-33. [PMID: 25934625 DOI: 10.1128/aem.00536-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Many reductive dehalogenases (RDases) have been identified in organohalide-respiring microorganisms, and yet their substrates, specific activities, and conditions for expression are not well understood. We tested whether RDase expression varied depending on the substrate-exposure history of reductive dechlorinating communities. For this purpose, we used the enrichment culture KB-1 maintained on trichloroethene (TCE), as well as subcultures maintained on the intermediates cis-dichloroethene (cDCE) and vinyl chloride (VC). KB-1 contains a TCE-to-cDCE dechlorinating Geobacter and several Dehalococcoides strains that together harbor many of the known chloroethene reductases. Expressed RDases were identified using blue native polyacrylamide gel electrophoresis, enzyme assays in gel slices, and peptide sequencing. As anticipated but never previously quantified, the RDase from Geobacter was only detected transiently at the beginning of TCE dechlorination. The Dehalococcoides RDase VcrA and smaller amounts of TceA were expressed in the parent KB-1 culture during complete dechlorination of TCE to ethene regardless of time point or amended substrate. The Dehalococcoides RDase BvcA was only detected in enrichments maintained on cDCE as growth substrates, in roughly equal abundance to VcrA. Only VcrA was detected in subcultures enriched on VC. Enzyme assays revealed that 1,1-DCE, a substrate not used for culture enrichment, afforded the highest specific activity. trans-DCE was substantially dechlorinated only by extracts from cDCE enrichments expressing BvcA. RDase gene distribution indicated enrichment of different strains of Dehalococcoides as a function of electron acceptor TCE, cDCE, or VC. Each chloroethene reductase has distinct substrate preferences leading to strain selection in mixed communities.
Collapse
|
46
|
Zhao S, Ding C, He J. Detoxification of 1,1,2-trichloroethane to ethene by desulfitobacterium and identification of its functional reductase gene. PLoS One 2015; 10:e0119507. [PMID: 25835017 PMCID: PMC4383557 DOI: 10.1371/journal.pone.0119507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
1,1,2-trichloroethane (1,1,2-TCA) has become a common groundwater pollutant due to historically extensive utilization, improper disposal, as well as from incomplete dechlorination of 1,1,2,2-tetrachloroethane. Currently, limited information is available on microbial detoxification of 1,1,2-TCA. Desulfitobacterium sp. strain PR, which was isolated from an anaerobic bioreactor maintained to dechlorinate chloroethenes/ethanes, exhibited the capacity to dechlorinate 1,1,1-trichloroethane and chloroform. In this study, the dechlorinating ability of strain PR was further explored. Strain PR showed the capability to dechlorinate 1,1,2-TCA (~1.12 mM) predominantly to 1,2-dichloroethane (1,2-DCA) and chloroethane, and to trace amounts of vinyl chloride and ethene within 20 days. Strain PR coupled growth with dechlorination of 1,1,2-TCA to 1,2-DCA, while no cell growth was observed with dechlorination of 1,2-DCA to chloroethane. Later, through transcriptomic and enzymatic analysis, the reductive dehalogenase CtrA, which was previously reported to be responsible for 1,1,1-trichloroethane and chloroform dechlorination, was identified as the 1,1,2-TCA reductive dehalogenase. Since trichloroethene (TCE) is usually co-contaminated with 1,1,2-TCA, a co-culture containing Dehalococcoides mccartyi strain 11a capable of detoxifying TCE and 1,2-DCA and strain PR was established. Interestingly, this co-culture dechlorinated 1,1,2-TCA and TCE to the non-toxic end-product ethene within 48 days without chloroethane production. This novel pathway avoids production of the carcinogenic intermediate dechlorination product vinyl chloride, providing a more environmentally friendly strategy to treat 1,1,2-TCA.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chang Ding
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
- * E-mail:
| |
Collapse
|
47
|
Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination. Appl Microbiol Biotechnol 2015; 99:6515-26. [PMID: 25820643 DOI: 10.1007/s00253-015-6545-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.
Collapse
Affiliation(s)
- Yi Liang
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
48
|
Rupakula A, Lu Y, Kruse T, Boeren S, Holliger C, Smidt H, Maillard J. Functional genomics of corrinoid starvation in the organohalide-respiring bacterium Dehalobacter restrictus strain PER-K23. Front Microbiol 2015; 5:751. [PMID: 25610435 PMCID: PMC4285132 DOI: 10.3389/fmicb.2014.00751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/10/2014] [Indexed: 12/03/2022] Open
Abstract
De novo corrinoid biosynthesis represents one of the most complicated metabolic pathways in nature. Organohalide-respiring bacteria (OHRB) have developed different strategies to deal with their need of corrinoid, as it is an essential cofactor of reductive dehalogenases, the key enzymes in OHR metabolism. In contrast to Dehalococcoides mccartyi, the genome of Dehalobacter restrictus strain PER-K23 contains a complete set of corrinoid biosynthetic genes, of which cbiH appears to be truncated and therefore non-functional, possibly explaining the corrinoid auxotrophy of this obligate OHRB. Comparative genomics within Dehalobacter spp. revealed that one (operon-2) of the five distinct corrinoid biosynthesis associated operons present in the genome of D. restrictus appeared to be present only in that particular strain, which encodes multiple members of corrinoid transporters and salvaging enzymes. Operon-2 was highly up-regulated upon corrinoid starvation both at the transcriptional (346-fold) and proteomic level (46-fold on average), in line with the presence of an upstream cobalamin riboswitch. Together, these data highlight the importance of this operon in corrinoid homeostasis in D. restrictus and the augmented salvaging strategy this bacterium adopted to cope with the need for this essential cofactor.
Collapse
Affiliation(s)
- Aamani Rupakula
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Yue Lu
- Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University Wageningen, Netherlands
| | - Thomas Kruse
- Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Agrotechnology and Food Sciences, Wageningen University Wageningen, Netherlands
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Hauke Smidt
- Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University Wageningen, Netherlands
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
49
|
Baric M, Pierro L, Pietrangeli B, Papini MP. Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. N Biotechnol 2014; 31:377-82. [DOI: 10.1016/j.nbt.2013.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
|
50
|
Yu HY, Wang YK, Chen PC, Li FB, Chen MJ, Hu M. The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol. JOURNAL OF HAZARDOUS MATERIALS 2014; 272:10-19. [PMID: 24662270 DOI: 10.1016/j.jhazmat.2014.02.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/08/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Pentachlorophenol (PCP) is widely distributed in the soil, and nitrogen fertilizer is extensively used in agricultural production. However, studies on the fate of organic contaminants as affected by nitrogen fertilizer application have been rare and superficial. The present study aimed to examine the effect of ammonium chloride (NH4Cl) and urea (CO(NH2)2) application on the reductive transformation of PCP in a paddy soil. The study showed that the addition of low concentrations of NH4Cl/CO(NH2)2 enhanced the transformation of PCP, while the addition of high concentrations of NH4Cl/CO(NH2)2 had the opposite effect. The variations in the abundance of soil microbes in response to NH4Cl/CO(NH2)2 addition showed that both NH4Cl and CO(NH2)2 had inhibitory effects on the growth of dissimilatory iron-reducing bacteria (DIRB) of the genus Comamonas. In contrast, for the genus Shewanella, low concentrations of NH4Cl inhibited growth, and high concentrations of NH4Cl enhanced growth, whereas all concentrations of CO(NH2)2 showed enhancement effects. In addition, consistent patterns of variation were found between the abundances of dechlorinating bacteria in the genus Dehalobacter and PCP transformation rates under NH4Cl/CO(NH2)2 addition. In conclusion, nitrogen application produced variations in the structure of the soil microbial community, especially in the abundance of dissimilatory iron-reducing bacteria and dechlorinating bacteria, which, in turn, affected PCP dechlorination.
Collapse
Affiliation(s)
- Huan-Yun Yu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, PR China
| | - Yong-kui Wang
- Environmental Science and Engineering College, Hubei Polytechic University, Huangshi 435003, Hubei, PR China
| | - Peng-cheng Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, PR China
| | - Fang-bai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, PR China.
| | - Man-jia Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, PR China
| | - Min Hu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, PR China
| |
Collapse
|