1
|
Ai C, Cui P, Liu C, Wu J, Xu Y, Liang X, Yang QE, Tang X, Zhou S, Liao H, Friman VP. Viral and thermal lysis facilitates transmission of antibiotic resistance genes during composting. Appl Environ Microbiol 2024; 90:e0069524. [PMID: 39078126 PMCID: PMC11337816 DOI: 10.1128/aem.00695-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024] Open
Abstract
While the distribution of extracellular ARGs (eARGs) in the environment has been widely reported, the factors governing their release remain poorly understood. Here, we combined multi-omics and direct experimentation to test whether the release and transmission of eARGs are associated with viral lysis and heat during cow manure composting. Our results reveal that the proportion of eARGs increased 2.7-fold during composting, despite a significant and concomitant reduction in intracellular ARG abundances. This relative increase of eARGs was driven by composting temperature and viral lysis of ARG-carrying bacteria based on metagenome-assembled genome (MAG) analysis. Notably, thermal lysis of mesophilic bacteria carrying ARGs was a key factor in releasing eARGs at the thermophilic phase, while viral lysis played a relatively stronger role during the non-thermal phase of composting. Furthermore, MAG-based tracking of ARGs in combination with direct transformation experiments demonstrated that eARGs released during composting pose a potential transmission risk. Our study provides bioinformatic and experimental evidence of the undiscovered role of temperature and viral lysis in co-driving the spread of ARGs in compost microbiomes via the horizontal transfer of environmentally released DNA. IMPORTANCE The spread of antibiotic resistance genes (ARGs) is a critical global health concern. Understanding the factors influencing the release of extracellular ARGs (eARGs) is essential for developing effective strategies. In this study, we investigated the association between viral lysis, heat, and eARG release during composting. Our findings revealed a substantial increase in eARGs despite reduced intracellular ARG abundance. Composting temperature and viral lysis were identified as key drivers, with thermal lysis predominant during the thermophilic phase and viral lysis during non-thermal phases. Moreover, eARGs released during composting posed a transmission risk through horizontal gene transfer. This study highlights the significance of temperature and phage lysis in ARG spread, providing valuable insights for mitigating antibiotic resistance threats.
Collapse
Affiliation(s)
- Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peng Cui
- Guangdong Provincial Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiawei Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Xu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Liang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Qiu-e Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | | |
Collapse
|
2
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
3
|
Marole TA, Sibanda T, Buys EM. Assessing probiotic viability in mixed species yogurt using a novel propidium monoazide (PMAxx)-quantitative PCR method. Front Microbiol 2024; 15:1325268. [PMID: 38389538 PMCID: PMC10882272 DOI: 10.3389/fmicb.2024.1325268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Viability is a prerequisite for any therapeutic benefits associated with the ingestion of probiotic bacteria. Current culture-based techniques are inadequate for the enumeration of probiotics in mixed-species food products. This study utilized a quantitative PCR (qPCR) method coupled with propidium monoazide (PMAxx), and novel species-specific tuf gene primers to selectively enumerate Lacticaseibacillus rhamnosus, Bifidobacterium spp., and yogurt starter cultures in mixed-species probiotic yogurt. The method was optimized for PMAxx concentration and specificity and evaluated for efficiency and applicability. PMAxx-qPCR showed high specificity to the target organisms in mixed-species yogurt, quantifying only viable cells. The linear dynamic ranges were established over five to seven orders of magnitude. The assay was reliable with an efficiency of 91-99%, R2 values > 0.99, and a good correlation to the plate count method (r = 0.882). The results of this study demonstrate the high selectivity, improved lead time, and reliability of PMAxx-qPCR over the culture-dependent method, making it a valuable tool for inline viability verification during processing and improving probiotic quality assurance for processors and consumers.
Collapse
Affiliation(s)
- Tlaleo A Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Koutsoumanis K, Ordóñez AA, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Banach J, Ottoson J, Zhou B, da Silva Felício MT, Jacxsens L, Martins JL, Messens W, Allende A. Microbiological hazards associated with the use of water in the post-harvest handling and processing operations of fresh and frozen fruits, vegetables and herbs (ffFVHs). Part 1 (outbreak data analysis, literature review and stakeholder questionnaire). EFSA J 2023; 21:e08332. [PMID: 37928944 PMCID: PMC10623241 DOI: 10.2903/j.efsa.2023.8332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.
Collapse
|
5
|
Zhuang L, Gong J, Shen Q, Yang J, Song C, Liu Q, Zhao B, Zhang Y, Zhu M. Advances in detection methods for viable Salmonella spp.: current applications and challenges. ANAL SCI 2023; 39:1643-1660. [PMID: 37378821 DOI: 10.1007/s44211-023-00384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Salmonella is a common intestinal pathogen that can cause food poisoning and intestinal disease. The high prevalence of Salmonella necessitates efficient and sensitive methods for its identification, detection, and monitoring, especially of viable Salmonella. Conventional culture methods need to be more laborious and time-consuming. And they are relatively limited in their ability to detect Salmonella in the viable but non-culturable status if present in the sample to be tested. As a result, there is an increasing need for rapid and accurate techniques to detect viable Salmonella spp. This paper reviewed the status and progress of various methods reported in recent years that can be used to detect viable Salmonella, such as culture-based methods, molecular methods targeting RNAs and DNAs, phage-based methods, biosensors, and some techniques that have the potential for future application. This review can provide researchers with a reference for additional method options and help facilitate the development of rapid and accurate assays. In the future, viable Salmonella detection approaches will become more stable, sensitive, and fast and are expected to play a more significant role in food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Qingxin Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Mengling Zhu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
6
|
Young GR, Sherry A, Smith DL. Built environment microbiomes transition from outdoor to human-associated communities after construction and commissioning. Sci Rep 2023; 13:15854. [PMID: 37740013 PMCID: PMC10516947 DOI: 10.1038/s41598-023-42427-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
The microbiota of the built environment is linked to usage, materials and, perhaps most importantly, human health. Many studies have attempted to identify ways of modulating microbial communities within built environments to promote health. None have explored how these complex communities assemble initially, following construction of new built environments. This study used high-throughput targeted sequencing approaches to explore bacterial community acquisition and development throughout the construction of a new build. Microbial sampling spanned from site identification, through the construction process to commissioning and use. Following commissioning of the building, bacterial richness and diversity were significantly reduced (P < 0.001) and community structure was altered (R2 = 0.14; P = 0.001). Greater longitudinal community stability was observed in outdoor environments than indoor environments. Community flux in indoor environments was associated with human interventions driving environmental selection, which increased 10.4% in indoor environments following commissioning. Increased environmental selection coincided with a 12% reduction in outdoor community influence on indoor microbiomes (P = 2.00 × 10-15). Indoor communities became significantly enriched with human associated genera including Escherichia, Pseudomonas, and Klebsiella spp. These data represent the first to characterize the initial assembly of bacterial communities in built environments and will inform future studies aiming to modulate built environment microbiota.
Collapse
Affiliation(s)
- Gregory R Young
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, NE1 8ST, UK
| | - Angela Sherry
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, NE1 8ST, UK
| | - Darren L Smith
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE1 8ST, UK.
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, NE1 8ST, UK.
| |
Collapse
|
7
|
Thilakarathna SH, Chui L. A Pilot Study to Detect Viable Salmonella spp. in Diarrheal Stool Using Viability Real-Time PCR as a Culture-Independent Diagnostic Tool in a Clinical Setting. Int J Mol Sci 2023; 24:9979. [PMID: 37373127 DOI: 10.3390/ijms24129979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Frontline laboratories are adopting culture-independent diagnostic testing (CIDT) such as nucleic acid amplification tests (NAATs) due to numerous advantages over culture-based testing methods. Paradoxically, the viability of pathogens, a crucial factor determining active infections, cannot be confirmed with current NAATs alone. A recent development of viability PCR (vPCR) was introduced to mitigate this limitation associated with real-time PCR (qPCR) by using a DNA-intercalating dye to remove residual and dead cell DNA. This study assessed the applicability of the vPCR assay on diarrheal stools. Eighty-five diarrheal stools confirmed for Salmonellosis were tested via qPCR and vPCR using in-house primers and probe targeting the invA gene. vPCR-negative stools (Ct cut off > 31) were enriched in mannitol selenite broth (MSB) to verify low bacterial loads. vPCR assay showed ~89% sensitivity (qPCR- and vPCR-positive stools: 76/85). vPCR-negative stools (9/85; qPCR-positive: 5; qPCR-negative: 4) were qPCR- and culture-positive post-MSB-enrichment and confirmed the presence of low viable bacterial loads. Random sampling error, low bacterial loads, and receiving stools in batches could contribute to false negatives. This is a pilot study and further investigations are warranted to explore vPCR to assess pathogen viability in a clinical setting, especially when culture-based testing is unavailable.
Collapse
Affiliation(s)
- Surangi H Thilakarathna
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada
| |
Collapse
|
8
|
Nakano M. An improved DNA extraction method for detecting Bacillus subtilis spores in spiked foods and beverages. Int J Food Microbiol 2023; 401:110280. [PMID: 37327536 DOI: 10.1016/j.ijfoodmicro.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Bacillus and Paenibacillus spp. are essential aerobic spoilage bacteria in various food industry sectors. Spoilage from microorganisms occurs at many points throughout food production systems. Due to their complex wall structures, spores can resist heat, radiation, chemical agents, and enzymatic treatments. An alkaline lysis and mechanical disruption combination method was developed and evaluated to counter this. This combination method effectively improved DNA extraction from B. subtilis spore cells spiked into food (solid) and beverages (liquid milk and coffee) at concentrations down to 102 CFU/mL or g when spiked into food matrices and drinks. Released DNA recoveries were 27 % and 25 % for potato salad and 38 % and 36 % for whole corn spiked at 106 and 103 CFU/mL concentrations. Conversely, there was a low recovery for wheat flour (10 % and 8.8 %) and milk powders (12 % and 25 %) at 106 and 103 CFU/mL spiked concentrations. The combination method provides rapid, specific, reliable, and accurate signature sequences identification for the detection and presence confirmation of psychrophilic and psychrotolerant spoilage spore cells, improving food spoilage assessments and food control applications.
Collapse
Affiliation(s)
- Miyo Nakano
- Division of Food Science, Toyo Institute of Food Technology, 23-2, 4-chome, Minami-hanayashiki, Kawanishi, Hyogo 666-0026, Japan.
| |
Collapse
|
9
|
Yang J, Xu H, Ke Z, Kan N, Zheng E, Qiu Y, Huang M. Absolute quantification of viable Vibrio cholerae in seawater samples using multiplex droplet digital PCR combined with propidium monoazide. Front Microbiol 2023; 14:1149981. [PMID: 37362935 PMCID: PMC10288211 DOI: 10.3389/fmicb.2023.1149981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Toxigenic Vibrio cholerae serogroup O1 and O139 are the pathogens responsible for the global cholera epidemic. V. cholerae can settle in the water and spread via the fecal-oral route. Rapid and accurate monitoring of live V. cholerae in environmental water has become an important strategy to prevent and control cholera transmission. Conventional plate counting is widely used to detect viable bacteria but requires time and effort. Methods This study aims to develop a new assay that combines triplex droplet digital PCR (ddPCR) with propidium monoazide (PMA) treatment for quantitatively detecting live V. cholerae O1/O139 and cholera enterotoxin. Specific primers and probes were designed according to the conserved regions of gene rfb O1, rfb O139, and ctxA. The amplification procedures and PMA treatment conditions were optimized. The specificity, sensitivity, and ability of PMA-ddPCR to detect viable bacteria-derived DNA were evaluated in simulated seawater samples. Results and Discussion The results revealed that the optimal primer concentrations of rfb O1, rfb O139, and ctxA were 1 μM, while the concentrations of the three probes were 0.25, 0.25, and 0.4 μM, respectively. The best annealing temperature was 58°C to obtain the most accurate results. The optimal strategy for distinguishing dead and live bacteria from PMA treatment was incubation at the concentration of 20 μM for 15 min, followed by exposure to a 650-W halogen lamp for 20 min. In pure culture solutions, the limit of detection (LODs) of V. cholerae O1 and O139, and ctxA were 127.91, 120.23 CFU/mL, and 1.5 copies/reaction in PMA-triplex ddPCR, respectively, while the LODs of the three targets were 150.66, 147.57 CFU/mL, and 2 copies/reaction in seawater samples. The PMA-ddPCR sensitivity was about 10 times higher than that of PMA-qPCR. When detecting spiked seawater samples with live bacterial concentrations of 1.53 × 102 and 1.53 × 105 CFU/mL, the assay presented a higher sensitivity (100%, 16/16) than qPCR (50.00%, 8/16) and a perfect specificity (100%, 9/9). These results indicate that the developed PMA-triplex ddPCR is superior to the qPCR regarding sensitivity and specificity and can be used to rapidly detect viable toxigenic V. cholerae O1 and O139 in suspicious seawater samples.
Collapse
Affiliation(s)
- Jinsong Yang
- Fujian Center for Disease Control and Prevention, Fuzhou, China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Haibin Xu
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Zili Ke
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Naipeng Kan
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Enhui Zheng
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Yufeng Qiu
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| | - Mengying Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, China
| |
Collapse
|
10
|
Yossa N, Huang S, Canida T, Binet R, Macarisin D, Bell R, Tallent S, Brown E, Hammack T. qPCR detection of viable Bacillus cereus group cells in cosmetic products. Sci Rep 2023; 13:4477. [PMID: 36934171 PMCID: PMC10024758 DOI: 10.1038/s41598-023-31128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Reference methods for microbiological safety assessments of cosmetics rely on culture methods that reveal colonies of live microorganisms on growth media. Rapid molecular technologies, such as qPCR, detects the presence of target DNA in samples from dead and viable cells. DNA intercalating dyes, such as propidium monoazide (PMAxx), are capable of restricting PCR amplification to viable microbial cells. Here we developed singleplex and multiplex real time (qPCR) assays for the detection of Bacillus cereus (B. cereus) using 16S rRNA and phosphatidylcholine-specific phospholipase C (PLC) gene specific sequences coupled with PMAxx. The limit of detection was determined to be ~ 1 log CFU/ml for 16S rRNA and 3 log CFU/ml for PLC detection in pure culture using an eye shadow isolate, B. cereus 3A. We assessed the inclusivity and exclusivity of our qPCR assays using 212 strains, including 143 members of B. cereus, 38 non- B. cereus. and 31 non-Bacillus species; inclusivity was 100% for the 16S rRNA and 97.9% for the PLC targets; the exclusivity was 100% for 16S rRNA and 98.6% for PLC targets. These qPCR assays were then used to assess samples of commercial cosmetics: one set of liquid face toners (N = 3), artificially contaminated with B. cereus 3A, and one set of powdered cosmetics (N = 8), previously determined to be contaminated with B. cereus. For some samples, test portions were analyzed by qPCR in parallel, with and without PMAxx treatment. All test portions were simultaneously streaked on BACARA plates to confirm viable cells of B. cereus, according to the culture method. We found no difference in sensitivity between the singleplex and the multiplex qPCR assays (P > 0.05). Inoculated samples that did not recover B. cereus on plates still showed amplification of the DNA targets. However, that amplification was significantly delayed in PMAxx -treated samples (P < 0.0001) with CT value differences of 7.82 for 16S rRNA and 7.22 for PLC. Likewise, amplification delay was significant (P < 0.0001) with inoculated samples that recovered B. cereus on plates with CT value differences of 2.96 and 2.36 for 16S rRNA and PLC, respectively, demonstrating the presence of dead cells in the samples. All our qPCR results correlated with detection on BACARA plates (kappa, k = 0.99), independently of the presence of PMAxx in the PCR assays. Nevertheless, the amplification threshold with PMAxx dyes was significantly higher than the non-PMAxx dyes. Our findings confirm qPCR can be used for more rapid detection of microorganisms in cosmetics, including B. cereus, and selective detection of viable cells can be improved using PMAxx dyes.
Collapse
Affiliation(s)
- Nadine Yossa
- FDA, Office of Regulatory Science, College Park, MD, USA.
| | - Sonny Huang
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, 37831, USA
| | - Travis Canida
- FDA, Office of Analytics and Outreach, College Park, MD, 20740, USA
| | - Rachel Binet
- FDA, Office of Regulatory Science, College Park, MD, USA
| | | | - Rebecca Bell
- FDA, Office of Regulatory Science, College Park, MD, USA
| | - Sandra Tallent
- FDA, Office of Regulatory Science, College Park, MD, USA
| | - Eric Brown
- FDA, Office of Regulatory Science, College Park, MD, USA
| | - Thomas Hammack
- FDA, Office of Regulatory Science, College Park, MD, USA.
| |
Collapse
|
11
|
Rausch F, Tanneberger F, Abd El Wahed A, Truyen U. Validation of the efficacy of air purifiers using molecular techniques. PLoS One 2023; 18:e0280243. [PMID: 36622844 PMCID: PMC9829175 DOI: 10.1371/journal.pone.0280243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
The importance of air purifiers has increased in recent years, especially with the "coronavirus disease 2019" pandemic. The efficacy of air purifiers is usually determined under laboratory conditions before widespread application. The standard procedure for testing depends on virus cultivation and titration on cell culture. This, however, requires several days to deliver results. The aim of this study was to establish a rapid molecular assay which can differentiate between intact infectious and distorted non-infectious virus particles. Feline Coronavirus was selected as model for screening. First the samples were pretreated with enzymes (universal nuclease and RNase cocktail enzyme mixture) or viability dye (propidium monoazide) to eliminate any free nucleic acids. The ribonucleic acid (RNA) from intact virus was released via magnetic beads-based extraction, then the amount of the RNA was determined using real-time reverse transcription polymerase chain reaction (RT-PCR) or reverse transcription recombinase-aided amplification (RT-RAA). All results were compared to the infectivity assay based on the calculation of the 50% tissue culture infectious dose (TCID50). The nuclease has eliminated 100% of the free Feline Coronavirus RNA, while propidium monoazide underperformed (2.3-fold decrease in free RNA). Both RT-RAA and real-time RT-PCR produced similar results to the infectivity assay on cell culture with limit of detection of 102 TCID50/mL. Two UV-C air purifiers with prosperities of 100% inactivation of the viruses were used to validate the established procedure. Both real-time RT-PCR and RT-RAA were able to differentiate between intact virus particles and free RNA. To conclude, this study revealed a promising rapid method to validate the efficacy of air purifiers by combining enzymatic pretreatment and molecular assays.
Collapse
Affiliation(s)
- Finja Rausch
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Franziska Tanneberger
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Uwe Truyen
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| |
Collapse
|
12
|
Tiwari A, Kurittu P, Al-Mustapha AI, Heljanko V, Johansson V, Thakali O, Mishra SK, Lehto KM, Lipponen A, Oikarinen S, Pitkänen T, Heikinheimo A. Wastewater surveillance of antibiotic-resistant bacterial pathogens: A systematic review. Front Microbiol 2022; 13:977106. [PMID: 36590429 PMCID: PMC9798455 DOI: 10.3389/fmicb.2022.977106] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases caused by antibiotic-resistant bacterial (ARB) pathogens are a serious threat to human and animal health. The active surveillance of ARB using an integrated one-health approach can help to reduce the emergence and spread of ARB, reduce the associated economic impact, and guide antimicrobial stewardship programs. Wastewater surveillance (WWS) of ARB provides composite samples for a total population, with easy access to the mixed community microbiome. This concept is emerging rapidly, but the clinical utility, sensitivity, and uniformity of WWS of ARB remain poorly understood especially in relation to clinical evidence in sewershed communities. Here, we systematically searched the literature to identify studies that have compared findings from WWS of ARB and antibiotic resistance genes (ARG) with clinical evidence in parallel, thereby evaluating how likely WWS of ARB and ARG can relate to the clinical cases in communities. Initially, 2,235 articles were obtained using the primary search keywords, and 1,219 articles remained after de-duplication. Among these, 35 articles fulfilled the search criteria, and an additional 13 relevant articles were included by searching references in the primary literature. Among the 48 included papers, 34 studies used a culture-based method, followed by 11 metagenomics, and three PCR-based methods. A total of 28 out of 48 included studies were conducted at the single sewershed level, eight studies involved several countries, seven studies were conducted at national or regional scales, and five at hospital levels. Our review revealed that the performance of WWS of ARB pathogens has been evaluated more frequently for Escherichia coli, Enterococcus spp., and other members of the family Enterobacteriaceae, but has not been uniformly tested for all ARB pathogens. Many wastewater-based ARB studies comparing the findings with clinical evidence were conducted to evaluate the public health risk but not to relate with clinical evidence and to evaluate the performance of WWS of ARB. Indeed, relating WWS of ARB with clinical evidence in a sewershed is not straightforward, as the source of ARB in wastewater cannot be only from symptomatic human individuals but can also be from asymptomatic carriers as well as from animal sources. Further, the varying fates of each bacterial species and ARG within the sewerage make the aim of connecting WWS of ARB with clinical evidence more complicated. Therefore, future studies evaluating the performance of many AMR pathogens and their genes for WWS one by one can make the process simpler and the interpretation of results easier.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Ananda Tiwari,
| | - Paula Kurittu
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ahmad I. Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria,Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Nigeria
| | - Viivi Heljanko
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Venla Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Shyam Kumar Mishra
- School of Optometry and Vision Science, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland,Finnish Food Authority, Seinäjoki, Finland
| |
Collapse
|
13
|
Thilakarathna SH, Stokowski T, Chui L. An Improved Real-Time Viability PCR Assay to Detect Salmonella in a Culture-Independent Era. Int J Mol Sci 2022; 23:ijms232314708. [PMID: 36499040 PMCID: PMC9738789 DOI: 10.3390/ijms232314708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Viability PCR (vPCR) uses a DNA intercalating dye to irreversibly bind double-stranded DNA from organisms with compromised cell membranes. This allows the selective amplification of DNA from intact cells. An optimized vPCR protocol should minimize false positives (DNA from compromised cells not fully removed) and false negatives (live cell DNA bound by the dye). We aimed to optimize a vPCR protocol using PMAxx™ as the intercalating agent and Salmonella Enteritidis as the target organism. To do this, we studied (1) single vs. sequential PMAxx™ addition; (2) a wash step post-PMAxx™ treatment; (3) a change of tube post-treatment before DNA extraction. The single vs. sequential PMAxx™ addition showed no difference. Results signified that PMAxx™ potentially attached to polypropylene tube walls and bound the released DNA from PMA-treated live cells when lysed in the same tube. A wash step was ineffective but transfer of the treated live cells to a new tube minimized these false-negative results. Our optimized protocol eliminated 108 CFU/mL heat-killed cell DNA in the presence of different live cell dilutions without compromising the amplification of the live cells, minimizing false positives. With further improvements, vPCR has great potential as a culture-independent diagnostic tool.
Collapse
Affiliation(s)
- Surangi H. Thilakarathna
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Alberta Precision Laboratories, Public Health Laboratory (ProvLab), Edmonton, AB T6G 2J2, Canada
- Correspondence:
| |
Collapse
|
14
|
Yadav M, Dhyani S, Joshi P, Awasthi S, Tanwar S, Gupta V, Rathore DK, Chaudhuri S. Formic acid, an organic acid food preservative, induces viable-but-non-culturable state, and triggers new Antimicrobial Resistance traits in Acinetobacter baumannii and Klebsiella pneumoniae. Front Microbiol 2022; 13:966207. [PMID: 36504816 PMCID: PMC9730046 DOI: 10.3389/fmicb.2022.966207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Susmita Chaudhuri
- Department of Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
15
|
Yap M, O’Sullivan O, O’Toole PW, Cotter PD. Development of sequencing-based methodologies to distinguish viable from non-viable cells in a bovine milk matrix: A pilot study. Front Microbiol 2022; 13:1036643. [PMID: 36466696 PMCID: PMC9713316 DOI: 10.3389/fmicb.2022.1036643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/28/2022] [Indexed: 04/22/2024] Open
Abstract
Although high-throughput DNA sequencing-based methods have been of great value for determining the composition of microbial communities in various environments, there is the potential for inaccuracies arising from the sequencing of DNA from dead microorganisms. In this pilot study, we compared different sequencing-based methods to assess their relative accuracy with respect to distinguishing between viable and non-viable cells, using a live and heat-inactivated model community spiked into bovine milk. The methods used were shotgun metagenomics with and without propidium monoazide (PMA) treatment, RNA-based 16S rRNA sequencing and metatranscriptomics. The results showed that methods were generally accurate, though significant differences were found depending on the library types and sequencing technologies. Different molecular targets were the basis for variations in the results generated using different library types, while differences in the derived composition data from Oxford Nanopore Technologies-and Illumina-based sequencing likely reflect a combination of different sequencing depths, error rates and bioinformatics pipelines. Although PMA was successfully applied in this study, further optimisation is required before it can be applied in a more universal context for complex microbiomes. Overall, these methods show promise and represent another important step towards the ultimate establishment of approaches that can be applied to accurately identify live microorganisms in milk and other food niches.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
16
|
Canh VD, Liu M, Sangsanont J, Katayama H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154258. [PMID: 35248642 DOI: 10.1016/j.scitotenv.2022.154258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Waterborne diseases caused by pathogenic human viruses are a major public health concern. To control the potential risk of viral infection through contaminated waters, a rapid, reliable tool to assess the infectivity of pathogenic viruses is required. Recently, an advanced approach (i.e., capsid integrity (RT-)qPCR) was developed to discriminate intact viruses (potentially infectious) from inactivated viruses. In this approach, samples were pretreated with capsid integrity reagents (e.g., monoazide dyes or metal compounds) before (RT -)qPCR. These reagents can only penetrate inactivated viruses with compromised capsids to bind to viral genomes and prevent their amplification, but they cannot enter viruses with intact capsids. Therefore, only viral genomes of intact viruses were amplified or detected by (RT-)qPCR after capsid integrity treatment. In this study, we reviewed recent progress in the development and application of capsid integrity (RT-)qPCR to assess the potential infectivity of viruses (including non-enveloped and enveloped viruses with different genome structures [RNA and DNA]) in water. The efficiency of capsid integrity (RT-)qPCR has been shown to depend on various factors, such as conditions of integrity reagent treatment, types of viruses, environmental matrices, and the capsid structure of viruses after disinfection treatments (e.g., UV, heat, and chlorine). For the application of capsid integrity (RT-)qPCR in real-world samples, the use of suitable virus concentration methods and process controls is important to control the efficiency of capsid integrity (RT-)qPCR. In addition, potential future applications of capsid integrity (RT-)qPCR for determining the mechanism of disinfection treatment on viral structure (e.g., capsid or genome) and a combination of capsid integrity treatment and next-generation sequencing (NGS) (capsid integrity NGS) for monitoring the community of intact pathogenic viruses in water are also discussed. This review provides essential information on the application of capsid integrity (RT-)qPCR as an efficient tool for monitoring the presence of pathogenic viruses with intact capsids in water.
Collapse
Affiliation(s)
- Vu Duc Canh
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Miaomiao Liu
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroyuki Katayama
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
17
|
Fedorov RA, Rybakova IV, Belkova NL, Lapteva NA. Structural and Functional Characterization of Bacterial Biofilms Formed on Phragmites australis (Cav.) in the Rybinsk Reservoir. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Chen L, Li L, Xie X, Chai A, Shi Y, Fan T, Xie J, Li B. An Improved Method for Quantification of Viable Fusarium Cells in Infected Soil Products by Propidium Monoazide Coupled with Real-Time PCR. Microorganisms 2022; 10:microorganisms10051037. [PMID: 35630479 PMCID: PMC9143521 DOI: 10.3390/microorganisms10051037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
Fusarium is a soil-borne pathogen that causes root rot disease in cucumber. To date, quantitative real-time PCR (qPCR) is a common tool to detect the content of Fusarium in soil. However, qPCR cannot distinguish between viable and nonviable cells. The aim of this study was to develop a detection technique to pretreat tissue fluid with propidium monoazide (PMA) followed by extract DNA, and then to quantify viable Fusarium cells in contaminated soil. In this work, the specific primer pair F8-1/F8-2 was designed based on the translation elongation factor (EF) gene and a PMA-qPCR assay was established to amplify and quantify soils of viable Fusarium cells. The PMA pretreatment test was optimized, which indicated that the optimal PMA concentration and light exposure time were 50 mmol L−1 and 15 min, respectively. The lowest limit of viable cells in suspension detected and soil by PMA-qPCR were 82 spore mL−1 and 91.24 spore g−1, respectively. For naturally contaminated soil, viable Fusarium cells were detected in eight of the 18 samples, and the Fusarium amount ranged from 104 to 106 spore g−1. In conclusion, the PMA-qPCR method has the characteristics of high sensitivity, efficiency, and time saving, which could support nursery plants to avoid Fusarium infection and agro-industry losses.
Collapse
Affiliation(s)
- Lida Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
- Shouguang R&D Center of Vegetables, Chinese Academy of Agricultural Sciences, Weifang 262700, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- Correspondence: (J.X.); (B.L.)
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.L.); (X.X.); (A.C.); (Y.S.); (T.F.)
- Correspondence: (J.X.); (B.L.)
| |
Collapse
|
19
|
Lan Chi NT, Veeraragavan GR, Brindhadevi K, Chinnathambi A, Salmen SH, Alharbi SA, Krishnan R, Pugazhendhi A. Fungi fabrication, characterization, and anticancer activity of silver nanoparticles using metals resistant Aspergillus niger. ENVIRONMENTAL RESEARCH 2022; 208:112721. [PMID: 35031337 DOI: 10.1016/j.envres.2022.112721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The purpose of this study was to assess the bio-fabrication possibilities of pre-isolated (from bauxite mine tailings) metal-tolerant Aspergillus niger biomass filtrate and the anticancer potential of synthesized silver nanoparticles (AgNPs) tested with a Human Cervical cancer cell line (HeLa cells: Henrietta Lacks cells). The nitrate reduction test demonstrated that A. niger has the ability to reduce nitrate, and filtrate derived from A. niger biomass efficiently fabricated AgNPs from AgNO3, as demonstrated by a visible color change from pale greenish to brownish. The UV-visible spectroscopy analysis revealed an absorbance peak at 435 nm, which corresponded to the AgNPs. These AgNPs have been capped and stabilized with several functional groups related to various bioactive molecules such as aldehyde, benzene rings, aldehydic, amines, alcohols, and carbonyl stretch protein molecules. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the capping and stabilizing chemical bonding pattern. Scanning Electron Microscopy (SEM) revealed that the synthesized AgNPs were spherical, with an average size of 21.38 nm. This bio-fabricated AgNPs has in-vitro anticancer potential when tested against the HeLa cell line due to its potential size and shape. At 100 g mL-1 concentrations of this bio-fabricated AgNPs, the anticancer activity percentage was found to be 70.2%, and the IC50 value was found to be 66.32 g m-1. These findings demonstrated that the metal-tolerant A. niger cell filtrate could produce AgNPs with anticancer potential.
Collapse
Affiliation(s)
- Nguyen Thuy Lan Chi
- Van Lang School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Geetha Royapuram Veeraragavan
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kathirvel Brindhadevi
- Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
20
|
Tran CTK, Watts-Williams SJ, Smernik RJ, Cavagnaro TR. Arbuscular mycorrhizas increased tomato biomass and nutrition but did not affect local soil P availability or 16S bacterial community in the field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152620. [PMID: 35007577 DOI: 10.1016/j.scitotenv.2021.152620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
While interest in arbuscular mycorrhizal (AM) fungal effects on soil phosphorus (P) have recently increased, field experiments on this topic are lacking. While microcosm studies provided valuable insights, the lack of field studies represents a knowledge gap. Here, we present a field study in which we grew a mycorrhiza-defective tomato (Solanum lycopersicum L.) genotype (named rmc) and its mycorrhizal wild-type progenitor (named 76R) with and without additional fertiliser, using a drip-irrigation system to examine the impacts of the AM symbiosis on soil P availability and plant growth and nutrition. AM effects on fruit biomass and nutrients, soil nutrient availability, soil moisture and the soil bacterial community were examined. At the time of harvest, the AM tomato plants without fertiliser had the same early season fruit biomass and fruit nutrient concentrations as plants that received fertiliser. The presence of roots reduced the concentration of available soil P, ammonium and soil moisture in the top 10 cm soil layer. Arbuscular mycorrhizas did not significantly affect soil P availability, soil moisture, or 16S bacterial community composition. These findings suggest an indirect role for AM fungi in tomato production but not necessarily a direct role in determining soil physicochemical traits, during the one season that this experiment was conducted. While longer-term field studies may be required in the future, the present study provides new insights into impacts of AM fungi on P availability and uptake in a field soil system.
Collapse
Affiliation(s)
- Cuc T K Tran
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Stephanie J Watts-Williams
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia.
| | - Ronald J Smernik
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| | - Timothy R Cavagnaro
- The Waite Research Institute and The School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
21
|
Feng X, Zhou D, Xie G, Liu J, Xiong Q, Xu H. A novel photoreactive DNA-binding dye for detecting viable Klebsiella pneumoniae in powdered infant formula. J Dairy Sci 2022; 105:4895-4902. [PMID: 35450718 DOI: 10.3168/jds.2022-21900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
In addition to Cronobacter spp., Klebsiella pneumoniae is another opportunistic bacterial pathogen present in powdered infant formula (PIF) that can cause pneumonia, septicemia, and other diseases. In this study, a rapid and specific method based on a fluorescence probe was developed for detecting viable K. pneumoniae in PIF samples via the combination of recombinase-aided amplification (RAA) with thiazole orange monoazide (TOMA) dye (the TOMA-RAA assay hereafter). As a novel photosensitive DNA-intercalating dye, TOMA was used to penetrate bacterial cells, including both dead and viable cells, as verified by confocal laser scanning microscopy and fluorescent emission spectrometry. Importantly, the RAA assay exhibited good performance in detecting K. pneumoniae within 40 min at 39°C. Under optimal conditions, the TOMA-RAA assay can detect as low as 2.6 × 103 cfu/mL of K. pneumoniae in pure culture and 2.3 × 104 cfu/g of K. pneumoniae in spiked PIF sample. After 3 h of pre-enrichment, 3 × 100 cfu/g of K. pneumoniae can be detected. Furthermore, the TOMA-RAA assay displayed an excellent anti-interference ability to nontarget bacteria. In short, the proposed method has great potential application for the rapid and accurate detection of viable K. pneumoniae in PIF.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, P.R. China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P.R. China.
| |
Collapse
|
22
|
The Microbiome and Urolithiasis: Current Advancements and Future Challenges. Curr Urol Rep 2022; 23:47-56. [PMID: 35138598 DOI: 10.1007/s11934-022-01088-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to explore the effect of the microbiome on urolithiasis and explore recent advances and challenges in microbiome research for urolithiasis. RECENT FINDINGS Lack of standardization and shortcomings in study design for urinary microbiome research on urolithiasis has hampered the generalizability of results and weakened the impact of findings on clinical practice. Important study limitations include sample heterogenicity, specimen contamination, poor culture yields, and lack of shared datasets for meta-analysis. Contrary to traditional teaching, the genitourinary tract is not a sterile environment. This urinary microbiome may influence the pathogenesis of urolithiasis, although the specific mechanisms are still currently being explored. Successful investigation will depend on consistency in study design and analysis, as well as sharing data and protocols across institutions. Developing an understanding of the relationship between the urinary microbiome and urolithiasis may lead to novel approaches to mitigate stone risk.
Collapse
|
23
|
Effect of Sodium on Methanogens in a Two-Stage Anaerobic System. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study evaluated the effects of sodium on anaerobic biomass from the second-stage reactor of a two-stage anaerobic digester. The results indicated that methanogens showed a relatively high sodium tolerance of 2.4 g Na+ L−1. Microbial community analysis showed that viable Methanomicrobiales was the most abundant population by a combined propidium monoazide cross-linking quantitative polymerase chain reaction technique. There was a population shift towards higher abundance of Thermotoga (0.02%), Clostridium (2.50%) and Methanoculleus (13.80%). Biomass activity in relation to increased sodium concentrations was investigated with the adenosine triphosphate test coupled with extracellular polymeric substances measurement. The results showed biomass activity decreased from 33 to 16 µg g−1 volatile suspended solids as sodium concentrations increased from 1.3 to 9.1 g Na+ L−1. Higher EPS production, particularly a greater predominance of carbohydrates, was stimulated by higher sodium concentrations. This study provides insights into the superiority of sodium tolerance of two-stage anaerobic digester in compared with a single-stage anaerobic system.
Collapse
|
24
|
Siqueira JF, Rôças IN. A critical analysis of research methods and experimental models to study the root canal microbiome. Int Endod J 2021; 55 Suppl 1:46-71. [PMID: 34714548 DOI: 10.1111/iej.13656] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022]
Abstract
Endodontic microbiology deals with the study of the microbial aetiology and pathogenesis of pulpal and periradicular inflammatory diseases. Research in endodontic microbiology started almost 130 years ago and since then has mostly focussed on establishing and confirming the infectious aetiology of apical periodontitis, identifying the microbial species associated with the different types of endodontic infections and determining the efficacy of treatment procedures in eradicating or controlling infection. Diverse analytical methods have been used over the years, each one with their own advantages and limitations. In this review, the main features and applications of the most used technologies are discussed, and advice is provided to improve study designs in order to properly address the scientific questions and avoid setbacks that can compromise the results. Finally, areas of future research are described.
Collapse
Affiliation(s)
- José F Siqueira
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| | - Isabela N Rôças
- Department of Endodontics and Molecular Microbiology Laboratory, Faculty of Dentistry, Grande Rio University, Rio de Janeiro, Brazil.,Department of Dental Research, Faculty of Dentistry, Iguaçu University (UNIG), Nova Iguaçu, Brazil
| |
Collapse
|
25
|
Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189713. [PMID: 34574635 PMCID: PMC8469537 DOI: 10.3390/ijerph18189713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/02/2022]
Abstract
DNA sequencing of active cells involved in vermicomposting can clarify the roles of earthworms in regulating functional microorganisms. This study aimed to investigate the effect of earthworms on functional microbial communities in sludge by comparing biodegradation treatments with and without earthworms. PCR and high throughput sequencing based on pretreatment of propidium monoazide (PMA) were used to detect the changes in active bacterial 16S rDNA and eukaryotic 18S rDNA during vermicomposting. The results showed that the nitrate in sludge vermicomposting and control were significantly different from day 10, with a more stable product at day 30 of vermicomposting. Compared with the control, the Shannon indexes of active bacteria and eukaryotes decreased by 1.9% and 31.1%, respectively, in sludge vermicompost. Moreover, Proteobacteria (36.2%), Actinobacteria (25.6%), and eukaryotic Cryptomycota (80.3%) were activated in the sludge vermicompost. In contrast, the control had Proteobacteria (44.8%), Bacteroidetes (14.2%), Cryptomycota (50.00%), and Arthropoda (36.59%). Network analysis showed that environmental factors had different correlations between active bacterial and eukaryotic community structures. This study suggests that earthworms can decrease the diversity of bacterial and eukaryotic communities, forming a specific-functional microbial community and thus accelerating organic matter decomposition during vermicomposting of dewatered sludge.
Collapse
|
26
|
Kwon S, Oh J, Lee MS, Um E, Jeong J, Kang JH. Enhanced Diamagnetic Repulsion of Blood Cells Enables Versatile Plasma Separation for Biomarker Analysis in Blood. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100797. [PMID: 33978996 DOI: 10.1002/smll.202100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/21/2021] [Indexed: 05/04/2023]
Abstract
A hemolysis-free and highly efficient plasma separation platform enabled by enhanced diamagnetic repulsion of blood cells in undiluted whole blood is reported. Complete removal of blood cells from blood plasma is achieved by supplementing blood with superparamagnetic iron oxide nanoparticles (SPIONs), which turns the blood plasma into a paramagnetic condition, and thus, all blood cells are repelled by magnets. The blood plasma is successfully collected from 4 mL of blood at flow rates up to 100 µL min-1 without losing plasma proteins, platelets, or exosomes with 83.3±1.64% of plasma volume recovery, which is superior over the conventional microfluidic methods. The theoretical model elucidates the diamagnetic repulsion of blood cells considering hematocrit-dependent viscosity, which allows to determine a range of optimal flow rates to harvest platelet-rich plasma and platelet-free plasma. For clinical validations, it is demonstrated that the method enables the greater recovery of bacterial DNA from the infected blood than centrifugation and the immunoassay in whole blood without prior plasma separation.
Collapse
Affiliation(s)
- Seyong Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Jieung Oh
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Eujin Um
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
27
|
Hortelano I, Moreno MY, García-Hernández J, Ferrús MA. Optimization of pre- treatments with Propidium Monoazide and PEMAX™ before real-time quantitative PCR for detection and quantification of viable Helicobacter pylori cells. J Microbiol Methods 2021; 185:106223. [PMID: 33872638 DOI: 10.1016/j.mimet.2021.106223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Accurate detection of H. pylori in different environmental and clinical samples is essential for public health strtdudies. Now, a big effort is being made to design PCR methodologies that allow for the detection of viable and viable but non-culturable (VBNC) H. pylori cells, by achieving complete exclusion of dead cells amplification signals. The use of DNA intercalating dyes has been proposed. However, its efficacy is still not well determined. In this study, we aimed to test the suitability of PMA and PEMAX™ dyes used prior to qPCR for only detecting viable cells of H. pylori. Their efficiency was evaluated with cells submitted to different disinfection treatments and confirmed by the absence of growth on culture media and by LIVE/DEAD counts. Our results indicated that an incubation period of 5 min for both, PMA and PEMAX™, did not affect viable cells. Our study also demonstrated that results obtained by using intercalating dyes may vary depending on the cell stress conditions. In all dead cell's samples, both PMA and PEMAX™ pre-qPCR treatments decreased the amplification signal (>103 Genomic Units (GU)), although none of them allowed for its disappearance confirming that intercalating dyes, although useful for screening purposes, cannot be considered as universal viability markers. To investigate the applicability of the method specifically to detect H. pylori cells in environmental samples, PMA-qPCR was performed on samples containing the different morphological and viability states that H. pylori can acquire in environment. The optimized PMA-qPCR methodology showed to be useful to detect mostly (but not only) viable forms, regardless the morphological state of the cell.
Collapse
Affiliation(s)
- Irene Hortelano
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain.
| | - María Yolanda Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022, Valencia, Spain
| | | | - María Antonia Ferrús
- Biotechnology Department, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
28
|
Detection and Potential Virulence of Viable but Non-Culturable (VBNC) Listeria monocytogenes: A Review. Microorganisms 2021; 9:microorganisms9010194. [PMID: 33477778 PMCID: PMC7832328 DOI: 10.3390/microorganisms9010194] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample's true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4',6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining. Of these five supplementary methods, the Live/Dead BacLightTM staining and CFDA-DVC staining currently appear to be the most accurate for VBNC Lm enumeration. In addition, the impact of the VBNC state on the virulence of Lm is reviewed. Widespread use of these supplemental methods would provide supporting data to identify the conditions under which Lm can revert from its VBNC state into an actively multiplying state and help identify the environmental triggers that can cause Lm to become virulent. Highlights: Rationale for testing for all viable Listeria (Lm) is presented. Routine environmental sampling and plating methods may miss viable Lm cells. An overview and comparison of available VBNC testing methods is given. There is a need for resuscitation techniques to recover Lm from VBNC. A review of testing results for post VBNC virulence is compared.
Collapse
|
29
|
Dirks JAMC, Janssen K, Hoebe CJPA, Geelen THB, Lucchesi M, Dukers-Muijrers NHTM, Wolffs PFG. Chlamydia trachomatis intra-bacterial and total plasmid copy number in clinical urogenital samples. Sci Rep 2021; 11:259. [PMID: 33420252 PMCID: PMC7794532 DOI: 10.1038/s41598-020-80645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Chlamydia trachomatis (CT) increases its plasmid numbers when stressed, as occurs in clinical trachoma samples. Most CT tests target the plasmid to increase the test sensitivity, but some only target the chromosome. We investigated clinical urogenital samples for total plasmid copy numbers to assess its diagnostic value and intra-bacterial plasmid copy numbers to assess its natural variation. Both plasmid and chromosome copies were quantified using qPCR, and the plasmid:chromosome ratio (PCr) calculated in two cohorts: (1) 383 urogenital samples for the total PCR (tPCr), and (2) 42 vaginal swabs, with one half treated with propium-monoazide (PMA) to prevent the quantification of extracellular DNA and the other half untreated to allow for both tPCr and intra-bacterial PCr (iPCr) quantification. Mann-Whitney U tests compared PCr between samples, in relation to age and gender. Cohort 1: tPCr varied greatly (1-677, median 16). Median tPCr was significantly higher in urines than vaginal swabs (32 vs. 11, p < 0.001). Cohort 2: iPCr was more stable than tPCr (range 0.1-3 vs. 1-11). To conclude, tPCr in urogenital samples was much more variable than previously described. Transport time and temperature influences DNA degradation, impacting chromosomal DNA more than plasmids and urine more than vaginal samples. Data supports a plasmid target in CT screening assays to increase clinical sensitivity.
Collapse
Affiliation(s)
- J A M C Dirks
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands.
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands.
| | - K Janssen
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - C J P A Hoebe
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - T H B Geelen
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - M Lucchesi
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| | - N H T M Dukers-Muijrers
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
- Department of Sexual Health, Infectious Diseases and Environmental Health, Public Health Service South Limburg, Geleen, The Netherlands
| | - P F G Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center, Care and Public Health Research Institute (Caphri), Maastricht, The Netherlands
| |
Collapse
|
30
|
Wood JR, Burge OR, Bolstridge N, Bonner K, Clarkson B, Cole TL, Davis C, Fergus A, King P, McKeown MM, Morse C, Richardson SJ, Robertson H, Wilmshurst JM. Vertical distribution of prokaryotes communities and predicted metabolic pathways in New Zealand wetlands, and potential for environmental DNA indicators of wetland condition. PLoS One 2021; 16:e0243363. [PMID: 33406114 PMCID: PMC7787371 DOI: 10.1371/journal.pone.0243363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Globally, wetlands are in decline due to anthropogenic modification and climate change. Knowledge about the spatial distribution of biodiversity and biological processes within wetlands provides essential baseline data for predicting and mitigating the effects of present and future environmental change on these critical ecosystems. To explore the potential for environmental DNA (eDNA) to provide such insights, we used 16S rRNA metabarcoding to characterise prokaryote communities and predict the distribution of prokaryote metabolic pathways in peats and sediments up to 4m below the surface across seven New Zealand wetlands. Our results reveal distinct vertical structuring of prokaryote communities and metabolic pathways in these wetlands. We also find evidence for differences in the relative abundance of certain metabolic pathways that may correspond to the degree of anthropogenic modification the wetlands have experienced. These patterns, specifically those for pathways related to aerobic respiration and the carbon cycle, can be explained predominantly by the expected effects of wetland drainage. Our study demonstrates that eDNA has the potential to be an important new tool for the assessment and monitoring of wetland health.
Collapse
Affiliation(s)
- Jamie R. Wood
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | | | | | - Karen Bonner
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | | | - Theresa L. Cole
- Department of Biology, Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Carina Davis
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | - Alex Fergus
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | - Perēri King
- Maungaharuru-Tangitū Trust, Hawke's Bay Mail Centre, Napier, New Zealand
| | | | - Chris Morse
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
| | | | | | - Janet M. Wilmshurst
- Manaaki Whenua–Landcare Research, Lincoln, New Zealand
- School of Environment, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Copin S, Mougin J, Raguenet V, Robert-Pillot A, Midelet G, Grard T, Bonnin-Jusserand M. Ethidium and propidium monoazide: comparison of potential toxicity on Vibrio sp. viability. Lett Appl Microbiol 2020; 72:245-250. [PMID: 33058219 DOI: 10.1111/lam.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Vibrio sp., ubiquitous in the aquatic ecosystem, are bacteria of interest because of their involvement in human health, causing gastroenteritis after ingestion of seafood, as well as their role in vibriosis leading to severe losses in aquaculture production. Their ability to enter a viable but non-culturable (VBNC) state under stressful environmental conditions may lead to underestimation of the Vibrio population by traditional microbiological enumeration methods. As a result, using molecular methods in combination with EMA or PMA allows the detection of viable (VBNC and culturable viable) cells. In this study, the impact of the EMA and PMA was tested at different concentrations on the viability of several Vibrio species. We compared the toxicity of these two DNA-binding dyes to determine the best pretreatment to use with qPCR to discriminate between viable and dead Vibrio cells. Our results showed that EMA displayed lethal effects for each strain of V. cholerae and V. vulnificus tested. In contrast, the concentrations of PMA tested had no toxic effect on the viability of Vibrio cells studied. These results may help to achieve optimal PMA-qPCR methods to detect viable Vibrio sp. cells in food and environmental samples.
Collapse
Affiliation(s)
- S Copin
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - J Mougin
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - V Raguenet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - A Robert-Pillot
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Vibrions et du Choléra, Paris, France
| | - G Midelet
- Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Laboratoire de sécurité des aliments, Boulogne-sur-Mer, France
| | - T Grard
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| | - M Bonnin-Jusserand
- Institut Charles Viollette, Univ. Littoral Côte d'Opale, UMR 1158 BioEcoAgro, USC ANSES, INRAE, Univ. Lille, Univ. Artois, Univ. Picardie Jules Verne, Univ. Liège, Yncréa, Boulogne-sur-Mer, France
| |
Collapse
|
32
|
Navarro Y, Torija MJ, Mas A, Beltran G. Viability-PCR Allows Monitoring Yeast Population Dynamics in Mixed Fermentations Including Viable but Non-Culturable Yeasts. Foods 2020; 9:E1373. [PMID: 32992467 PMCID: PMC7600988 DOI: 10.3390/foods9101373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The use of controlled mixed inocula of Saccharomyces cerevisiae and non-Saccharomyces yeasts is a common practice in winemaking, with Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima being the most commonly used non-Saccharomyces species. Although S. cerevisiae is usually the dominant yeast at the end of mixed fermentations, some non-Saccharomyces species are also able to reach the late stages; such species may not grow in culture media, which is a status known as viable but non-culturable (VBNC). Thus, an accurate methodology to properly monitor viable yeast population dynamics during alcoholic fermentation is required to understand microbial interactions and the contribution of each species to the final product. Quantitative PCR (qPCR) has been found to be a good and sensitive method for determining the identity of the cell population, but it cannot distinguish the DNA from living and dead cells, which can overestimate the final population results. To address this shortcoming, viability dyes can be used to avoid the amplification and, therefore, the quantification of DNA from non-viable cells. In this study, we validated the use of PMAxx dye (an optimized version of propidium monoazide (PMA) dye) coupled with qPCR (PMAxx-qPCR), as a tool to monitor the viable population dynamics of the most common yeast species used in wine mixed fermentations (S. cerevisiae, T. delbrueckii, L. thermotolerans and M. pulcherrima), comparing the results with non-dyed qPCR and colony counting on differential medium. Our results showed that the PMAxx-qPCR assay used in this study is a reliable, specific and fast method for quantifying these four yeast species during the alcoholic fermentation process, being able to distinguish between living and dead yeast populations. Moreover, the entry into VBNC status was observed for the first time in L. thermotolerans and S. cerevisiae during alcoholic fermentation. Further studies are needed to unravel which compounds trigger this VBNC state during alcoholic fermentation in these species, which would help to better understand yeast interactions.
Collapse
Affiliation(s)
| | - María-Jesús Torija
- Department of Biochemistry and Biotechnology, Faculty of Oenology, University Rovira i Virgili (URV), Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain; (Y.N.); (A.M.); (G.B.)
| | | | | |
Collapse
|
33
|
Techathuvanan C, D'Souza DH. Propidium monoazide for viable Salmonella enterica detection by PCR and LAMP assays in comparison to RNA-based RT-PCR, RT-LAMP, and culture-based assays. J Food Sci 2020; 85:3509-3516. [PMID: 32964461 DOI: 10.1111/1750-3841.15459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022]
Abstract
Rapid and sensitive detection of live/infectious foodborne pathogens is urgently needed in order to prevent outbreaks and food recalls. This study aimed to (1) evaluate the incorporation of propidium monoazide (PMA) into PCR or LAMP assays to selectively detect viable Salmonella Enteritidis following sublethal heat or UV treatment, and autoclave sterilization; and (2) compare the detection of PMA-PCR and PMA-LAMP to DNA-based PCR and LAMP (without PMA), RNA-based RT-PCR and RT-LAMP, and culture-based methods. Nucleic acids (DNA or RNA) from 1-mL S. Enteritidis samples were used for PCR, RT-PCR, LAMP, and RT-LAMP assays. Serially diluted samples were plated on Xylose Lysine Tergitol-4 agar for cultural enumeration. Comparable detection of overnight cultured S. Enteritidis was obtained by PMA-PCR, PCR, and RT-PCR, though 1 to 2 log less sensitive than cultural assays. PMA-LAMP and RT-LAMP showed similar detection of overnight cultures, being 1 to 2 log less sensitive than the LAMP assay, and ∼4 log less than culture-based detection. Autoclaved S. Enteritidis did not test positive by RNA-based methods or PMA-PCR, but PMA-LAMP showed detection of 1 log CFU/mL. PMA-PCR and RT-PCR showed comparable detection of sublethal heat-treated cells to cultural assays, while PMA-LAMP showed 1 to 2 log less detection. Our results suggest that PMA-PCR and PMA-LAMP assays are not suitable for selective viable cell detection after UV treatment. While PMA-LAMP assay needs optimization, PMA-PCR shows promise for live/viable S. Enteritidis detection. PMA-PCR shows potential for routine testing in the food industry with results within 1-day, albeit depending on the inactivation method employed.
Collapse
Affiliation(s)
- Chayapa Techathuvanan
- Department of Food Science, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996-4591, U.S.A
| | - Doris Helen D'Souza
- Department of Food Science, University of Tennessee, 2605 River Drive, Knoxville, TN, 37996-4591, U.S.A
| |
Collapse
|
34
|
Chai AL, Ben HY, Guo WT, Shi YX, Xie XW, Li L, Li BJ. Quantification of Viable Cells of Pseudomonas syringae pv. tomato in Tomato Seed Using Propidium Monoazide and a Real-Time PCR Assay. PLANT DISEASE 2020; 104:2225-2232. [PMID: 32452750 DOI: 10.1094/pdis-11-19-2397-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pseudomonas syringae pv. tomato is a seedborne pathogen that causes bacterial speck disease in tomato. P. syringae pv. tomato is typically detected in tomato seed using quantitative real-time PCR (qPCR) but the inability of qPCR to distinguish between viable and nonviable cells might lead to an overestimation of viable P. syringae pv. tomato cells. In the present study, a strategy involving a propidium monoazide (PMA) pretreatment followed by a qPCR (PMA-qPCR) assay was developed for quantifying viable P. syringae pv. tomato cells in contaminated tomato seed. PMA could selectively bind to the chromosomal DNA of dead bacterial cells and, therefore, block DNA amplification of qPCR. The primer pair Pst3F/Pst3R was designed based on gene hrpZ to specifically amplify and quantify P. syringae pv. tomato by qPCR. The PMA pretreatment protocol was optimized for selectively detecting viable P. syringae pv. tomato cells, and the optimal PMA concentration and light exposure time were 10 μmol liter-1 and 10 min, respectively. In the sensitivity test, the detection limit of PMA-qPCR for detecting viable cells in bacterial suspension and artificially contaminated tomato seed was 102 CFU ml-1 and 11.86 CFU g-1, respectively. For naturally contaminated tomato seed, viable P. syringae pv. tomato cells were quantified in 6 of the 19 samples, with infestation levels of approximately 102 to 104 CFU g-1. The results indicated that the PMA-qPCR assay is a suitable tool for quantifying viable P. syringae pv. tomato cells in tomato seed, which could be useful for avoiding the potential risks of primary inoculum sources from contaminated seed.
Collapse
Affiliation(s)
- A-Li Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Yan Ben
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Wei-Tao Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yan-Xia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xue-Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bao-Ju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
35
|
Kiefer A, Tang P, Arndt S, Fallico V, Wong C. Optimization of Viability Treatment Essential for Accurate Droplet Digital PCR Enumeration of Probiotics. Front Microbiol 2020; 11:1811. [PMID: 32849418 PMCID: PMC7399075 DOI: 10.3389/fmicb.2020.01811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
Improvements offered by viability droplet digital PCR (v-ddPCR) include increased precision, specificity and decreased time to results making for an attractive alternative method to traditional plate count enumeration of probiotic products. A major hurdle faced in v-ddPCR, however, is distinguishing between live and dead cells. The objective of this study was to evaluate a combination of PMA and EMA (PE51) for viability treatment of freeze-dried probiotic powders. Lactobacillus acidophilus La-14 and Bifidobacterium animalis subsp. lactis Bi-07 were analyzed over a 2-log PE51 concentration gradient to investigate the efficiency across genus and assay targets. Results suggest a need to optimize viability dye concentration based on the genera of the organism, but also the assay target, even when analyzing the same organism. When optimized for PE51 concentration, strain specific v-ddPCR assays for both La-14 and Bi-07 were demonstrated to agree with plate count enumeration results. In conclusion, while these v-ddPCR assays require highly specific optimization, they are better suited for the future of the probiotic industry and are suggested to be implemented in probiotic product testing.
Collapse
Affiliation(s)
- Anthony Kiefer
- DuPont Nutrition & Biosciences, Madison, WI, United States
| | - Peipei Tang
- DuPont Nutrition & Biosciences, Madison, WI, United States
| | - Samuel Arndt
- DuPont Nutrition & Biosciences, Madison, WI, United States
| | | | - Connie Wong
- DuPont Nutrition & Biosciences, Madison, WI, United States
| |
Collapse
|
36
|
Abelian A, Mund T, Curran MD, Savill SA, Mitra N, Charan C, Ogilvy-Stuart AL, Pelham HRB, Dear PH. Towards accurate exclusion of neonatal bacterial meningitis: a feasibility study of a novel 16S rDNA PCR assay. BMC Infect Dis 2020; 20:441. [PMID: 32571220 PMCID: PMC7310343 DOI: 10.1186/s12879-020-05160-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/15/2020] [Indexed: 01/27/2023] Open
Abstract
Background PCRctic is an innovative assay based on 16S rDNA PCR technology that has been designed to detect a single intact bacterium in a specimen of cerebro-spinal fluid (CSF). The assay’s potential for accurate, fast and inexpensive discrimination of bacteria-free CSF makes it an ideal adjunct for confident exclusion of bacterial meningitis in newborn babies where the negative predictive value of bacterial culture is poor. This study aimed to stress-test and optimize PCRctic in the “field conditions” to attain a clinically useful level of specificity. Methods The specificity of PCRctic was evaluated in CSF obtained from newborn babies investigated for meningitis on a tertiary neonatal unit. Following an interim analysis, the method of skin antisepsis was changed to increase bactericidal effect, and snap-top tubes (Eppendorf™) replaced standard universal containers for collection of CSF to reduce environmental contamination. Results The assay’s specificity was 90.5% in CSF collected into the snap-top tubes – up from 60% in CSF in the universal containers. The method of skin antisepsis had no effect on the specificity. All CSF cultures were negative and no clinical cases of neonatal bacterial meningitis occurred during the study. Conclusions A simple and inexpensive optimization of CSF collection resulted in a high specificity output. The low prevalence of neonatal bacterial meningitis means that a large multi-centre study will be required to validate the assay’s sensitivity and its negative predictive value.
Collapse
Affiliation(s)
- Arthur Abelian
- Department of Paediatrics, Maelor Hospital, Betsi Cadwaladr University LHB, 12 Fleming Drive, Wrexham, LL11 2BP, UK.
| | - Thomas Mund
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Martin D Curran
- Clinical Microbiology, Public Health England, Addenbrookes Hospital, Cambridge, UK
| | - Stuart A Savill
- North Wales Clinical Research Centre, Betsi Cadwaladr University LHB, Wrexham, UK
| | | | | | | | | | | |
Collapse
|
37
|
Azospirillum brasilense viable cells enumeration using propidium monoazide-quantitative PCR. Arch Microbiol 2020; 202:1653-1662. [DOI: 10.1007/s00203-020-01877-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023]
|
38
|
Understanding the Response of Nitrifying Communities to Disturbance in the McMurdo Dry Valleys, Antarctica. Microorganisms 2020; 8:microorganisms8030404. [PMID: 32183078 PMCID: PMC7143839 DOI: 10.3390/microorganisms8030404] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 01/07/2023] Open
Abstract
Polar ecosystems are generally limited in nitrogen (N) nutrients, and the patchy availability of N is partly determined by biological pathways, such as nitrification, which are carried out by distinctive prokaryotic functional groups. The activity and diversity of microorganisms are generally strongly influenced by environmental conditions. However, we know little of the attributes that control the distribution and activity of specific microbial functional groups, such as nitrifiers, in extreme cold environments and how they may respond to change. To ascertain relationships between soil geochemistry and the ecology of nitrifying microbial communities, we carried out a laboratory-based manipulative experiment to test the selective effect of key geochemical variables on the activity and abundance of ammonia-oxidizing communities in soils from the McMurdo Dry Valleys of Antarctica. We hypothesized that nitrifying communities, adapted to different environmental conditions within the Dry Valleys, will have distinct responses when submitted to similar geochemical disturbances. In order to test this hypothesis, soils from two geographically distant and geochemically divergent locations, Miers and Beacon Valleys, were incubated over 2 months under increased conductivity, ammonia concentration, copper concentration, and organic matter content. Amplicon sequencing of the 16S rRNA gene and transcripts allowed comparison of the response of ammonia-oxidizing Archaea (AOA) and ammonia-oxidizing Bacteria (AOB) to each treatment over time. This approach was combined with measurements of 15NH4+ oxidation rates using 15N isotopic additions. Our results showed a higher potential for nitrification in Miers Valley, where environmental conditions are milder relative to Beacon Valley. AOA exhibited better adaptability to geochemical changes compared to AOB, particularly to the increase in copper and conductivity. AOA were also the only nitrifying group found in Beacon Valley soils. This laboratorial manipulative experiment provided new knowledge on how nitrifying groups respond to changes on key geochemical variables of Antarctic desert soils, and we believe these results offer new insights on the dynamics of N cycling in these ecosystems.
Collapse
|
39
|
Ngoc Diem Do T, Duc Lao T, Ai Huyen Le T. Establishment of PMA Real-Time PCR Method to Detect Viable Cells of Listeria monocytogenes and Salmonella spp. in Milk and Dairy Products. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/27325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Baymiev AK, Baymiev AK, Kuluev BR, Shvets KY, Yamidanov RS, Matniyazov RT, Chemeris DA, Zubov VV, Alekseev YI, Mavzyutov AR, Ivanenkov YA, Chemeris AV. Modern Approaches to Differentiation of Live and Dead Bacteria Using Selective Amplification of Nucleic Acids. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
41
|
Deshmukh R, Bhand S, Roy U. A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Braz J Microbiol 2019; 51:773-778. [PMID: 31654340 DOI: 10.1007/s42770-019-00161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
We report a specific and sensitive method to improve the coupling of propidium monoazide (PMA) with DNA derived from killed cells of Escherichia coli using UV light of 365 nm. UV light of three different intensities mainly 2.4 × 103, 4.8 × 103, and 7.2 × 103 μJ/cm2 was applied to E. coli cells each for 1, 3, and 5 min. PMA was found to be successfully cross-linked with the DNA from killed cells of E. coli at 4.8 × 103 μJ/cm2 in 3 min leading to the complete inhibition of PCR amplification of DNA derived from PMA-treated heat-killed cells. In spiked phosphate-buffered saline and potable water samples, the difference of the Cq values between PMA-treated viable cells and PMA-untreated viable cells ranged from -0.17 to 0.2, demonstrating that UV-induced PMA activation had a negligible effect on viable cells. In contrast, the difference of the Cq values between PMA-treated heat-killed cells and PMA-untreated heat-killed cells ranged from 8.9 to 9.99, indicating the ability of PMA to inhibit PCR amplification of DNA derived from killed cells to an equivalent as low as 100 CFU. In conclusion, this UV-coupled PMA-qPCR assay provided a rapid and sensitive methodology to selectively detect viable E. coli cells in spiked water samples within 4 h.
Collapse
Affiliation(s)
- Rehan Deshmukh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Sunil Bhand
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India.
| |
Collapse
|
42
|
Spiking a Silty-Sand Reference Soil with Bacterial DNA: Limits and Pitfalls in the Discrimination of Live and Dead Cells When Applying Ethidium Monoazide (EMA) Treatment. Curr Microbiol 2019; 76:1425-1434. [PMID: 31552450 PMCID: PMC6817739 DOI: 10.1007/s00284-019-01772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 10/28/2022]
Abstract
In the present study, EMA (ethidium monoazide) treatment was applied to a silty-sand reference soil prior to DNA extraction to enable a differentiation between dead and living cells. For this purpose, a reference soil was spiked with Listeria monocytogenes cells or cell equivalents, respectively. With the purpose of evaluating optimum treatment conditions, different EMA concentrations have been tested. However, the results remained largely inconclusive. Furthermore, varied dark incubation periods allowing EMA to penetrate dead cells did not allow the selective removal of DNA from membrane-compromised cells in downstream analyses. In contrast to undiluted soil, an effect of EMA treatment during DNA extraction could be observed when using a 1:10 dilution of the reference soil; however, the effect has not been sufficiently selective to act on heat-treated cells only. Although the application of EMA to soil requires further evaluation, the procedure harbors future potential for improving DNA-based approaches in microbial ecology studies.
Collapse
|
43
|
Kunadiya MB, Dunstan WD, White D, Hardy GESJ, Grigg AH, Burgess TI. A qPCR Assay for the Detection of Phytophthora cinnamomi Including an mRNA Protocol Designed to Establish Propagule Viability in Environmental Samples. PLANT DISEASE 2019; 103:2443-2450. [PMID: 31313641 DOI: 10.1094/pdis-09-18-1641-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora cinnamomi causes root and collar rot in many plant species in natural ecosystems and horticulture. A species-specific primer and probe PCIN5 were designed based on a mitochondrial locus encoding subunit 2 of cytochrome c oxidase (cox2). Eight PCR primers, including three forward and five reverse, were designed and tested in all possible combinations. Annealing temperatures were optimized for each primer pair set to maximize both specificity and sensitivity. Each set was tested against P. cinnamomi and two closely related clade 7 species, P. parvispora and P. niederhauseri. From these tests, five primer pairs were selected based on specificity and, with a species-specific P. cinnamomi probe, used to develop quantitative real-time PCR (qPCR) assays. The specificity of the two most sensitive qPCR assays was confirmed using the genomic DNA of 29 Phytophthora isolates, including 17 isolates of 11 species from clade 7, and representative species from nine other clades (all except clade 3). The assay was able to detect as little as 150 ag of P. cinnamomi DNA and showed no cross-reaction with other Phytophthora species, except for P. parvispora, a very closely related species to P. cinnamomi, which showed late amplification at high DNA concentrations. The efficiency of the qPCR protocol was evaluated with environmental samples including roots and associated soil from plants artificially infected with P. cinnamomi. Different RNA isolation kits were tested and evaluated for their performance in the isolation of RNA from environmental samples, followed by cDNA synthesis, and qPCR assay. Finally, a protocol was recommended for determining the presence of P. cinnamomi in recalcitrant environmental samples.
Collapse
Affiliation(s)
- Manisha B Kunadiya
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - William D Dunstan
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Diane White
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Giles E St J Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Andrew H Grigg
- Alcoa of Australia Ltd., Huntly Mine, Pinjarra, WA 6208, Australia
| | - Treena I Burgess
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
44
|
Magin V, Garrec N, Andrés Y. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of Pseudomonas Aeruginosa Isolated from Drinking and Thermal Water. Viruses 2019; 11:E749. [PMID: 31412645 PMCID: PMC6722843 DOI: 10.3390/v11080749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes public healthcare issues. In moist environments, this Gram-negative bacterium persists through biofilm-associated contamination on surfaces. Bacteriophages are seen as a promising alternative strategy to chemical biocides. This study evaluates the potential of nine lytic bacteriophages as biocontrol treatments against nine environmental P. aerginosa isolates. The spot test method is preliminarily used to define the host range of each virus and to identify their minimum infectious titer, depending on the strain. Based on these results, newly isolated bacteriophages 14.1, LUZ7, and B1 are selected and assessed on a planktonic cell culture of the most susceptible isolates (strains MLM, D1, ST395E, and PAO1). All liquid infection assays are achieved in a mineral minimum medium that is much more representative of real moist environments than standard culture medium. Phages 14.1 and LUZ7 eliminate up to 90% of the PAO1 and D1 bacterial strains. Hence, their effectiveness is evaluated on the 24 h old biofilms of these strains, established on a stainless steel coupon that is characteristic of materials found in thermal and industrial environments. The results of quantitative PCR viability show a maximum reduction of 1.7 equivalent Log CFU/cm2 in the coupon between treated and untreated surfaces and shed light on the importance of considering the entire virus/host/environment system for optimizing the treatment.
Collapse
Affiliation(s)
- Vanessa Magin
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France.
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France.
| | - Nathalie Garrec
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France
| | - Yves Andrés
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France
| |
Collapse
|
45
|
Guégan M, Minard G, Tran FH, Tran Van V, Dubost A, Valiente Moro C. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiol Ecol 2019; 94:5101426. [PMID: 30239661 DOI: 10.1093/femsec/fiy188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Florence-Hélène Tran
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
46
|
Kumar SS, Ghosh AR. Assessment of bacterial viability: a comprehensive review on recent advances and challenges. Microbiology (Reading) 2019; 165:593-610. [DOI: 10.1099/mic.0.000786] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shravanthi S. Kumar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
47
|
Laidlaw AM, Gänzle MG, Yang X. Comparative assessment of qPCR enumeration methods that discriminate between live and dead Escherichia coli O157:H7 on beef. Food Microbiol 2019; 79:41-47. [DOI: 10.1016/j.fm.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/28/2022]
|
48
|
Hamza IA, Bibby K. Critical issues in application of molecular methods to environmental virology. J Virol Methods 2019; 266:11-24. [PMID: 30659861 DOI: 10.1016/j.jviromet.2019.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
Waterborne diseases have significant public health and socioeconomic implications worldwide. Many viral pathogens are commonly associated with water-related diseases, namely enteric viruses. Also, novel recently discovered human-associated viruses have been shown to be a causative agent of gastroenteritis or other clinical symptoms. A wide range of analytical methods is available for virus detection in environmental water samples. Viral isolation is historically carried out via propagation on permissive cell lines; however, some enteric viruses are difficult or not able to propagate on existing cell lines. Real-time polymerase chain reaction (qPCR) screening of viral nucleic acid is routinely used to investigate virus contamination in water due to the high sensitivity and specificity. Additionally, the introduction of metagenomic approaches into environmental virology has facilitated the discovery of viruses that cannot be grown in cell culture. This review (i) highlights the applications of molecular techniques in environmental virology such as PCR and its modifications to overcome the critical issues associated with the inability to discriminate between infectious viruses and nonviable viruses, (ii) outlines the strengths and weaknesses of Nucleic Acid Sequence Based Amplification (NASBA) and microarray, (iii) discusses the role of digital PCR as an emerging water quality monitoring assay and its advantages over qPCR, (iv) addresses the viral metagenomics in terms of detecting emerging viral pathogens and diversity in aquatic environment. Indeed, there are many challenges for selecting methods to detect classic and emerging viruses in environmental samples. While the existing techniques have revealed the importance and diversity of viruses in the water environment, further developments are necessary to enable more rapid and accurate methodologies for viral water quality monitoring and regulation.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Department of Water Pollution Research, National Research Centre, Cairo, Egypt.
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, USA
| |
Collapse
|
49
|
Cao Y, Zhou D, Li R, Yu Y, Xiao X, Zhou A, Liu D, Li X. Molecular monitoring of disinfection efficacy of
E. coli
O157:H7 in bottled purified drinking water by quantitative PCR with a novel dye. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yifang Cao
- College of Food Science and Engineering South China University of Technology Guangzhou China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center Ningbo China
| | - Rong Li
- Zhongshan Entry‐Exit Inspection and Quarantine Bureau Zhongshan China
| | - Yigang Yu
- College of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xinglong Xiao
- College of Food Science and Engineering South China University of Technology Guangzhou China
| | - Ailian Zhou
- College of Food Science and Engineering South China University of Technology Guangzhou China
| | - Dongmei Liu
- College of Food Science and Engineering South China University of Technology Guangzhou China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou China
| |
Collapse
|
50
|
Suss PH, Ribeiro VST, Cieslinski J, Kraft L, Tuon FF. Experimental procedures for decontamination and microbiological testing in cardiovascular tissue banks. Exp Biol Med (Maywood) 2019; 243:1286-1301. [PMID: 30614255 DOI: 10.1177/1535370218820515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Sterility testing is a critical issue in the recovery, processing, and release of tissue allografts. Contaminated allografts are often discarded, increasing costs, and reducing tissue stocks. Given these concerns, it is important to determine the most effective methodology for sterility testing. This work provides an overview of microbiological methods for sampling and culturing donor grafts for cardiovascular tissue banking.
Collapse
Affiliation(s)
- Paula Hansen Suss
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Victoria Stadler Tasca Ribeiro
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Juliette Cieslinski
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Letícia Kraft
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Felipe Francisco Tuon
- 1 Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil.,2 Human Tissue Bank, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| |
Collapse
|