1
|
Wu Z, Ji Y, Liu G, Yu X, Shi K, Liang B, Freilich S, Jiang J. Electro-stimulation modulates syntrophic interactions in methanogenic toluene-degrading microbiota for enhanced functionality. WATER RESEARCH 2024; 260:121898. [PMID: 38865893 DOI: 10.1016/j.watres.2024.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Syntrophy achieved via microbial cooperation is vital for anaerobic hydrocarbon degradation and methanogenesis. However, limited understanding of the metabolic division of labor and electronic interactions in electro-stimulated microbiota has impeded the development of enhanced biotechnologies for degrading hydrocarbons to methane. Here, compared to the non-electro-stimulated methanogenic toluene-degrading microbiota, electro-stimulation at 800 mV promoted toluene degradation and methane production efficiencies by 11.49 %-14.76 % and 75.58 %-290.11 %, respectively. Hydrocarbon-degrading gene bamA amplification and metagenomic sequencing analyses revealed that f_Syntrophobacteraceae MAG116 may act as a toluene degrader in the non-electro-stimulated microbiota, which was proposed to establish electron syntrophy with the acetoclastic methanogen Methanosarcina spp. (or Methanothrix sp.) through e-pili or shared acetate. In the electro-stimulated microbiota, 37.22 ± 4.33 % of Desulfoprunum sp. (affiliated f_Desulfurivibrionaceae MAG10) and 58.82 ± 3.74 % of the hydrogenotrophic methanogen Methanobacterium sp. MAG74 were specifically recruited to the anode and cathode, respectively. The potential electrogen f_Desulfurivibrionaceae MAG10 engaged in interspecies electron transfer with both syntroph f_Syntrophobacteraceae MAG116 and the anode, which might be facilitated by c-type cytochromes (e.g., ImcH, OmcT, and PilZ). Moreover, upon capturing electrons from the external circuit, the hydrogen-producing electrotroph Aminidesulfovibrio sp. MAG60 could share electrons and hydrogen with the methanogen Methanobacterium sp. MAG74, which uniquely harbored hydrogenase genes ehaA-R and ehbA-P. This study elucidates the microbial interaction mechanisms underlying the enhanced metabolic efficiency of the electro-stimulated methanogenic toluene-degrading microbiota, and emphasizes the significance of metabolic and electron syntrophic interactions in maintaining the stability of microbial community functionality.
Collapse
Affiliation(s)
- Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiping Liu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Yu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiri Freilich
- Newe-Ya'ar Research Center, Agricultural Research Organization, Ministry of Agriculture, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang W, Zhang S, Gao T, Li L. In-situ treatment of gaseous benzene in fixed-bed biofilter with polyurethane foam: Functional population response and benzene transformation pathway. BIORESOURCE TECHNOLOGY 2024; 405:130926. [PMID: 38824970 DOI: 10.1016/j.biortech.2024.130926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Volatile organic compounds emitted from landfills posed adverse effect on health. In this study, gaseous benzene was biologically treated using an in-situ biofilter without air pump. Its performance was investigated and the removal efficiency of benzene reached over 90 %. The decrease in the average benzene concentration was consistent with first-order reaction kinetics. Mycolicibacterium dominated the bacterial consortium (41-57 %) throughout the degradation. Annotation of genes by metagenomic analysis helped to deduce the degradation pathways (benzene degradation, catechol ortho-cleavage and meta-cleavage) and to reveal the contribution of different species to the degradation process. In total, 21 kinds of key genes and 13 enzymes were involved in the three modules of benzene transformation. Mycolicibacter icosiumassiliensis and Sphingobium sp. SCG-1 carried multiple functional genes critically involved in benzene biodegradation. These findings provide technical and theoretical support for the in-situ bioremediation of benzene-contaminated soil and waste gas reduction in landfills.
Collapse
Affiliation(s)
- Wenwen Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tong Gao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Bueno de Mesquita CP, Hartman WH, Ardón M, Tringe SG. Disentangling the effects of sulfate and other seawater ions on microbial communities and greenhouse gas emissions in a coastal forested wetland. ISME COMMUNICATIONS 2024; 4:ycae040. [PMID: 38628812 PMCID: PMC11020224 DOI: 10.1093/ismeco/ycae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.
Collapse
Affiliation(s)
- Clifton P Bueno de Mesquita
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Wyatt H Hartman
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, United States
| | - Susannah G Tringe
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
4
|
Kamagata Y. Cultivating the unseen: Lessons from James Tiedje. MLIFE 2023; 2:217-223. [PMID: 38817816 PMCID: PMC10989887 DOI: 10.1002/mlf2.12083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 06/01/2024]
Affiliation(s)
- Yoichi Kamagata
- National Institute of Advanced and Industrial Science and Technology (AIST)TsukubaJapan
| |
Collapse
|
5
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
6
|
Takemura Y, Aoki M, Danshita T, Iguchi A, Ikeda S, Miyaoka Y, Sumino H, Syutsubo K. Effects of sulfate concentration on anaerobic treatment of wastewater containing monoethanolamine using an up-flow anaerobic sludge blanket reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129764. [PMID: 35986941 DOI: 10.1016/j.jhazmat.2022.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Monoethanolamine (MEA), a toxic organic chemical, is widely used in industries and is found in their wastewater. Anaerobic MEA degradation is an appropriate strategy to reduce energy and cost for treatment. Industry wastewaters also contain sulfate, but information on the effects of sulfate on MEA degradation is limited. Here, an up-flow anaerobic sludge blanket (UASB) for MEA-containing wastewater treatment was operated under psychrophilic conditions (18-20 ºC) to investigate the effects of sulfate on the microbial characteristics of the retained sludge. To acclimatize the sludge, the proportion of MEA in the influent (containing sucrose, acetate, and propionate) was increased from 15% to 100% of total COD (1500 mg L-1); sulfate was then added to the influent. The COD removal efficiency remained above 95% despite the increase in MEA and sulfate. However, granular sludge disintegration was observed when sulfate was increased from 20 to 330 mg L-1. Batch tests revealed that propionate and acetate were produced as the metabolites of MEA degradation. In response to sulfate acclimation, methane-producing activities for propionate and hydrogen declined, while sulfate-reducing activities for MEA, propionate, and hydrogen increased. Accordingly, acclimation and changes in dominant microbial groups promoted the acetogenic reaction of propionate by sulfate reduction.
Collapse
Affiliation(s)
- Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tsuyoshi Danshita
- Department of Civil Engineering and Architecture, National Institute for Technology, Tokuyama College, 3538 Gakuendai, Shunan, Yamaguchi 745-8585, Japan
| | - Akinori Iguchi
- Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashizima, Akihaku, Niigata 956-8603, Japan
| | - Shoji Ikeda
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinko, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Yuma Miyaoka
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Haruhiko Sumino
- Department of Civil Engineering, National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
7
|
Brazelton WJ, McGonigle JM, Motamedi S, Pendleton HL, Twing KI, Miller BC, Lowe WJ, Hoffman AM, Prator CA, Chadwick GL, Anderson RE, Thomas E, Butterfield DA, Aquino KA, Früh-Green GL, Schrenk MO, Lang SQ. Metabolic Strategies Shared by Basement Residents of the Lost City Hydrothermal Field. Appl Environ Microbiol 2022; 88:e0092922. [PMID: 35950875 PMCID: PMC9469722 DOI: 10.1128/aem.00929-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022] Open
Abstract
Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.
Collapse
Affiliation(s)
| | - Julia M. McGonigle
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| | - Shahrzad Motamedi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Katrina I. Twing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Briggs C. Miller
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - William J. Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Cecilia A. Prator
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Elaina Thomas
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, Washington, USA
| | | | | | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Susan Q. Lang
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
9
|
Yang W, Ci M, Hu L, Shen Z, Fang C, Long Y. Sulfate-reduction behavior in waste-leachate transition zones of landfill sites. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128199. [PMID: 35030490 DOI: 10.1016/j.jhazmat.2021.128199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 05/27/2023]
Abstract
The sulfate reduction behavior of the waste-leachate transition zone of landfill was investigated at different temperatures and moisture contents. Marked differences in the sulfate reduction behavior were observed in the waste-leachate transition zone. The highest H2S concentration was observed when the solid-to-liquid ratio was 1:3 at both temperatures. Although more leachate led to higher H2S concentrations, the solid-to-liquid ratio was likely of subordinate significance compared with temperature. The microbial community was more unstable at 50 °C and more extensive mutualistic interactions among bacteria were observed, resulting in SRB showing a more violent response to changes in the solid-to-liquid ratio. At 25 °C, it's the opposite. A temperature of 25 °C was suitable for most SRB (such as Desulfomicrobium and Desulfobulbus), while some specific SRB that did not contain the functional genes (such as Dethiobacter and Anaerolinea) played a pivotal role in the significant differences in sulfate reduction behavior observed at 50 °C. This study provides a theoretical basis for controlling the release of H2S from landfill.
Collapse
Affiliation(s)
- Wenyi Yang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Enginee ring, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Manting Ci
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Enginee ring, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lifang Hu
- College of Quality and Safety Engineering, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou 310018, China.
| | - Zhen Shen
- Wake Forest University, 1834 Wake Forest Rd., Winston Salem, NC 27109, United States
| | - Chengran Fang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Enginee ring, Zhejiang Gongshang University, Hangzhou 310012, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. THE ISME JOURNAL 2022; 16:307-320. [PMID: 34331018 PMCID: PMC8692467 DOI: 10.1038/s41396-021-01057-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Deltaproteobacteria, now proposed to be the phyla Desulfobacterota, Myxococcota, and SAR324, are ubiquitous in marine environments and play essential roles in global carbon, sulfur, and nutrient cycling. Despite their importance, our understanding of these bacteria is biased towards cultured organisms. Here we address this gap by compiling a genomic catalog of 1 792 genomes, including 402 newly reconstructed and characterized metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments. Phylogenomic analyses reveal that many of these novel MAGs are uncultured representatives of Myxococcota and Desulfobacterota that are understudied. To better characterize Deltaproteobacteria diversity, metabolism, and ecology, we clustered ~1 500 genomes based on the presence/absence patterns of their protein families. Protein content analysis coupled with large-scale metabolic reconstructions separates eight genomic clusters of Deltaproteobacteria with unique metabolic profiles. While these eight clusters largely correspond to phylogeny, there are exceptions where more distantly related organisms appear to have similar ecological roles and closely related organisms have distinct protein content. Our analyses have identified previously unrecognized roles in the cycling of methylamines and denitrification among uncultured Deltaproteobacteria. This new view of Deltaproteobacteria diversity expands our understanding of these dominant bacteria and highlights metabolic abilities across diverse taxa.
Collapse
|
11
|
Hardy J, Bonin P, Lazuka A, Gonidec E, Guasco S, Valette C, Lacroix S, Cabrol L. Similar Methanogenic Shift but Divergent Syntrophic Partners in Anaerobic Digesters Exposed to Direct versus Successive Ammonium Additions. Microbiol Spectr 2021; 9:e0080521. [PMID: 34612672 PMCID: PMC8510171 DOI: 10.1128/spectrum.00805-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
During anaerobic digestion (AD) of protein-rich wastewater, ammonium (NH4+) is released by amino acid degradation. High NH4+ concentrations disturb the AD microbiome balance, leading to process impairments. The sensitivity of the AD microbiome to NH4+ and the inhibition threshold depend on multiple parameters, especially the previous microbial acclimation to ammonium stress. However, little is known about the effect of different NH4+ acclimation strategies on the differential expression of key active microbial taxa. Here, we applied NH4+ inputs of increasing intensity (from 1.7 to 15.2 g N-NH4+ liters-1) in batch assays fed with synthetic wastewater, according to two different strategies: (i) direct independent inputs at a unique target concentration and (ii) successive inputs in a stepwise manner. In both strategies, along the NH4+ gradient, the active methanogens shifted from acetoclastic Methanosaeta to Methanosarcina and eventually hydrogenotrophic Methanoculleus. Despite shorter latency times, the successive input modality led to lower methane production rate, lower soluble chemical oxygen demand (sCOD) removal efficiency, and lower half maximal inhibitory concentration, together with higher volatile fatty acid (VFA) accumulation, compared to the independent input modality. These differential performances were associated with a drastically distinct succession pattern of the active bacterial partners in both experiments. In particular, the direct exposure modality was characterized by a progressive enrichment of VFA producers (mainly Tepidimicrobium) and syntrophic VFA oxidizers (mainly Syntrophaceticus) with increasing NH4+ concentration, while the successive exposure modality was characterized by a more dynamic succession of VFA producers (mainly Clostridium, Sporanaerobacter, Terrisporobacter) and syntrophic VFA oxidizers (mainly Tepidanaerobacter, Syntrophomonas). These results bring relevant insights for improved process management through inoculum adaptation, bioaugmentation, or community-driven optimization. IMPORTANCE Anaerobic digestion (AD) is an attractive biotechnological process for wastewater bioremediation and bioenergy production in the form of methane-rich biogas. However, AD can be inhibited by ammonium generated by protein-rich effluent, commonly found in agro-industrial activities. Insights in the microbial community composition and identification of AD key players are crucial for anticipating process impairments in response to ammonium stress. They can also help in defining an optimal microbiome adapted to high ammonium levels. Here, we compared two strategies for acclimation of AD microbiome to increasing ammonium concentration to better understand the effect of this stress on the methanogens and their bacterial partners. Our results suggest that long-term cumulative exposure to ammonia disrupted the AD microbiome more strongly than direct (independent) ammonium additions. We identified bioindicators with different NH4+ tolerance capacity among VFA producers and syntrophic VFA oxidizers.
Collapse
Affiliation(s)
- Julie Hardy
- MIO, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France
- Scientific & Technological Expertise Department, Veolia, Maisons-Laffitte, France
| | - Patricia Bonin
- MIO, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France
| | - Adele Lazuka
- Scientific & Technological Expertise Department, Veolia, Maisons-Laffitte, France
| | - Estelle Gonidec
- Scientific & Technological Expertise Department, Veolia, Maisons-Laffitte, France
| | - Sophie Guasco
- MIO, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France
| | - Corinne Valette
- MIO, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France
| | - Sébastien Lacroix
- Scientific & Technological Expertise Department, Veolia, Maisons-Laffitte, France
| | - Léa Cabrol
- MIO, Aix Marseille University, University of Toulon, CNRS, IRD, Marseille, France
- Instituto de Ecologia y Biodiversidad (IEB) Facultad de Ciencias, Universidad de Chile Las Palmeras, Nunoa, Santiago, Chile
| |
Collapse
|
12
|
Jin Y, Jiao S, Dolfing J, Lu Y. Thermodynamics shapes the biogeography of propionate-oxidizing syntrophs in paddy field soils. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:684-695. [PMID: 34089233 DOI: 10.1111/1758-2229.12981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Soil biogeochemical processes are not only gauged by the dominant taxa in the microbiome but also depend on the critical functions of its 'rare biosphere' members. Here, we evaluated the biogeographical pattern of 'rare biosphere' propionate-oxidizing syntrophs in 113 paddy soil samples collected across China. The relative abundance, activity and growth potential of propionate-oxidizing syntrophs were analysed to provide a panoramic view of syntroph biogeographical distribution at the continental scale. The relative abundances of four syntroph genera, Syntrophobacter, Pelotomaculum, Smithella and Syntrophomonas were significantly greater at the warm low latitudes than at the cool high latitudes. Correspondingly, propionate degradation was faster in the low latitude soils compared with the high latitude soils. The low rate of propionate degradation in the high latitude soils resulted in a greater increase of the total syntroph relative abundance, probably due to their initial low relative abundances and the longer incubation time for propionate consumption. The mean annual temperature (MAT) is the most important factor shaping the biogeographical pattern of propionate-oxidizing syntrophs, with the next factor being the soil's total sulfur content (TS). We suggest that the effect of MAT is related to the thermodynamic conditions, in which the endergonic constraint of propionate oxidation is leveraged with the increase of MAT. The TS effect is likely due to the ability of some propionate syntrophs to facultatively perform sulfate respiration.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shuo Jiao
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8QH, UK
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Chi M, Su X, Sun X, Xu Y, Wang X, Qiu Y. Microbial analysis and enrichment of anaerobic phenol and p-cresol degrading consortia with addition of AQDS. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:683-696. [PMID: 34388127 DOI: 10.2166/wst.2021.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Quinones and humus are ubiquitous in the biosphere and play an important role in the anaerobic biodegradation and biotransformation of organic acids, poisonous compounds as well as inorganic compounds. The impact of humic model compound, anthraquinone-2, 6-disulfonate (AQDS) on anaerobic phenol and p-cresol degradation were studied. Four methanogenic AQDS-free phenol and p-cresol enrichments and two phenol-AQDS enrichments were obtained using two sludges with potential biodegradability of phenol and cresol isomers as inoculum. 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization revealed that syntrophic aromatic compound degrading bacterium Syntrophorhabdus aromaticivorans was dominant in four AQDS-free enrichments, whereas phenol degrading Cryptanaerobacter phenolicus was dominant in two phenol-AQDS enrichments. Neither co-culture of S. aromaticivorans with Methanospirillum hungatei nor two phenol-AQDS enrichments could metabolize phenol using AQDS as the terminal electron acceptor. Further degradation experiments suggested that C. phenolicus related microbes in two phenol-AQDS enrichments were responsible for the conversion of phenol to benzoate, and benzoate was further degraded by benzoate degraders of Syntrophus aciditrophicus or Sporotomaculum syntrophicum to acetate.
Collapse
Affiliation(s)
- Mingmei Chi
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoli Su
- Department of hematology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaojiao Sun
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanling Qiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
14
|
Bao Y, Jin X, Guo C, Lu G, Dang Z. Sulfate-reducing bacterial community shifts in response to acid mine drainage in the sediment of the Hengshi watershed, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2822-2834. [PMID: 32895792 DOI: 10.1007/s11356-020-10248-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Sulfate-reducing bacteria (SRB) are an attractive option for treating acid mine drainage (AMD) and are considered to be of great significance in the natural attenuation of AMD, but the available information regarding the highly diverse SRB community in AMD sites is not comprehensive. The Hengshi River, which is continually contaminated by AMD from upstream mining areas, was selected as a study site for investigation of the distribution, diversity, and abundance of SRB. Overall, high-throughput sequencing of the 16S rRNA and dsrB genes revealed the high diversity, richness, and OTU numbers of SRB communities, suggesting the existence of active sulfate reduction in the study area. Further analysis demonstrated that AMD contamination decreased the richness and diversity of the microbial community and SRB community, and led to spatiotemporal shifts in the overall composition and structure of sediment microbial and SRB communities along the Hengshi watershed. However, the sulfate reduction activity was high in the midstream, even though AMD pollution remained heavy in this area. Spatial distributions of SRB community indicated that species of Clostridia may be more tolerant of AMD contamination than other species, because of their predominance in the SRB communities. In addition, the results of CCA revealed that environmental parameters, such as pH, TS content, and Fe content, can significantly influence total microbial and SRB community structure, and dissolved organic carbon was another important factor structuring the SRB community. This study extends our knowledge of the distribution of indigenous SRB communities and their potential roles in natural AMD attenuation.
Collapse
Affiliation(s)
- Yanping Bao
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, People's Republic of China
| | - Xiaohu Jin
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, 510006, Guangzhou, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
15
|
Mullin SW, Wanger G, Kruger BR, Sackett JD, Hamilton-Brehm SD, Bhartia R, Amend JP, Moser DP, Orphan VJ. Patterns of in situ Mineral Colonization by Microorganisms in a ~60°C Deep Continental Subsurface Aquifer. Front Microbiol 2020; 11:536535. [PMID: 33329414 PMCID: PMC7711152 DOI: 10.3389/fmicb.2020.536535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.
Collapse
Affiliation(s)
- Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Greg Wanger
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Brittany R Kruger
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Joshua D Sackett
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Scott D Hamilton-Brehm
- Department of Microbiology, Southern Illinois University Carbondale, Carbondale, IL, United States
| | - Rohit Bhartia
- Jet Propulsion Laboratory, Pasadena, CA, United States
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Duane P Moser
- Division of Hydrologic Sciences, Desert Research Institute, Las Vegas, NV, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
16
|
Löffler M, Wallerang KB, Venceslau SS, Pereira IAC, Dahl C. The Iron-Sulfur Flavoprotein DsrL as NAD(P)H:Acceptor Oxidoreductase in Oxidative and Reductive Dissimilatory Sulfur Metabolism. Front Microbiol 2020; 11:578209. [PMID: 33178160 PMCID: PMC7596348 DOI: 10.3389/fmicb.2020.578209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
DsrAB-type dissimilatory sulfite reductase is a key enzyme of microbial sulfur-dependent energy metabolism. Sulfur oxidizers also contain DsrL, which is essential for sulfur oxidation in Allochromatium vinosum. This NAD(P)H oxidoreductase acts as physiological partner of oxidative-type rDsrAB. Recent analyses uncovered that DsrL is not confined to sulfur oxidizers but also occurs in (probable) sulfate/sulfur-reducing bacteria. Here, phylogenetic analysis revealed a separation into two major branches, DsrL-1, with two subgroups, and DsrL-2. When present in organisms with reductive-type DsrAB, DsrL is of type 2. In the majority of cases oxidative-type rDsrAB occurs with DsrL-1 but combination with DsrL-2-type enzymes is also observed. Three model DsrL proteins, DsrL-1A and DsrL-1B from the sulfur oxidizers A. vinosum and Chlorobaculum tepidum, respectively, as well as DsrL-2 from thiosulfate- and sulfur-reducing Desulfurella amilsii were kinetically characterized. DaDsrL-2 is active with NADP(H) but not with NAD(H) which we relate to a conserved YRR-motif in the substrate-binding domains of all DsrL-2 enzymes. In contrast, AvDsrL-1A has a strong preference for NAD(H) and the CtDsrL-1B enzyme is completely inactive with NADP(H). Thus, NAD+ as well as NADP+ are suitable in vivo electron acceptors for rDsrABL-1-catalyzed sulfur oxidation, while NADPH is required as electron donor for sulfite reduction. This observation can be related to the lower redox potential of the NADPH/NADP+ than the NADH/NAD+ couple under physiological conditions. Organisms with a rdsrAB and dsrL-1 gene combination can be confidently identified as sulfur oxidizers while predictions for organisms with other combinations require much more caution and additional information sources.
Collapse
Affiliation(s)
- Maria Löffler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Kai B Wallerang
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
17
|
Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, Shinzato N. Tripartite Symbiosis of an Anaerobic Scuticociliate with Two Hydrogenosome-Associated Endosymbionts, a Holospora-Related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol 2019; 85:e00854-19. [PMID: 31585988 PMCID: PMC6881808 DOI: 10.1128/aem.00854-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022] Open
Abstract
A number of anaerobic ciliates, unicellular eukaryotes, intracellularly possess methanogenic archaea and bacteria as symbiotic partners. Although this tripartite relationship is of interest in terms of the fact that each participant is from a different domain, the difficulty in culture and maintenance of those host species with symbiotic partners has disturbed both ecological and functional studies so far. In this study, we obtained a stable culture of a small anaerobic scuticociliate, strain GW7. By transmission electron microscopic observation and fluorescent in situ hybridization with domain-specific probes, we demonstrate that GW7 possesses both archaeal and bacterial endosymbionts in its cytoplasm. These endosymbionts are in dependently associated with hydrogenosomes, which are organelle producing hydrogen and ATP under anaerobic conditions. Clone library analyses targeting prokaryotic 16S rRNA genes, fluorescent in situ hybridization with endosymbiont-specific probes, and molecular phylogenetic analyses revealed the phylogenetic affiliations and intracellular localizations of these endosymbionts. The endosymbiotic archaeon is a methanogen belonging to the genus Methanoregula (order Methanomicrobiales); a member of this genus has previously been described as the endosymbiont of an anaerobic ciliate from the genus Metopus (class Armophorea), which is only distantly related to strain GW7 (class Oligohymenophorea). The endosymbiotic bacterium belongs to the family Holosporaceae of the class Alphaproteobacteria, which also comprises several endosymbionts of various aerobic ciliates. For this endosymbiotic bacterium, we propose a novel candidate genus and species, "Candidatus Hydrogenosomobacter endosymbioticus."IMPORTANCE Tripartite symbioses between anaerobic ciliated protists and their intracellular archaeal and bacterial symbionts are not uncommon, but most reports have been based mainly on microscopic observations. Deeper insights into the function, ecology, and evolution of these fascinating symbioses involving partners from all three domains of life have been hampered by the difficulties of culturing anaerobic ciliates in the laboratory and the frequent loss of their prokaryotic partners during long-term cultivation. In the present study, we report the isolation of an anaerobic scuticociliate, strain GW7, which has been stably maintained in our laboratory for more than 3 years without losing either of its endosymbionts. Unexpectedly, molecular characterization of the endosymbionts revealed that the bacterial partner of GW7 is phylogenetically related to intranuclear endosymbionts of aerobic ciliates. This strain will enable future genomic, transcriptomic, and proteomic analyses of the interactions in this tripartite symbiosis and a comparison with endosymbioses in aerobic ciliates.
Collapse
Affiliation(s)
- Kazutaka Takeshita
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takanori Yamada
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuto Kawahara
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Michihiro Ito
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Ranchou-Peyruse M, Auguet JC, Mazière C, Restrepo-Ortiz CX, Guignard M, Dequidt D, Chiquet P, Cézac P, Ranchou-Peyruse A. Geological gas-storage shapes deep life. Environ Microbiol 2019; 21:3953-3964. [PMID: 31314939 DOI: 10.1111/1462-2920.14745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022]
Abstract
Around the world, several dozen deep sedimentary aquifers are being used for storage of natural gas. Ad hoc studies of the microbial ecology of some of them have suggested that sulfate reducing and methanogenic microorganisms play a key role in how these aquifers' communities function. Here, we investigate the influence of gas storage on these two metabolic groups by using high-throughput sequencing and show the importance of sulfate-reducing Desulfotomaculum and a new monophyletic methanogenic group. Aquifer microbial diversity was significantly related to the geological level. The distance to the stored natural gas affects the ratio of sulfate-reducing Firmicutes to deltaproteobacteria. In only one aquifer, the methanogenic archaea dominate the sulfate-reducers. This aquifer was used to store town gas (containing at least 50% H2 ) around 50 years ago. The observed decrease of sulfates in this aquifer could be related to stimulation of subsurface sulfate-reducers. These results suggest that the composition of the microbial communities is impacted by decades old transient gas storage activity. The tremendous stability of these gas-impacted deep subsurface microbial ecosystems suggests that in situ biotic methanation projects in geological reservoirs may be sustainable over time.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| | - Jean-Christophe Auguet
- MARBEC, Montpellier University, CNRS, IFREMER, IRD, Place Eugène Bataillon, Montpellier, France
| | - Camille Mazière
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France.,MARBEC, Montpellier University, CNRS, IFREMER, IRD, Place Eugène Bataillon, Montpellier, France
| | | | - Marion Guignard
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| | - David Dequidt
- STORENGY - Geosciences Department, Bois-Colombes, France
| | | | - Pierre Cézac
- Laboratoire de Thermique, Énergétique et Procédés IPRA, EA1932, Univ Pau & Pays Adour/E2S-UPPA, 000, Pau, France
| | - Anthony Ranchou-Peyruse
- CNRS/Univ Pau & Pays Adour/E2S-UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, UMR5254, 000, Pau, France
| |
Collapse
|
19
|
Watanabe M, Kojima H, Fukui M. Review of Desulfotomaculum species and proposal of the genera Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. Int J Syst Evol Microbiol 2018; 68:2891-2899. [PMID: 30028279 DOI: 10.1099/ijsem.0.002915] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Desulfotomaculumis a heterogeneous group of spore-forming sulfate-reducing bacteria. The type species of the genus is Desulfotomaculum nigrificans (Approved Lists 1980) emend. Visser et al. 2014. The results of phylogenetic analysis demonstrated that the genus Desulfotomaculum already has lost the clustering monophyly and was segregated into some distinct groups with low sequence similarity. Major features of the type strains in these groups were compared, and four novel genera, Desulfallas gen. nov., Desulfofundulus gen. nov., Desulfofarcimen gen. nov. and Desulfohalotomaculum gen. nov. were proposed to accommodate species transferred from the genus Desulfotomaculum.
Collapse
Affiliation(s)
- Miho Watanabe
- 2Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan.,1The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Hisaya Kojima
- 1The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Manabu Fukui
- 1The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
20
|
Vigneron A, Cruaud P, Alsop E, de Rezende JR, Head IM, Tsesmetzis N. Beyond the tip of the iceberg; a new view of the diversity of sulfite- and sulfate-reducing microorganisms. ISME JOURNAL 2018; 12:2096-2099. [PMID: 29805176 DOI: 10.1038/s41396-018-0155-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 03/09/2018] [Indexed: 11/09/2022]
Abstract
Sulfite-reducing and sulfate-reducing microorganisms (SRM) play important roles in anoxic environments, linking the sulfur and carbon cycles. With climate warming, the distribution of anoxic habitats conductive to dissimilatory SRM is expanding. Consequently, we hypothesize that novel SRM are likely to emerge from the rare biosphere triggered by environmental changes. Using the dsrB gene as a molecular marker of sulfite-reducers and sulfate-reducers, we analyzed the diversity, community composition, and abundance of SRM in 200 samples representing 14 different ecosystems, including marine and freshwater environments, oil reservoirs, and engineered infrastructure. Up to 167,397 species-level OTUs affiliated with 47 different families were identified. Up to 96% of these can be considered as "rare biosphere SRM". One third of the dsrB genes identified belonged to uncharacterized lineages. The dsrB sequences exhibited a strong pattern of selection in different ecosystems. These results expand our knowledge of the biodiversity and distribution of SRM, with implications for carbon and sulfur cycling in anoxic ecosystems.
Collapse
Affiliation(s)
- Adrien Vigneron
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK.,Shell International Exploration and Production Inc., Houston, TX, USA
| | - Perrine Cruaud
- INRA, UMR1062 CBGP, F-34988, Montferrier-sur-Lez, France
| | - Eric Alsop
- Shell International Exploration and Production Inc., Houston, TX, USA.,DOE Joint Genome Institute, Walnut Creek, CA, USA
| | | | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Nicolas Tsesmetzis
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, UK.,Shell International Exploration and Production Inc., Houston, TX, USA
| |
Collapse
|
21
|
Kim DD, O'Farrell C, Toth CRA, Montoya O, Gieg LM, Kwon TH, Yoon S. Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs. Microb Biotechnol 2018; 11:788-796. [PMID: 29806176 PMCID: PMC6011920 DOI: 10.1111/1751-7915.13281] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022] Open
Abstract
As a preliminary investigation for the development of microbial-enhanced oil recovery strategies for high-temperature oil reservoirs (~70 to 90°C), we have investigated the indigenous microbial community compositions of produced waters from five different high-temperature oil reservoirs near Segno, Texas, U.S. (~80 to 85°C) and Crossfield, Alberta, Canada (~75°C). The DNA extracted from these low-biomass-produced water samples were analysed with MiSeq amplicon sequencing of partial 16S rRNA genes. These sequences were analysed along with additional sequence data sets available from existing databases. Despite the geographical distance and difference in the physicochemical properties, the microbial compositions of the Segno and Crossfield produced waters exhibited unexpectedly high similarity, as indicated by the results of beta diversity analyses. The major operational taxonomic units included acetoclastic and hydrogenotrophic methanogens (Methanosaetaceae, Methanobacterium and Methanoculleus), as well as bacteria belonging to the families Clostridiaceae and Thermotogaceae, which have been recognized to include thermophilic, thermotolerant, and/or spore-forming subtaxa. The sequence data retrieved from the databases exhibited different clustering patterns, as the communities from close geographical locations invariably had low beta diversity and the physicochemical properties and conditions of the reservoirs apparently did not have a substantial role in shaping of microbial communities.
Collapse
Affiliation(s)
- Daehyun D Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon, Korea
| | - Corynne O'Farrell
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Courtney R A Toth
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Oscar Montoya
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Tae-Hyuk Kwon
- Department of Civil and Environmental Engineering, KAIST, Daejeon, Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
22
|
Toth CRA, Gieg LM. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition. Front Microbiol 2018; 8:2610. [PMID: 29354103 PMCID: PMC5758579 DOI: 10.3389/fmicb.2017.02610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32) or heavy crude oil (°API = 16). Over the course of 17 months, we conducted routine analytical (GC, GC-MS) and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing) surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella), along with syntrophic bacteria (Syntrophus), methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”). Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.
Collapse
Affiliation(s)
- Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Ju F, Wang Y, Zhang T. Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:135. [PMID: 29774049 PMCID: PMC5946492 DOI: 10.1186/s13068-018-1136-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/29/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Methanogenic biodegradation of aromatic compounds depends on syntrophic metabolism. However, metabolic enzymes and pathways of uncultured microorganisms and their ecological interactions with methanogenic consortia are unknown because of their resistance to isolation and limited genomic information. RESULTS Genome-resolved metagenomics approaches were used to reconstruct and dissect 23 prokaryotic genomes from 37 and 20 °C methanogenic phenol-degrading reactors. Comparative genomic evidence suggests that temperature difference leads to the colonization of two distinct cooperative sub-communities that can respire sulfate/sulfite/sulfur or nitrate/nitrite compounds and compete for uptake of methanogenic substrates (e.g., acetate and hydrogen). This competition may differentiate methanogenesis. The uncultured ε-Proteobacterium G1, whose close relatives have broad ecological niches including the deep-sea vents, aquifers, sediment, limestone caves, spring, and anaerobic digesters, is implicated as a Sulfurovum-like facultative anaerobic diazotroph with metabolic versatility and remarkable environmental adaptability. We provide first genomic evidence for butyrate, alcohol, and carbohydrate utilization by a Chloroflexi T78 clade bacterium, and phenol carboxylation and assimilatory sulfite reduction in a Cryptanaerobacter bacterium. CONCLUSION Genome-resolved metagenomics enriches our view on the differentiation of microbial community composition, metabolic pathways, and ecological interactions in temperature-differentiated methanogenic phenol-degrading bioreactors. These findings suggest optimization strategies for methanogenesis on phenol, such as temperature control, protection from light, feed desulfurization, and hydrogen sulfide removal from bioreactors. Moreover, decoding genome-borne properties (e.g., antibiotic, arsenic, and heavy metal resistance) of uncultured bacteria help to bring up alternative schemes to isolate them.
Collapse
Affiliation(s)
- Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310064 People’s Republic of China
| | - Yubo Wang
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea. Front Microbiol 2017; 8:2133. [PMID: 29163420 PMCID: PMC5682103 DOI: 10.3389/fmicb.2017.02133] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99%) and revealed the high diversity, richness, and operational taxonomic unit (OTU) numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB, and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA) clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xungong Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui He
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
25
|
Watanabe M, Kojima H, Fukui M. Desulfocucumis palustris gen. nov., sp. nov., a mesophilic sulfate reducer belonging to Desulfotomaculum subcluster Ig. Int J Syst Evol Microbiol 2017; 67:2679-2682. [PMID: 28786781 DOI: 10.1099/ijsem.0.002005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic, endospore-forming, sulfate-reducing bacterium, designated strain NAW-5T, was isolated from marsh soil. Cells of strain NAW-5T were Gram-stain-negative, curved rods that were motile. Strain NAW-5T grew at 18-48 °C (optimum 32-37 °C) and pH 5.8-8.4 (optimum pH 6.2-7.3). Electron donors utilized were various organic acids and H2 which support autotrophic growth. Fermentative growth occurred on carboxylic acids, but not on sugar. Sulfate, thiosulfate and elemental sulfur were used as electron acceptors. The respiratory isoprenoid quinone was MK-7. The genomic DNA G+C content of this strain was 46.6 mol%. Sequence analysis of the 16S rRNA gene showed that strain NAW-5T was affiliated to the family 'Desulfotomaculaceae' but the strain shared very low sequence similarity with any representatives of this family (≥89 %). Strain NAW-5T belongs to Desulfotomaculum subcluster Ig which does not include any species with validly published names. On the basis of significant differences in the phylogenetic and phenotypic properties between strain NAW-5T and related species, strain NAW-5T represents a novel species of a new genus for which the name Desulfocucumis palustris gen. nov., sp. nov. is proposed. The type strain of the type species is NAW-5T (=DSM 102911T=NBRC 112242T).
Collapse
Affiliation(s)
- Miho Watanabe
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
- Postdoctoral Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan
| | - Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
26
|
Li XX, Liu JF, Zhou L, Mbadinga SM, Yang SZ, Gu JD, Mu BZ. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir. Front Microbiol 2017. [PMID: 28638372 PMCID: PMC5461352 DOI: 10.3389/fmicb.2017.01011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5'-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Serge M Mbadinga
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong KongHong Kong, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and TechnologyShanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing TechnologyShanghai, China
| |
Collapse
|
27
|
Rempfert KR, Miller HM, Bompard N, Nothaft D, Matter JM, Kelemen P, Fierer N, Templeton AS. Geological and Geochemical Controls on Subsurface Microbial Life in the Samail Ophiolite, Oman. Front Microbiol 2017; 8:56. [PMID: 28223966 PMCID: PMC5293757 DOI: 10.3389/fmicb.2017.00056] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
Microbial abundance and diversity in deep subsurface environments is dependent upon the availability of energy and carbon. However, supplies of oxidants and reductants capable of sustaining life within mafic and ultramafic continental aquifers undergoing low-temperature water-rock reaction are relatively unknown. We conducted an extensive analysis of the geochemistry and microbial communities recovered from fluids sampled from boreholes hosted in peridotite and gabbro in the Tayin block of the Samail Ophiolite in the Sultanate of Oman. The geochemical compositions of subsurface fluids in the ophiolite are highly variable, reflecting differences in host rock composition and the extent of fluid-rock interaction. Principal component analysis of fluid geochemistry and geologic context indicate the presence of at least four fluid types in the Samail Ophiolite (“gabbro,” “alkaline peridotite,” “hyperalkaline peridotite,” and “gabbro/peridotite contact”) that vary strongly in pH and the concentrations of H2, CH4, Ca2+, Mg2+, NO3-, SO42-, trace metals, and DIC. Geochemistry of fluids is strongly correlated with microbial community composition; similar microbial assemblages group according to fluid type. Hyperalkaline fluids exhibit low diversity and are dominated by taxa related to the Deinococcus-Thermus genus Meiothermus, candidate phyla OP1, and the family Thermodesulfovibrionaceae. Gabbro- and alkaline peridotite- aquifers harbor more diverse communities and contain abundant microbial taxa affiliated with Nitrospira, Nitrosospharaceae, OP3, Parvarcheota, and OP1 order Acetothermales. Wells that sit at the contact between gabbro and peridotite host microbial communities distinct from all other fluid types, with an enrichment in betaproteobacterial taxa. Together the taxonomic information and geochemical data suggest that several metabolisms may be operative in subsurface fluids, including methanogenesis, acetogenesis, and fermentation, as well as the oxidation of methane, hydrogen and small molecular weight organic acids utilizing nitrate and sulfate as electron acceptors. Dynamic nitrogen cycling may be especially prevalent in gabbro and alkaline peridotite fluids. These data suggest water-rock reaction, as controlled by lithology and hydrogeology, constrains the distribution of life in terrestrial ophiolites.
Collapse
Affiliation(s)
- Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, CO, USA
| | - Hannah M Miller
- Department of Geological Sciences, University of Colorado Boulder, CO, USA
| | - Nicolas Bompard
- National Oceanography Centre, University of Southampton Southampton, UK
| | - Daniel Nothaft
- Department of Geological Sciences, University of Colorado Boulder, CO, USA
| | - Juerg M Matter
- National Oceanography Centre, University of Southampton Southampton, UK
| | - Peter Kelemen
- Lamont-Doherty Earth Observatory, Columbia University Palisades, NY, USA
| | - Noah Fierer
- Cooperate Institute for Research in Environmental Sciences, University of ColoradoBoulder, CO, USA; Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Alexis S Templeton
- Department of Geological Sciences, University of Colorado Boulder, CO, USA
| |
Collapse
|
28
|
Mei N, Postec A, Monnin C, Pelletier B, Payri CE, Ménez B, Frouin E, Ollivier B, Erauso G, Quéméneur M. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia. Front Microbiol 2016; 7:1301. [PMID: 27625634 PMCID: PMC5003875 DOI: 10.3389/fmicb.2016.01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/08/2016] [Indexed: 12/01/2022] Open
Abstract
High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ.
Collapse
Affiliation(s)
- Nan Mei
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| | - Anne Postec
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| | - Christophe Monnin
- GET UMR5563 (Centre National de la Recherche Scientifique/UPS/IRD/CNES), Géosciences Environnement ToulouseToulouse, France
| | - Bernard Pelletier
- Institut pour la Recherche et le Développement (IRD) Centre de Nouméa, MIO UM 110Nouméa, Nouvelle-Calédonie
| | - Claude E. Payri
- Institut pour la Recherche et le Développement (IRD) Centre de Nouméa, MIO UM 110Nouméa, Nouvelle-Calédonie
| | - Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ Paris Diderot, Centre National de la Recherche ScientifiqueParis, France
| | - Eléonore Frouin
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| | - Bernard Ollivier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| | - Gaël Erauso
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| | - Marianne Quéméneur
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIOMarseille, France
| |
Collapse
|
29
|
Berlendis S, Ranchou-Peyruse M, Fardeau ML, Lascourrèges JF, Joseph M, Ollivier B, Aüllo T, Dequidt D, Magot M, Ranchou-Peyruse A. Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov., isolated from a deep natural gas storage aquifer. Int J Syst Evol Microbiol 2016; 66:4329-4338. [PMID: 27473224 DOI: 10.1099/ijsem.0.001352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two novel strictly anaerobic bacteria, strains Bs105T and Bs107T, were isolated from a deep aquifer-derived hydrocarbonoclastic community. The cells were rod-shaped, not motile and had terminal spores. Phylogenetic affiliation and physiological properties revealed that these isolates belong to two novel species of the genus Desulfotomaculum. Optimal growth temperatures for strains Bs105T and Bs107T were 42 and 45 °C, respectively. The estimated G+C content of the genomic DNA was 42.9 and 48.7 mol%. For both strains, the major cellular fatty acid was palmitate (C16 : 0). Specific carbon fatty acid signatures of Gram-positive bacteria (iso-C17 : 0) and sulfate-reducing bacteria (C17 : 0cyc) were also detected. An insertion was revealed in one of the two 16S rRNA gene copies harboured by strain Bs107T. Similar insertions have previously been highlighted among moderately thermophilic species of the genus Desulfotomaculum. Both strains shared the ability to oxidize aromatic acids (Bs105T: hydroquinone, acetophenone, para-toluic acid, 2-phenylethanol, trans-cinnamic acid, 4-hydroxybenzaldehyde, benzyl alcohol, benzoic acid 4-hydroxybutyl ester; Bs107T: ortho-toluic acid, benzoic acid 4-hydroxybutyl ester). The names Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov. are proposed for the type strains Bs105T (=DSM 24088T=JCM 31386T) and Bs107T (=DSM 24093T=JCM 31387T).
Collapse
Affiliation(s)
- Sabrina Berlendis
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France.,School of Earth and Ocean Sciences, Main building, Park Place, Cardiff University, Cardiff CF10 3AT, UK
| | - Magali Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| | - Marie-Laure Fardeau
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | | | - Manon Joseph
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | - Bernard Ollivier
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288 Marseille Cedex 09, France
| | - Thomas Aüllo
- TIGF - Transport et Infrastructures Gaz France, 40 Avenue de l'Europe, CS20522, Pau 64000, France
| | - David Dequidt
- Storengy - Geosciences Department, Bois-Colombes, France
| | - Michel Magot
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| | - Anthony Ranchou-Peyruse
- Université de Pau et des Pays de l'Adour, CNRS, IPREM UMR 5254, Equipe Environnement et Microbiologie, Pau 64013, France
| |
Collapse
|
30
|
Wasmund K, Cooper M, Schreiber L, Lloyd KG, Baker BJ, Petersen DG, Jørgensen BB, Stepanauskas R, Reinhardt R, Schramm A, Loy A, Adrian L. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. mBio 2016; 7:e00266-16. [PMID: 27143384 PMCID: PMC4959651 DOI: 10.1128/mbio.00266-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The marine subsurface sediment biosphere is widely inhabited by bacteria affiliated with the class Dehalococcoidia (DEH), phylum Chloroflexi, and yet little is known regarding their metabolisms. In this report, genomic content from a single DEH cell (DEH-C11) with a 16S rRNA gene that was affiliated with a diverse cluster of 16S rRNA gene sequences prevalent in marine sediments was obtained from sediments of Aarhus Bay, Denmark. The distinctive gene content of this cell suggests metabolic characteristics that differ from those of known DEH and Chloroflexi The presence of genes encoding dissimilatory sulfite reductase (Dsr) suggests that DEH could respire oxidized sulfur compounds, although Chloroflexi have never been implicated in this mode of sulfur cycling. Using long-range PCR assays targeting DEH dsr loci, dsrAB genes were amplified and sequenced from various marine sediments. Many of the amplified dsrAB sequences were affiliated with the DEH Dsr clade, which we propose equates to a family-level clade. This provides supporting evidence for the potential for sulfite reduction by diverse DEH species. DEH-C11 also harbored genes encoding reductases for arsenate, dimethyl sulfoxide, and halogenated organics. The reductive dehalogenase homolog (RdhA) forms a monophyletic clade along with RdhA sequences from various DEH-derived contigs retrieved from available metagenomes. Multiple facts indicate that this RdhA may not be a terminal reductase. The presence of other genes indicated that nutrients and energy may be derived from the oxidation of substituted homocyclic and heterocyclic aromatic compounds. Together, these results suggest that marine DEH play a previously unrecognized role in sulfur cycling and reveal the potential for expanded catabolic and respiratory functions among subsurface DEH. IMPORTANCE Sediments underlying our oceans are inhabited by microorganisms in cell numbers similar to those estimated to inhabit the oceans. Microorganisms in sediments consist of various diverse and uncharacterized groups that contribute substantially to global biogeochemical cycles. Since most subsurface microorganisms continue to evade cultivation, possibly due to very slow growth, we obtained and analyzed genomic information from a representative of one of the most widespread and abundant, yet uncharacterized bacterial groups of the marine subsurface. We describe several key features that may contribute to their widespread distribution, such as respiratory flexibility and the potential to use oxidized sulfur compounds, which are abundant in marine environments, as electron acceptors. Together, these data provide important information that can be used to assist in designing enrichment strategies or other postgenomic studies, while also improving our understanding of the diversity and distribution of dsrAB genes, which are widely used functional marker genes for sulfur-cycling microbes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Myriel Cooper
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Lars Schreiber
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Karen G Lloyd
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Brett J Baker
- Department of Marine Science, University of Texas-Austin, Marine Science Institute, Port Aransas, Texas, USA
| | - Dorthe G Petersen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | | | | | - Andreas Schramm
- Department of Bioscience, Center for Geomicrobiology, Aarhus University, Aarhus, Denmark
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
31
|
Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly WP, Lyons TW, Pearson A, Macalady JL. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Front Microbiol 2016; 7:598. [PMID: 27199928 PMCID: PMC4846661 DOI: 10.3389/fmicb.2016.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur, and other sulfur intermediates. While much is known regarding microbial communities in sunlit portions of euxinic systems, the composition and genetic potential of organisms living at aphotic depths have rarely been studied. Metagenomic sequencing of samples from the hypolimnion and the underlying sediments of Mahoney Lake indicate that multiple taxa contribute to sulfate reduction below the chemocline and that the hypolimnion and sediments each support distinct populations of sulfate reducing bacteria (SRB) that differ from the SRB populations observed in the chemocline. After assembling and binning the metagenomic datasets, we recovered near-complete genomes of dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial genomes encoded a 16S rRNA sequence that was most closely related to the sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA sequence that was most closely related to the fatty acid- and aromatic acid-degrading genus Syntrophus. We also recovered two near-complete genomes of Firmicutes species. Analysis of concatenated ribosomal protein trees suggests these genomes are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter. Our metagenomic data indicate that these Firmicutes contribute to carbon cycling below the chemocline. Lastly, we recovered a nearly complete genome from the sediment metagenome which represents a new genus within the FCB (Fibrobacteres, Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found little or no evidence for organisms capable of sulfide oxidation in the aphotic zone below the chemocline. Instead, comparison of functional genes below the chemocline are consistent with recovery of multiple populations capable of reducing oxidized sulfur. Our data support previous observations that at least some of the sulfide necessary to support the dense population of phototrophs in the chemocline is supplied from sulfate reduction in the hypolimnion and sediments. These studies provide key insights regarding the taxonomic and functional diversity within a euxinic environment and highlight the complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Roderick J Bovee
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Sarah R Sattin
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Wiebke Mohr
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - William P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | - Timothy W Lyons
- Department of Earth Sciences, University of California Riverside, CA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center, Department of Geosciences, Pennsylvania State University University Park, TX, USA
| |
Collapse
|
32
|
Pelikan C, Herbold CW, Hausmann B, Müller AL, Pester M, Loy A. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ Microbiol 2016; 18:2994-3009. [PMID: 26625892 DOI: 10.1111/1462-2920.13139] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023]
Abstract
Genes encoding dissimilatory sulfite reductase (DsrAB) are commonly used as diagnostic markers in ecological studies of sulfite- and sulfate-reducing microorganisms. Here, we developed new high-coverage primer sets for generation of reductive bacterial-type dsrA and dsrB polymerase chain reaction (PCR) products for highly parallel amplicon sequencing and a bioinformatics workflow for processing and taxonomic classification of short dsrA and dsrB reads. We employed two diverse mock communities that consisted of 45 or 90 known dsrAB sequences derived from environmental clones to precisely evaluate the performance of individual steps of our amplicon sequencing approach on the Illumina MiSeq platform. Although PCR cycle number, gene-specific primer mismatches and stringent filtering for high-quality sequences had notable effects on the observed dsrA and dsrB community structures, recovery of most mock community sequences was generally proportional to their relative input abundances. Successful dsrA and dsrB diversity analysis in selected environmental samples further proved that the multiplex amplicon sequencing approach is adequate for monitoring spatial distribution and temporal abundance dynamics of dsrAB-containing microorganisms. Although tested for reductive bacterial-type dsrAB, this method is readily applicable for oxidative-type dsrAB of sulfur-oxidizing bacteria and also provides guidance for processing short amplicon reads of other functional genes.
Collapse
Affiliation(s)
- Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Austrian Polar Research Institute, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Albert L Müller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Austrian Polar Research Institute, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria. .,Austrian Polar Research Institute, Vienna, Austria.
| |
Collapse
|
33
|
Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs. mBio 2016; 7:e01669-15. [PMID: 26787827 PMCID: PMC4725000 DOI: 10.1128/mbio.01669-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria belonging to candidate phyla are present in some oil reservoirs and provide the first insights into their potential roles in biogeochemical processes based on several nearly complete genomes.
Collapse
|
34
|
Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep 2015; 5:14295. [PMID: 26399549 PMCID: PMC4585845 DOI: 10.1038/srep14295] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions.
Collapse
|
35
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
36
|
Aoki M, Kakiuchi R, Yamaguchi T, Takai K, Inagaki F, Imachi H. Phylogenetic Diversity of aprA Genes in Subseafloor Sediments on the Northwestern Pacific Margin off Japan. Microbes Environ 2015; 30:276-80. [PMID: 26156553 PMCID: PMC4567568 DOI: 10.1264/jsme2.me15023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Markedly diverse sequences of the adenosine-5'-phosphosulfate reductase alpha subunit gene (aprA), which encodes a key enzyme in microbial sulfate reduction and sulfur oxidation, were detected in subseafloor sediments on the northwestern Pacific off Japan. The aprA gene sequences were grouped into 135 operational taxonomic units (90% sequence identity), including genes related to putative sulfur-oxidizing bacteria predominantly detected in sulfate-depleted deep sediments. Our results suggest that microbial ecosystems in the subseafloor biosphere have phylogenetically diverse genetic potentials to mediate cryptic sulfur cycles in sediments, even where sulfate is rarely present.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
| | | | | | | | | | | |
Collapse
|
37
|
Mathai PP, Zitomer DH, Maki JS. Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments. Microbiology (Reading) 2015; 161:1189-97. [DOI: 10.1099/mic.0.000085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
The impact of gamma radiation on sediment microbial processes. Appl Environ Microbiol 2015; 81:4014-25. [PMID: 25841009 DOI: 10.1128/aem.00590-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/29/2015] [Indexed: 11/20/2022] Open
Abstract
Microbial communities have the potential to control the biogeochemical fate of some radionuclides in contaminated land scenarios or in the vicinity of a geological repository for radioactive waste. However, there have been few studies of ionizing radiation effects on microbial communities in sediment systems. Here, acetate and lactate amended sediment microcosms irradiated with gamma radiation at 0.5 or 30 Gy h(-1) for 8 weeks all displayed NO3 (-) and Fe(III) reduction, although the rate of Fe(III) reduction was decreased in 30-Gy h(-1) treatments. These systems were dominated by fermentation processes. Pyrosequencing indicated that the 30-Gy h(-1) treatment resulted in a community dominated by two Clostridial species. In systems containing no added electron donor, irradiation at either dose rate did not restrict NO3 (-), Fe(III), or SO4 (2-) reduction. Rather, Fe(III) reduction was stimulated in the 0.5-Gy h(-1)-treated systems. In irradiated systems, there was a relative increase in the proportion of bacteria capable of Fe(III) reduction, with Geothrix fermentans and Geobacter sp. identified in the 0.5-Gy h(-1) and 30-Gy h(-1) treatments, respectively. These results indicate that biogeochemical processes will likely not be restricted by dose rates in such environments, and electron accepting processes may even be stimulated by radiation.
Collapse
|
39
|
Laban NA, Dao A, Foght J. DNA stable-isotope probing of oil sands tailings pond enrichment cultures reveals different key players for toluene degradation under methanogenic and sulfidogenic conditions. FEMS Microbiol Ecol 2015; 91:fiv039. [PMID: 25873466 DOI: 10.1093/femsec/fiv039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/14/2022] Open
Abstract
Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions. Total DNA was subjected to isopycnic ultracentrifugation followed by gradient fraction analysis using terminal restriction fragment length polymorphism (T-RFLP) and construction of 16S rRNA, benzylsuccinate synthase (bssA) and dissimilatory sulfite reductase (dsrB) gene clone libraries. T-RFLP analysis plus sequencing and in silico digestion of cloned taxonomic and functional genes revealed that Clostridiales, particularly Desulfosporosinus (136 bp T-RF) contained bssA genes and were key toluene degraders during methanogenesis dominated by Methanosaeta. Deltaproteobacterial Desulfobulbaceae (157 bp T-RF) became dominant under sulfidogenic conditions, likely because the Desulfosporosinus T-RF 136 apparently lacks dsrB and therefore, unlike its close relatives, is presumed incapable of dissimilatory sulfate reduction. We infer incomplete oxidation of toluene by Desulfosporosinus in syntrophic association with Methanosaeta under methanogenic conditions, and complete toluene oxidation by Desulfobulbaceae during sulfate reduction.
Collapse
Affiliation(s)
- Nidal Abu Laban
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Anh Dao
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Julia Foght
- CW-405 Biological Sciences Centre, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
40
|
Abu Laban N, Dao A, Semple K, Foght J. Biodegradation of C7 and C8 iso-alkanes under methanogenic conditions. Environ Microbiol 2014; 17:4898-915. [PMID: 25331365 DOI: 10.1111/1462-2920.12643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 11/26/2022]
Abstract
Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days. 3-Methylhexane and 4-methylheptane were degraded both singly and in the mixture, whereas 2-methylhexane and 2-methylheptane resisted degradation as single substrates but were depleted in the iso-alkane mixture, suggesting co-metabolism. 3-Ethylhexane was degraded neither singly nor with co-substrates. Putative metabolites consistent with succinylated C7 and C8 were detected, suggesting activation by addition of iso-alkanes to fumarate and corresponding to detection of alkylsuccinate synthase-like genes. 454 pyrotag sequencing, cloning and terminal restriction fragment length polymorphism of 16S rRNA genes revealed predominance of a novel member of the family Peptococcaceae (order Clostridiales) and Archaea affiliated with Methanoregula and Methanosaeta. We report here isomer-specific metabolism of C7 -C8 iso-alkanes under methanogenic conditions and propose their activation by a novel Peptococcaceae via addition to fumarate.
Collapse
Affiliation(s)
- Nidal Abu Laban
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Anh Dao
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Kathleen Semple
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
41
|
Purcell AM, Mikucki JA, Achberger AM, Alekhina IA, Barbante C, Christner BC, Ghosh D, Michaud AB, Mitchell AC, Priscu JC, Scherer R, Skidmore ML, Vick-Majors TJ, the WISSARD Science Team. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front Microbiol 2014; 5:594. [PMID: 25477865 PMCID: PMC4237127 DOI: 10.3389/fmicb.2014.00594] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/21/2014] [Indexed: 11/13/2022] Open
Abstract
Diverse microbial assemblages inhabit subglacial aquatic environments. While few of these environments have been sampled, data reveal that subglacial organisms gain energy for growth from reduced minerals containing nitrogen, iron, and sulfur. Here we investigate the role of microbially mediated sulfur transformations in sediments from Subglacial Lake Whillans (SLW), Antarctica, by examining key genes involved in dissimilatory sulfur oxidation and reduction. The presence of sulfur transformation genes throughout the top 34 cm of SLW sediments changes with depth. SLW surficial sediments were dominated by genes related to known sulfur-oxidizing chemoautotrophs. Sequences encoding the adenosine-5'-phosphosulfate (APS) reductase gene, involved in both dissimilatory sulfate reduction and sulfur oxidation, were present in all samples and clustered into 16 distinct operational taxonomic units. The majority of APS reductase sequences (74%) clustered with known sulfur oxidizers including those within the "Sideroxydans" and Thiobacillus genera. Reverse-acting dissimilatory sulfite reductase (rDSR) and 16S rRNA gene sequences further support dominance of "Sideroxydans" and Thiobacillus phylotypes in the top 2 cm of SLW sediments. The SLW microbial community has the genetic potential for sulfate reduction which is supported by experimentally measured low rates (1.4 pmol cm(-3)d(-1)) of biologically mediated sulfate reduction and the presence of APS reductase and DSR gene sequences related to Desulfobacteraceae and Desulfotomaculum. Our results also infer the presence of sulfur oxidation, which can be a significant energetic pathway for chemosynthetic biosynthesis in SLW sediments. The water in SLW ultimately flows into the Ross Sea where intermediates from subglacial sulfur transformations can influence the flux of solutes to the Southern Ocean.
Collapse
Affiliation(s)
- Alicia M. Purcell
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Jill A. Mikucki
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Amanda M. Achberger
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Irina A. Alekhina
- Climate and Environmental Research Laboratory, Arctic and Antarctic Research Institute, St.Petersburg, Russia
| | - Carlo Barbante
- Institute for the Dynamics of Environmental Processes – Consiglio Nazionale delle Ricerche and Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of VeniceVenice, Italy
| | - Brent C. Christner
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, LA, USA
| | - Dhritiman Ghosh
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Alexander B. Michaud
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | | | - John C. Priscu
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Reed Scherer
- Department of Geological and Environmental Sciences, Northern Illinois UniversityDeKalb, IL, USA
| | - Mark L. Skidmore
- Department of Earth Sciences, Montana State UniversityBozeman, MT, USA
| | - Trista J. Vick-Majors
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | | |
Collapse
|
42
|
Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME JOURNAL 2014; 9:1152-65. [PMID: 25343514 PMCID: PMC4351914 DOI: 10.1038/ismej.2014.208] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/13/2014] [Accepted: 09/23/2014] [Indexed: 11/24/2022]
Abstract
The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods.
Collapse
|
43
|
Hillesland KL, Lim S, Flowers JJ, Turkarslan S, Pinel N, Zane GM, Elliott N, Qin Y, Wu L, Baliga NS, Zhou J, Wall JD, Stahl DA. Erosion of functional independence early in the evolution of a microbial mutualism. Proc Natl Acad Sci U S A 2014; 111:14822-7. [PMID: 25267659 PMCID: PMC4205623 DOI: 10.1073/pnas.1407986111] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many species have evolved to function as specialized mutualists, often to the detriment of their ability to survive independently. However, there are few, if any, well-controlled observations of the evolutionary processes underlying the genesis of new mutualisms. Here, we show that within the first 1,000 generations of initiating independent syntrophic interactions between a sulfate reducer (Desulfovibrio vulgaris) and a hydrogenotrophic methanogen (Methanococcus maripaludis), D. vulgaris frequently lost the capacity to grow by sulfate respiration, thus losing the primary physiological attribute of the genus. The loss of sulfate respiration was a consequence of mutations in one or more of three key genes in the pathway for sulfate respiration, required for sulfate activation (sat) and sulfate reduction to sulfite (apsA or apsB). Because loss-of-function mutations arose rapidly and independently in replicated experiments, and because these mutations were correlated with enhanced growth rate and productivity, gene loss could be attributed to natural selection, even though these mutations should significantly restrict the independence of the evolved D. vulgaris. Together, these data present an empirical demonstration that specialization for a mutualistic interaction can evolve by natural selection shortly after its origin. They also demonstrate that a sulfate-reducing bacterium can readily evolve to become a specialized syntroph, a situation that may have often occurred in nature.
Collapse
Affiliation(s)
| | - Sujung Lim
- Biological Sciences, University of Washington Bothell, Bothell, WA 98011
| | | | | | - Nicolas Pinel
- Civil and Environmental Engineering, and Institute for Systems Biology, Seattle, WA 98109-5234
| | - Grant M Zane
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | | | - Yujia Qin
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA 98109-5234; Departments of Biology and Microbiology, Molecular and Cellular Biology Program, University of Washington Seattle, Seattle, WA 98195; Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019; Earth Science Division, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | | |
Collapse
|
44
|
Miyazaki M, Sakai S, Ritalahti KM, Saito Y, Yamanaka Y, Saito Y, Tame A, Uematsu K, Löffler FE, Takai K, Imachi H. Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta. Int J Syst Evol Microbiol 2014; 64:4147-4154. [PMID: 25249566 DOI: 10.1099/ijs.0.068148-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An anaerobic, psychrophilic bacterium, strain MO-SPC2(T), was isolated from a methanogenic microbial community in a continuous-flow bioreactor that was established from subseafloor sediments collected from off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. Cells were pleomorphic: spherical, annular, curved rod, helical and coccoid cell morphologies were observed. Motility only occurred in helical cells. Strain MO-SPC2(T) grew at 0-17 °C (optimally at 9 °C), at pH 6.0-8.0 (optimally at pH 6.8-7.2) and in 20-40 g NaCl l(-1) (optimally at 20-30 NaCl l(-1)). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC2(T) were phosphatidylglycolipids, phospholipids and glycolipids. The major cellular fatty acids were C14 : 0, C16 : 0 and C16 : 1ω9. Isoprenoid quinones were not detected. The G+C content of the DNA was 32.3 mol%. 16S rRNA gene-based phylogenetic analysis showed that strain MO-SPC2(T) was affiliated with the genus Sphaerochaeta within the phylum Spirochaetes, and its closest relatives were Sphaerochaeta pleomorpha Grapes(T) (88.4 % sequence identity), Sphaerochaeta globosa Buddy(T) (86.7 %) and Sphaerochaeta coccoides SPN1(T) (85.4 %). Based on phenotypic characteristics and phylogenetic traits, strain MO-SPC2(T) is considered to represent a novel species of the genus Sphaerochaeta, for which the name Sphaerochaeta multiformis sp. nov. is proposed. The type strain is MO-SPC2(T) ( = JCM 17281(T) = DSM 23952(T)). An emended description of the genus Sphaerochaeta is also proposed.
Collapse
Affiliation(s)
- Masayuki Miyazaki
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Sanae Sakai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Kirsti M Ritalahti
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yayoi Saito
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.,Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yuko Yamanaka
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Yumi Saito
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Akihiko Tame
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Katsuyuki Uematsu
- Section 1 Geochemical Oceanography, Office of Marine Research Department of Marine Science, Marine Works Japan Ltd, Yokosuka, Kanagawa 237-0061, Japan
| | - Frank E Löffler
- Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Ken Takai
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiology Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
45
|
Draft Genome Sequence of Uncultivated Firmicutes (Peptococcaceae SCADC) Single Cells Sorted from Methanogenic Alkane-Degrading Cultures. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00909-14. [PMID: 25212628 PMCID: PMC4161757 DOI: 10.1128/genomea.00909-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The draft genome of an uncultivated bacterium affiliated with the Peptococcaceae was reconstructed by co-assembling Illumina MiSeq sequences from three single cells sorted by microfluidics from two methanogenic alkane-degrading cultures. Peptococcaceae SCADC (short-chain alkane-degrading culture) may be genetically capable of anaerobic alkane activation by fumarate addition in the absence of sulfate.
Collapse
|
46
|
Aoki M, Ehara M, Saito Y, Yoshioka H, Miyazaki M, Saito Y, Miyashita A, Kawakami S, Yamaguchi T, Ohashi A, Nunoura T, Takai K, Imachi H. A long-term cultivation of an anaerobic methane-oxidizing microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor. PLoS One 2014; 9:e105356. [PMID: 25141130 PMCID: PMC4139340 DOI: 10.1371/journal.pone.0105356] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/19/2014] [Indexed: 11/18/2022] Open
Abstract
Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Masayuki Ehara
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Yumi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Hideyoshi Yoshioka
- Institute for Geo-resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masayuki Miyazaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yayoi Saito
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Ai Miyashita
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Shuji Kawakami
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Construction Systems Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Takashi Yamaguchi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Akiyoshi Ohashi
- Department of Social and Environmental Engineering, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
47
|
Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Appl Environ Microbiol 2014; 80:6517-26. [PMID: 25107983 DOI: 10.1128/aem.01666-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanisms and rates of mercury methylation in the Florida Everglades are of great concern because of potential adverse impacts on human and wildlife health through mercury accumulation in aquatic food webs. We developed a new PCR primer set targeting hgcA, a gene encoding a corrinoid protein essential for Hg methylation across broad phylogenetic boundaries, and used this primer set to study the distribution of hgcA sequences in soils collected from three sites along a gradient in sulfate and nutrient concentrations in the northern Everglades. The sequences obtained were distributed in diverse phyla, including Proteobacteria, Chloroflexi, Firmicutes, and Methanomicrobia; however, hgcA clone libraries from all sites were dominated by sequences clustering within the order Syntrophobacterales of the Deltaproteobacteria (49 to 65% of total sequences). dsrB mRNA sequences, representing active sulfate-reducing prokaryotes at the time of sampling, obtained from these sites were also dominated by Syntrophobacterales (75 to 89%). Laboratory incubations with soils taken from the site low in sulfate concentrations also suggested that Hg methylation activities were primarily mediated by members of the order Syntrophobacterales, with some contribution by methanogens, Chloroflexi, iron-reducing Geobacter, and non-sulfate-reducing Firmicutes inhabiting the sites. This suggests that prokaryotes distributed within clades defined by syntrophs are the predominant group controlling methylation of Hg in low-sulfate areas of the Everglades. Any strategy for managing mercury methylation in the Everglades should consider that net mercury methylation is not limited to the action of sulfate reduction.
Collapse
|
48
|
Piceno YM, Reid FC, Tom LM, Conrad ME, Bill M, Hubbard CG, Fouke BW, Graff CJ, Han J, Stringfellow WT, Hanlon JS, Hu P, Hazen TC, Andersen GL. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Front Microbiol 2014; 5:409. [PMID: 25147549 PMCID: PMC4124708 DOI: 10.3389/fmicb.2014.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.
Collapse
Affiliation(s)
- Yvette M Piceno
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Francine C Reid
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Lauren M Tom
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Mark E Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Markus Bill
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Christopher G Hubbard
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Bruce W Fouke
- Energy Biosciences Institute Berkeley, CA, USA ; Department of Geology, University of Illinois at Urbana-Champaign, Urbana-Champaign IL, USA
| | - Craig J Graff
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - Jiabin Han
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - William T Stringfellow
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Jeremy S Hanlon
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, TN, USA
| | - Gary L Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| |
Collapse
|
49
|
|
50
|
Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nat Commun 2013; 4:1998. [PMID: 23759740 PMCID: PMC3709511 DOI: 10.1038/ncomms2998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/09/2013] [Indexed: 11/09/2022] Open
Abstract
Deep subsurface formations (for example, high-temperature oil reservoirs) are candidate sites for carbon capture and storage technology. However, very little is known about how the subsurface microbial community would respond to an increase in CO2 pressure resulting from carbon capture and storage. Here we construct microcosms mimicking reservoir conditions (55 °C, 5 MPa) using high-temperature oil reservoir samples. Methanogenesis occurs under both high and low CO2 conditions in the microcosms. However, the increase in CO2 pressure accelerates the rate of methanogenesis to more than twice than that under low CO2 conditions. Isotope tracer and molecular analyses show that high CO2 conditions invoke acetoclastic methanogenesis in place of syntrophic acetate oxidation coupled with hydrogenotrophic methanogenesis that typically occurs in this environment (low CO2 conditions). Our results present a possibility of carbon capture and storage for enhanced microbial energy production in deep subsurface environments that can mitigate global warming and energy depletion. Deep subsurface formations are potential sites for carbon capture and storage but how subsurface microbial communities may respond to this is not clear. Here, Mayumi et al. construct microcosms and show that increasing CO2 partial pressure via carbon capture and storage more than doubles the rate of methanogenesis.
Collapse
|