1
|
Qi W, Xue MY, Jia MH, Zhang S, Yan Q, Sun HZ. - Invited Review - Understanding the functionality of the rumen microbiota: searching for better opportunities for rumen microbial manipulation. Anim Biosci 2024; 37:370-384. [PMID: 38186256 PMCID: PMC10838668 DOI: 10.5713/ab.23.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024] Open
Abstract
Rumen microbiota play a central role in the digestive process of ruminants. Their remarkable ability to break down complex plant fibers and proteins, converting them into essential organic compounds that provide animals with energy and nutrition. Research on rumen microbiota not only contributes to improving animal production performance and enhancing feed utilization efficiency but also holds the potential to reduce methane emissions and environmental impact. Nevertheless, studies on rumen microbiota face numerous challenges, including complexity, difficulties in cultivation, and obstacles in functional analysis. This review provides an overview of microbial species involved in the degradation of macromolecules, the fermentation processes, and methane production in the rumen, all based on cultivation methods. Additionally, the review introduces the applications, advantages, and limitations of emerging omics technologies such as metagenomics, metatranscriptomics, metaproteomics, and metabolomics, in investigating the functionality of rumen microbiota. Finally, the article offers a forward-looking perspective on the new horizons and technologies in the field of rumen microbiota functional research. These emerging technologies, with continuous refinement and mutual complementation, have deepened our understanding of rumen microbiota functionality, thereby enabling effective manipulation of the rumen microbial community.
Collapse
Affiliation(s)
- Wenlingli Qi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yuan Xue
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Hui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Zhang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qiongxian Yan
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Osorio-Doblado AM, Feldmann KP, Lourenco JM, Stewart RL, Smith WB, Tedeschi LO, Fluharty FL, Callaway TR. Forages and pastures symposium: forage biodegradation: advances in ruminal microbial ecology. J Anim Sci 2023; 101:skad178. [PMID: 37257501 PMCID: PMC10313095 DOI: 10.1093/jas/skad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
The rumen microbial ecosystem provides ruminants a selective advantage, the ability to utilize forages, allowing them to flourish worldwide in various environments. For many years, our understanding of the ruminal microbial ecosystem was limited to understanding the microbes (usually only laboratory-amenable bacteria) grown in pure culture, meaning that much of our understanding of ruminal function remained a "black box." However, the ruminal degradation of plant cell walls is performed by a consortium of bacteria, archaea, protozoa, and fungi that produces a wide variety of carbohydrate-active enzymes (CAZymes) that are responsible for the catabolism of cellulose, hemicellulose, and pectin. The past 15 years have seen the development and implementation of numerous next-generation sequencing (NGS) approaches (e.g., pyrosequencing, Illumina, and shotgun sequencing), which have contributed significantly to a greater level of insight regarding the microbial ecology of ruminants fed a variety of forages. There has also been an increase in the utilization of liquid chromatography and mass spectrometry that revolutionized transcriptomic approaches, and further improvements in the measurement of fermentation intermediates and end products have advanced with metabolomics. These advanced NGS techniques along with other analytic approaches, such as metaproteomics, have been utilized to elucidate the specific role of microbial CAZymes in forage degradation. Other methods have provided new insights into dynamic changes in the ruminal microbial population fed different diets and how these changes impact the assortment of products presented to the host animal. As more omics-based data has accumulated on forage-fed ruminants, the sequence of events that occur during fiber colonization by the microbial consortium has become more apparent, with fungal populations and fibrolytic bacterial populations working in conjunction, as well as expanding understanding of the individual microbial contributions to degradation of plant cell walls and polysaccharide components. In the future, the ability to predict microbial population and enzymatic activity and end products will be able to support the development of dynamic predictive models of rumen forage degradation and fermentation. Consequently, it is imperative to understand the rumen's microbial population better to improve fiber degradation in ruminants and, thus, stimulate more sustainable production systems.
Collapse
Affiliation(s)
- A M Osorio-Doblado
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - K P Feldmann
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - J M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - R L Stewart
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - W B Smith
- Department Animal Science, Auburn University, Auburn, AL, USA
| | - L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - F L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - T R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Weimer PJ. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022; 10:2345. [PMID: 36557598 PMCID: PMC9785684 DOI: 10.3390/microorganisms10122345] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022] Open
Abstract
As major structural components of plant cell walls, cellulose and hemicellulose are degraded and fermented by anaerobic microbes in the rumen to produce volatile fatty acids, the main nutrient source for the host. Cellulose degradation is carried out primarily by specialist bacteria, with additional contributions from protists and fungi, via a variety of mechanisms. Hemicelluloses are hydrolyzed by cellulolytic bacteria and by generalist, non-cellulolytic microbes, largely via extracellular enzymes. Cellulose hydrolysis follows first-order kinetics and its rate is limited by available substrate surface area. Nevertheless, its rate is at least an order of magnitude more rapid than in anaerobic digesters, due to near-obligatory adherence of microbial cells to the cellulose surface, and a lack of downstream inhibitory effects; in the host animal, fiber degradation rate is also enhanced by the unique process of rumination. Cellulolytic and hemicellulolytic microbes exhibit intense competition and amensalism, but they also display mutualistic interactions with microbes at other trophic levels. Collectively, the fiber-degrading community of the rumen displays functional redundancy, partial niche overlap, and convergence of catabolic pathways that all contribute to stability of the ruminal fermentation. The superior hydrolytic and fermentative capabilities of ruminal fiber degraders make them promising candidates for several fermentation technologies.
Collapse
Affiliation(s)
- Paul J Weimer
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
4
|
Yildirim E, Ilina L, Laptev G, Filippova V, Brazhnik E, Dunyashev T, Dubrovin A, Novikova N, Tiurina D, Tarlavin N, Laishev K. The structure and functional profile of ruminal microbiota in young and adult reindeers ( Rangifer tarandus) consuming natural winter-spring and summer-autumn seasonal diets. PeerJ 2021; 9:e12389. [PMID: 34900412 PMCID: PMC8627130 DOI: 10.7717/peerj.12389] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/04/2023] Open
Abstract
Background The key natural area of Russian reindeer (Rangifer tarandus, Nenets breed) is arctic zones, with severe climatic conditions and scarce feed resources, especially in the cold winter season. The adaptation of reindeer to these conditions is associated not only with the genetic potential of the animal itself. The rumen microbiome provides significant assistance in adapting animals to difficult conditions by participating in the fiber digestion. The aim of our study is to investigate the taxonomy and predicted metabolic pathways of the ruminal microbiota (RM) during the winter–spring (WS) and summer–autumn (SA) seasons, in calves and adult reindeer inhabiting the natural pastures of the Yamalo-Nenetsky Autonomous District of the Russian Federation. Methods The RM in reindeer was studied using the Next Generation Sequencing method with the MiSeq (Illumina, San Diego, CA, USA) platform. Reconstruction and prediction of functional profiles of the metagenome, gene families, and enzymes were performed using the software package PICRUSt2 (v.2.3.0). Results The nutritional value of WS and SA diets significantly differed. Crude fiber content in the WS diet was higher by 22.4% (p < 0.05), compared to SA, indicating possibly poorer digestibility and necessity of the adaptation of the RM to this seasonal change. A total of 22 bacterial superphyla and phyla were found in the rumen, superphylum Bacteroidota and phylum Firmicutes being the dominating taxa (up to 48.1% ± 4.30% and 46.1% ± 4.80%, respectively); while only two archaeal phyla presented as minor communities (no more then 0.54% ± 0.14% totally). The percentages of the dominating taxa were not affected by age or season. However, significant changes in certain minor communities were found, with seasonal changes being more significant than age-related ones. The percentage of phylum Actinobacteriota significantly increased (19.3-fold) in SA, compared to WS (p = 0.02) in adults, and the percentage of phylum Cyanobacteria increased up to seven-fold (p = 0.002) in adults and calves. Seasonal changes in RM can improve the ability of reindeer to withstand the seasons characterized by a low availability of nutrients. The PICRUSt2 results revealed 257 predicted metabolic pathways in RM: 41 pathways were significantly (p < 0.05) influenced by season and/or age, including the processes of synthesis of vitamins, volatile fatty acids, and pigments; metabolism of protein, lipids, and energy; pathogenesis, methanogenesis, butanediol to pyruvate biosynthesis, cell wall biosynthesis, degradation of neurotransmitters, lactic acid fermentation, and biosynthesis of nucleic acids. A large part of these changeable pathways (13 of 41) was related to the synthesis of vitamin K homologues. Conclusion The results obtained improve our knowledge on the structure and possible metabolic pathways of the RM in reindeer, in relation to seasonal changes.
Collapse
Affiliation(s)
- Elena Yildirim
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Larisa Ilina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Georgy Laptev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | | | - Evgeni Brazhnik
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Timur Dunyashev
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Andrey Dubrovin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Natalia Novikova
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Daria Tiurina
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Nikolay Tarlavin
- Molecular Genetic laboratory, BIOTROF+ LTD, Saint-Petersburg, Russia
| | - Kasim Laishev
- Department of Animal Husbandry and Environmental Management of the Arctic, Federal Research Center of Russian Academy Sciences, Pushkin, Saint-Petersurg, Russia
| |
Collapse
|
5
|
Neumann AP, Suen G. The Phylogenomic Diversity of Herbivore-Associated Fibrobacter spp. Is Correlated to Lignocellulose-Degrading Potential. mSphere 2018; 3:e00593-18. [PMID: 30541780 PMCID: PMC6291624 DOI: 10.1128/msphere.00593-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed among Fibrobacter phylotypes. F. succinogenes genomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those of F. intestinalis strains. Moreover, genomes of F. succinogenes phylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes of F. succinogenes phylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of the Fibrobacter genomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology of Fibrobacter spp. in the herbivore gut.IMPORTANCE The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria.
Collapse
Affiliation(s)
- Anthony P Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Neumann AP, Weimer PJ, Suen G. A global analysis of gene expression in Fibrobacter succinogenes S85 grown on cellulose and soluble sugars at different growth rates. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:295. [PMID: 30386432 PMCID: PMC6204037 DOI: 10.1186/s13068-018-1290-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/15/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cellulose is the most abundant biological polymer on earth, making it an attractive substrate for the production of next-generation biofuels and commodity chemicals. However, the economics of cellulose utilization are currently unfavorable due to a lack of efficient methods for its hydrolysis. Fibrobacter succinogenes strain S85, originally isolated from the bovine rumen, is among the most actively cellulolytic mesophilic bacteria known, producing succinate as its major fermentation product. In this study, we examined the transcriptome of F. succinogenes S85 grown in continuous culture at several dilution rates on cellulose, cellobiose, or glucose to gain a system-level understanding of cellulose degradation by this bacterium. RESULTS Several patterns of gene expression were observed for the major cellulases produced by F. succinogenes S85. A large proportion of cellulase genes were constitutively expressed, including the gene encoding for Cel51A, the major cellulose-binding endoglucanase produced by this bacterium. Moreover, other cellulase genes displayed elevated expression during growth on cellulose relative to growth on soluble sugars. Growth rate had a strong effect on global gene expression, particularly with regard to genes predicted to encode carbohydrate-binding modules and glycoside hydrolases implicated in hemicellulose degradation. Expression of hemicellulase genes was tightly regulated, with these genes displaying elevated expression only during slow growth on soluble sugars. Clear differences in gene expression were also observed between adherent and planktonic populations within continuous cultures growing on cellulose. CONCLUSIONS This work emphasizes the complexity of the fiber-degrading system utilized by F. succinogenes S85, and reinforces the complementary role of hemicellulases for accessing cellulose by these bacteria. We report for the first time evidence of global differences in gene expression between adherent and planktonic populations of an anaerobic bacterium growing on cellulose at steady state during continuous cultivation. Finally, our results also highlight the importance of controlling for growth rate in investigations of gene expression.
Collapse
Affiliation(s)
- Anthony P. Neumann
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Paul J. Weimer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Agricultural Research Service, United States Department of Agriculture, Madison, WI USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
7
|
Pang J, Liu ZY, Hao M, Zhang YF, Qi QS. An isolated cellulolytic Escherichia coli from bovine rumen produces ethanol and hydrogen from corn straw. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:165. [PMID: 28652866 PMCID: PMC5483281 DOI: 10.1186/s13068-017-0852-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is the most abundant resource on earth. Lignocellulose is mainly composed of cellulose, hemicelluloses, and lignin. The special construction of three kinds of constituents led to the prevention of effective degradation. The goal of this work was to investigate the great potentials of bovine rumen for novel cellulolytic bacterial isolation, which may be used for chemicals and biofuel production from lignocellulose. RESULTS A cellulolytic strain, ZH-4, was isolated from Inner Mongolia bovine rumen. This strain was identified as Escherichia coli by morphological, physiological, and biochemical characteristics and 16S rDNA gene sequencing. The extracellular enzyme activity analysis showed that this strain produces extracellular cellulases with an exoglucanase activity of 9.13 IU, an endoglucanase activity of 5.31 IU, and a β-glucosidase activity of 7.27 IU at the pH 6.8. This strain was found to produce 0.36 g/L ethanol and 4.71 mL/g hydrogen from corn straw with cellulose degradation ratio of 14.30% and hemicellulose degradation ratio of 11.39%. CONCLUSIONS It is the first time that a cellulolytic E. coli was isolated and characterized form the bovine rumen. This provided a great opportunity for researchers to investigate the evolution mechanisms of the microorganisms in the rumen and provided great chance to produce biofuels and chemicals directly from engineered E. coli using consolidated bioprocess.
Collapse
Affiliation(s)
- Jian Pang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051 Inner Mongolia China
| | - Zhan-Ying Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051 Inner Mongolia China
| | - Min Hao
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051 Inner Mongolia China
| | - Yong-Feng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051 Inner Mongolia China
- Institute of Coal Conversion & Cyclic Economy, Inner Mongolia University of Technology, Hohhot, 010051 Inner Mongolia China
| | - Qing-Sheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 China
| |
Collapse
|
8
|
Akin DE, Burdick D, Michaels GE. Rumen bacterial interrelationships with plant tissue during degradation revealed by transmission electron microscopy. Appl Microbiol 2010; 27:1149-56. [PMID: 16349997 PMCID: PMC380225 DOI: 10.1128/am.27.6.1149-1156.1974] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mode of rumen bacterial degradation of cell walls in coastal bermudagrass [Cynodon dactylon (L) Pers.] differed with the plant tissue type. Bacteria degraded thin, primary cell walls of mesophyll and phloem apparently by extracellular enzymes and without prior attachment; thick-walled bundle sheath and epidermal cells apparently were degraded after bacterial attachment, in some types by an extracellular substance, to the plant cell walls. Rumen bacteria split the nondegraded cuticle from the epidermis by preferentially attacking the cell just underneath the cuticle. The propensity for bacterial attachment to lignified cells of the vascular tissue was low, and bacterial degradation of these cells did not occur after 72 h of incubation.
Collapse
Affiliation(s)
- D E Akin
- Richard B. Russell Agricultural Research Center, Athens, Georgia 30604
| | | | | |
Collapse
|
9
|
Numan MT, Bhosle NB. Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 2005; 33:247-60. [PMID: 16385399 DOI: 10.1007/s10295-005-0072-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Recently, alpha-L-arabinofuranosidases (EC3.2.1.55) have received increased attention primarily due to their role in the degradation of lignocelluloses as well as their positive effect on the activity of other enzymes acting on lignocelluloses. As a result, these enzymes are used in many biotechnological applications including wine industry, clarification of fruit juices, digestion enhancement of animal feedstuffs and as a natural improver for bread. Moreover, these enzymes could be used to improve existing technologies and to develop new technologies. The production, mechanisms of action, classification, synergistic role, biochemical properties, substrate specificities, molecular biology and biotechnological applications of these enzymes have been reviewed in this article.
Collapse
Affiliation(s)
- Mondher Th Numan
- National Institute Of Oceanography, 403004 Dona Poula, Goa, India.
| | | |
Collapse
|
10
|
Cotta MA, Zeltwanger RL. Degradation and utilization of xylan by the ruminal bacteria Butyrivibrio fibrisolvens and Selenomonas ruminantium. Appl Environ Microbiol 1995; 61:4396-402. [PMID: 8534103 PMCID: PMC167747 DOI: 10.1128/aem.61.12.4396-4402.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediates were monitored over time. Monocultures of B. fibrisolvens rapidly degraded oat spelt xylan, and a pool of extracellular degradation intermediates composed of low-molecular-weight xylooligosaccharides (xylobiose through xylopentaose and larger, unidentified oligomers) accumulated in these cultures. The ability of S. ruminantium to utilize the products of xylanolysis by B. fibrisolvens was demonstrated by its ability to grow on xylan that had first been digested by the extracellular xylanolytic enzymes of B. fibrisolvens. Although enzymatic hydrolysis converted the xylan to soluble products, this alone was not sufficient to assure complete utilization by S. ruminantium, and considerable quantities of oligosaccharides remained following growth. Stable xylan-utilizing cocultures of S. ruminantium and B. fibrisolvens were established, and the utilization of xylan was monitored. Despite the presence of an oligosaccharide-fermenting organism, accumulations of acid-alcohol soluble products were still noted; however, the composition of carbohydrates present in these cultures differed from that seen when B. fibrisolvens was cultivated alone. Residual carbohydrates present at various times during growth were of higher average degree of polymerization in cocultures than in cultures of B. fibrisolvens alone. Structural characterization of these residual products may help define the limitations on the assimilation of xylooligosaccharides by ruminal bacteria.
Collapse
Affiliation(s)
- M A Cotta
- Fermentation Biochemistry Unit, National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, Illinois 61604, USA
| | | |
Collapse
|
11
|
Hespell RB, Cotta MA. Degradation and utilization by Butyrivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl Environ Microbiol 1995; 61:3042-50. [PMID: 7487036 PMCID: PMC167580 DOI: 10.1128/aem.61.8.3042-3050.1995] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemicelluloses, mainly xylans, can be a major component of diets consumed by ruminants and undergo various degrees of microbial digestion in the rumen. The ability of Butyrivibrio fibrisolvens, a major xylanolytic ruminal species, to degrade and utilize nine chemically and physically different xylans for growth was examined. The arabinoxylans used included two isolated from corncobs (CCX-A and CCX-B), a native xylan excreted by corn cell tissue cultures (CX), an oxalic acid-treated, arabinose-depleted CX, and oat spelt xylan. Except for CCX-A, these xylans were extensively converted within 3 h of growth to acid-alcohol-soluble forms that remained at high levels for the duration of culture growth. These xylans contain mainly xylose and arabinose with small amounts of uronic acids. For a given xylan, all three components were used at about the same rate and extent. During the early stages of growth B. fibrisolvens also rapidly solubilized glucuronoxylans from birchwood, larchwood, 4-O-methylglucuronoxylan, and the xylose homopolymer xylan isolated from beechwood (BEWX). In contrast to the findings for the arabinoxylans, little acid-alcohol-soluble carbohydrate remained in these cultures after 9 h of growth, except for BEWX. Initially, with birchwood, larchwood, and 4-O-methylglucuronoxylan the uronic acid components were preferentially used over the xylose. Final xylan utilization measured at 72 h for all xylans varied from 57% for CCX-A to 92% for BEWX and was correlated with the initial 12-h utilization rate for a given xylan. Since CCX-A and BEWX are both highly water insoluble, this aspect did not appear to influence overall utilization.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R B Hespell
- Fermentation Biochemistry Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | | |
Collapse
|
12
|
Abstract
The ability of ruminal bacteria to utilize xylooligosaccharides was examined. Xylooligosaccharides were prepared by partially hydrolyzing oat spelt xylan in phosphoric acid. This substrate solution was added (0.2%, wt/vol) to a complex medium containing yeast extract and Trypticase that was inoculated with individual species of ruminal bacteria, and growth and utilization were monitored over time. All of the xylanolytic bacteria examined were able to utilize this oligosaccharide mixture as a growth substrate. Butyrivibrio fibrisolvens, Eubacterium ruminantium, and Ruminococcus albus used xylooligosaccharides and whole, unhydrolyzed xylan to similar extents, while Prevotella ruminicola used twice as much xylooligosaccharides as xylan (76 versus 34%). Strains of Selenomonas ruminantium were the only nonxylanolytic species that were able to grow on xylooligosaccharides. The ability of individual S. ruminantium strains to utilize xylooligosaccharides was correlated with the presence of xylosidase and arabinosidases activities.
Collapse
Affiliation(s)
- M A Cotta
- Fermentation Biochemistry Research Unit, U.S. Department of Agriculture, Peoria, Illinois 61604
| |
Collapse
|
13
|
Strobel HJ. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola. Arch Microbiol 1993; 159:465-71. [PMID: 8484709 DOI: 10.1007/bf00288595] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Plant cell wall polysaccharides are primarily composed of hexose or hexose derivatives, but a significant fraction is hemicellulose which contains pentose sugars. Prevotella ruminicola B14, a predominant ruminal bacterium, simultaneously metabolized pentoses and glucose or maltose, but the organism preferentially fermented pentoses over cellobiose and preferred xylose to sucrose. Xylose and arabinose transport at either low (2 microM) or high (1 mM) substrate concentrations were observed only in the presence of sodium and if oxygen was excluded during the harvest and assay procedures. An artificial electrical potential (delta psi) or chemical gradient of sodium (delta pNa) drove transport in anaerobically prepared membrane vesicles. Because (i) transport was electrogenic, (ii) a delta pNa drove uptake, and (iii) the number of sodium binding sites was approximately 1, it appeared that P. ruminicola possessed pentose/sodium support mechanisms for the transport of arabinose and xylose at low substrate concentrations. Pentose uptake exhibited a low affinity for xylose or arabinose (> 300 microM), and transport of xylose exhibited bi-phasic kinetics which suggested that a second sodium-dependent xylose transport system was present. Little study has been made on solute transport by Prevotella (Bacteroides) species and this work represents the first use of isolated membrane vesicles from these organisms.
Collapse
Affiliation(s)
- H J Strobel
- Department of Animal Sciences, University of Kentucky, Lexington 40546-0215
| |
Collapse
|
14
|
Dong XZ, Schyns PJ, Stams AJ. Degradation of galactomannan by a Clostridium butyricum strain. Antonie Van Leeuwenhoek 1991; 60:109-14. [PMID: 1666501 DOI: 10.1007/bf00572700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An anaerobic, sporeforming, galactomannan-degrading bacterium was isolated from methanogenic granular sludge of an UASB reactor used for treatment of wastewater from a sugar refinery. The isolate degraded the polymer rapidly (doubling time was 55 min) and completely in mineral media. The bacterium was classified as Clostridium butyricum; the main products were acetate, butyrate, hydrogen, formate, and presumably CO2. The strain produced extracellular endo-mannanase, cell-associated exo-mannanase and intracellular alpha-galactosidase activity. The mannanases were present when grown on galactomannan, but not after growth on glucose, galactose, or mannose.
Collapse
Affiliation(s)
- X Z Dong
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
15
|
Osborne JM, Dehority BA. Synergism in Degradation and Utilization of Intact Forage Cellulose, Hemicellulose, and Pectin by Three Pure Cultures of Ruminal Bacteria. Appl Environ Microbiol 1989; 55:2247-50. [PMID: 16348005 PMCID: PMC203063 DOI: 10.1128/aem.55.9.2247-2250.1989] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pure cultures of ruminal bacteria characterized as using only a single forage polysaccharide (
Fibrobacter succinogenes
A3c, cellulolytic;
Bacteroides ruminicola
H2b, hemicellulolytic;
Lachnospira multiparus
D15d, pectinolytic) were inoculated separately and in all possible combinations into fermentation tubes containing orchard grass as the sole substrate. Fermentations were run to completion, and then cultures were analyzed for digestion of cellulose plus degradation and utilization of hemicellulose and pectin. Addition of the noncellulolytic organisms, in any combination, to the cellulolytic organism
F. succinogenes
had little effect on overall cellulose utilization.
F. succinogenes
degraded but could not utilize hemicellulose; however, when it was combined with
B. ruminicola
, total utilization of hemicellulose increased markedly over that by
B. ruminicola
alone.
L. multiparus
was inactive in hemicellulose digestion, alone or in any combination. Although unable to degrade and utilize purified pectin,
B. ruminicola
degraded and utilized considerable quantities of the forage pectin. In contrast,
L. multiparus
was very active against purified pectin, but had extremely limited ability to degrade and utilize pectin from the intact forage. Both degradation and utilization of forage pectin increased when
F. succinogenes
was combined with
B. ruminicola.
Sequential addition of two cultures, allowing one to complete its fermentation before adding the second, was used to study synergism between cultures on forage pectin digestion. In general, synergistic effects did not appear to be related to a particular sequence of utilization. The ability of
F. succinogenes
to degrade and
B. ruminicola
to degrade and utilize forage pectin contradicts both previous and present data obtained with purified pectin. Thus, isolation and characterization of ruminal bacteria on purified substrates may be misleading with regard to their role in the overall ruminal fermentation.
Collapse
Affiliation(s)
- J M Osborne
- Department of Animal Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691-4096
| | | |
Collapse
|
16
|
Varel VH. Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe. Arch Microbiol 1989; 152:209-14. [PMID: 2774798 DOI: 10.1007/bf00409652] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two strictly anaerobic strains of ruminal cellulolytic bacteria were isolated which are very similar to the original description given for Clostridium longisporum. Vegetative cells were 1 micron wide by 5 to 15 microns long. Subterminal spores were observed only when an insoluble carbon source was provided for growth. Besides cellulose, the organisms fermented cellobiose, glucose, galactose, fructose, mannose, pectin, salicin and sucrose. Xylan and xylose were not fermented. Fermentation products from glucose or alfalfa cell walls included formate, acetate, butyrate, ethanol, H2 and CO2. The GC content was 23% for one strain and 33% for the other. These isolates hydrolyzed cell wall fractions of alfalfa, in particular, hemicellulose, more rapidly and extensively than other ruminal cellulolytic species examined.
Collapse
Affiliation(s)
- V H Varel
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933
| |
Collapse
|
17
|
Abstract
Thirty strains of Butyrivibrio fibrisolvens isolated in diverse geographical locations were examined for esterase activity by using naphthyl esters of acetate, butyrate, caprylate, laurate, and palmitate. All strains possessed some esterase activity, and high levels of activity were observed with strains 49, H17c, S2, AcTF2, and LM8/1B. Esterase activity also was detected in other ruminal bacteria (Bacteroides ruminicola, Selenomonas ruminantium, Ruminobacter amylophilus, and Streptococcus bovis). For all B. fibrisolvens strains tested, naphthyl fatty acid esterase activity paralleled culture growth and was predominantly cell associated. With strains 49, CF4c, and S2, the activity was retained by protoplasts made from whole cells. Esterase activity was detected with all strains when grown on glucose, and some strains showed higher activity levels when grown on other substrates (larchwood xylan or citrus pectin). When nitrophenyl esters of fatty acids were used to measure esterase activity, generally four- to sevenfold-higher activity levels were detected, and with a number of strains substantial levels were found in the culture fluid. Cultures of these strains (H17c, NOR37, D1, and D30g) contained xylanase and acetyl xylan esterase activities, neither of which was associated to any great extent with the cells. Acetyl xylan esterase has not been previously detected in ruminal bacteria and may be important to overall digestion of forage by these organisms.
Collapse
Affiliation(s)
- R B Hespell
- Northern Regional Research Center, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | |
Collapse
|
18
|
Hespell RB, Wolf R, Bothast RJ. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol 1987; 53:2849-53. [PMID: 3124741 PMCID: PMC204211 DOI: 10.1128/aem.53.12.2849-2853.1987] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.
Collapse
Affiliation(s)
- R B Hespell
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
19
|
Sharma VK, Hobson PN. Interactions among cellulolytic bacteria from an anaerobic digester. MICROBIAL ECOLOGY 1986; 12:343-353. [PMID: 24212925 DOI: 10.1007/bf02098575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
High cellulolytic activity of particular strains did not cause dominance of one, or a few, species of fiber-digesting bacteria in a cattlewaste anaerobic digester. The population contained a large number of species and varieties with different cellulolytic and fiber-digesting activities. Although mixed cultures of some of these bacteria showed no intereffects, with others, cellulolysis was less or in some cases greater than that shown by individual components of the cultures. The interactions were probably related to effects on growth of the bacteria rather than on activities of components of the cellulase enzyme complex, and culture filtrates of two of the more numerous cellulolytic species ofClostridium affected growth of other cellulolytic bacteria. The inhibitory factor(s) appeared to be of bacteriocin type, but the stimulatory factor(s) was unknown. It was suggested that these interactions are localized or short-lived in the digester, and so the population remains in a "dynamic" steady state.Some inhibitions of growth of rumen cellulolytic bacteria were caused by the digester bacteria, but it was suggested that factors other than these inhibitions are responsible for the absence of rumen bacteria from anaerobic digesters.
Collapse
Affiliation(s)
- V K Sharma
- Rowett Research Institute, Bucksburn, Aberdeen, Scotland
| | | |
Collapse
|
20
|
Akin DE, Rigsby LL. Degradation of Bermuda and Orchard Grass by Species of Ruminal Bacteria. Appl Environ Microbiol 1985; 50:825-30. [PMID: 16346915 PMCID: PMC291755 DOI: 10.1128/aem.50.4.825-830.1985] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fiber degradation in Bermuda grass and orchard grass was evaluated gravimetrically and by scanning and transmission electron microscopy after incubation with pure cultures of rumen bacteria.
Lachnospira multiparus
D-32 was unable to degrade plant cell wall components.
Butyrivibrio fibrisolvens
49 degraded 6 and 14.9% of the fiber components in Bermuda grass and orchard grass, respectively, and
Ruminococcus albus
7 degraded 11.4% orchard grass fiber but none in Bermuda grass. Both
B. fibrisolvens
and
R. albus
lacked capsules, did not adhere to fiber, and degraded only portions of the more easily available plant cell walls.
R. flavefaciens
FD-1 was the most active fiber digester, degrading 8.2 and 55.3% of Bermuda and orchard grass fiber, respectively. The microbe had a distinct capsule and adhered to fiber, especially that which is slowly degraded, but was able to cause erosion and disorganization of the more easily digested cell walls, apparently by extracellular enzymes. Results indicated that more digestible cell walls could be partially degraded by enzymes disassociated from cellulolytic and noncellulolytic bacteria, and data were consistent with the hypothesis that the more slowly degraded plant walls required attachment. Microbial species as well as the cell wall architecture influenced the physical association with and digestion of plant fiber.
Collapse
Affiliation(s)
- D E Akin
- Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30613
| | | |
Collapse
|
21
|
Abstract
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shaped bacterium which grows best in media containing yeast extract. When placed on preformed lawns of A. calcoaceticus RAG-1, strain YUV-1 produced translucent plaques which grew in size until the entire plate was covered. Plaque formation was due to solubilization of the emulsan capsule of RAG-1. Plaque formation was not observed on emulsan-negative mutants of RAG-1. As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane. Growth of YUV-1 on a medium containing yeast extract and emulsan was biphasic. During the initial 24 h, cell concentration increased 10-fold, but emulsan was not degraded; during the lag in growth (24 to 48 h), emulsan was inactivated and depolymerized but not consumed; during the second growth phase (48 to 70 h) the depolymerized emulsan products were consumed.
Collapse
|
22
|
Collings GF, Yokoyama MT. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85. Appl Environ Microbiol 1980; 39:566-71. [PMID: 7189996 PMCID: PMC291379 DOI: 10.1128/aem.39.3.566-571.1980] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.
Collapse
|
23
|
Salyers AA, Vercellotti JR, West SE, Wilkins TD. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 1977; 33:319-22. [PMID: 848954 PMCID: PMC170684 DOI: 10.1128/aem.33.2.319-322.1977] [Citation(s) in RCA: 488] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested.
Collapse
|
24
|
Akin DE, Amos HE. Rumen Bacterial Degradation of Forage Cell Walls Investigated by Electron Microscopy. Appl Microbiol 1975; 29:692-701. [PMID: 16350017 PMCID: PMC187058 DOI: 10.1128/am.29.5.692-701.1975] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The association of rumen bacteria with specific leaf tissues of the forage grass Kentucky-31 tall fescue (
Festuca arundinacea
Schreb.) during in vitro degradation was investigated by transmission and scanning electron microscopy. Examination of degraded leaf cross-sections revealed differential rates of tissue degradation in that the cell walls of the mesophyll and pholem were degraded prior to those of the outer bundle sheath and epidermis. Rumen bacteria appeared to degrade the mesophyll, in some cases, and phloem without prior attachment to the plant cell walls. The degradation of bundle sheath and epidermal cell walls appeared to be preceded by attachment of bacteria to the plant cell wall. Ultrastructural features apparently involved in the adhesion of large cocci to plant cells were observed by transmission and scanning electron microscopy. The physical association between plant and rumen bacterial cells during degradation apparently varies with tissue types. Bacterial attachment, by extracellular features in some microorganisms, is required prior to degradation of the more resistant tissues.
Collapse
Affiliation(s)
- D E Akin
- Field Crops Utilization and Marketing Research Laboratory, Richard B. Russell Agricultural Research Center, Athens, Georgia 30604
| | | |
Collapse
|
25
|
Gradel CM, Dehority BA. Fermentation of isolated pectin and pectin from intact forages by pure cultures of rumen bacteria. Appl Microbiol 1972; 23:332-40. [PMID: 4552890 PMCID: PMC380341 DOI: 10.1128/am.23.2.332-340.1972] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies on the rate and extent of galacturonic acid and isolated pectin digestion were carried out with nine strains of rumen bacteria (Butyrivibrio fibrisolvens H10b and D16f, Bacteroides ruminicola 23 and D31d, Lachnospira multiparus D15d, Peptostreptococcus sp. D43e, B. succinogenes A3c, Ruminococcus flavefaciens B34b, and R. albus 7). Only three strains, 23, D16f, and D31d, utilized galacturonic acid as a sole energy source, whereas all strains except A3c and H10b degraded (solubilized) and utilized purified pectin. Nutrient composition of the basal medium and separate sterilization of the substrate affected the rate and extent of fermentation for both substrates. Pectin degradation and utilization were measured with two maturity stages each of intact bromegrass and alfalfa. For bromegrass I, all strains tested (B34b, 23, D16f, D31d, D15d, and D43e) degraded a considerable amount of pectin and, with the exception of B34b, utilized most of what was degraded. Similar, but lower, results were obtained with bromegrass II, except for the two strains of B. ruminicola, 23 and D31d, which were unable to degrade and utilize pectin from this forage. All strains were able to degrade and utilize pectin from both maturity stages of alfalfa; however, values were considerably lower for strains 23 and D31d. Synergism studies, in which a limited utilizing strain, B34b, was combined with the limited degrading strain, D31d, resulted in a slight increase in degradation and a very marked increase in utilization of the pectin in all four forages. Similar results were obtained on both alfalfa substrates with a combination of strains B34b and D16f; however, no increases were observed with this combination on bromegrass.
Collapse
|