1
|
Sherif M, Kirsch N, Splivallo R, Pfohl K, Karlovsky P. The Role of Mycotoxins in Interactions between Fusarium graminearum and F. verticillioides Growing in Saprophytic Cultures and Co-Infecting Maize Plants. Toxins (Basel) 2023; 15:575. [PMID: 37756001 PMCID: PMC10538043 DOI: 10.3390/toxins15090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Fusarium graminearum (FG) and Fusarium verticillioides (FV) co-occur in infected plants and plant residues. In maize ears, the growth of FV is stimulated while FG is suppressed. To elucidate the role of mycotoxins in these effects, we used FG mutants with disrupted synthesis of nivalenol (NIV) and deoxynivalenol (DON) and a FV mutant with disrupted synthesis of fumonisins to monitor fungal growth in mixed cultures in vitro and in co-infected plants by real-time PCR. In autoclaved grains as well as in maize ears, the growth of FV was stimulated by FG regardless of the production of DON or NIV by the latter, whereas the growth of FG was suppressed. In autoclaved grains, fumonisin-producing FV suppressed FG more strongly than a fumonisin-nonproducing strain, indicating that fumonisins act as interference competition agents. In co-infected maize ears, FG suppression was independent of fumonisin production by FV, likely due to heterogeneous infection and a lower level of fumonisins in planta. We conclude that (i) fumonisins are agents of interference competition of FV, and (ii) trichothecenes play no role in the interaction between FG and FV. We hypothesize the following: (i) In vitro, FG stimulates the FV growth by secreting hydrolases that mobilize nutrients. In planta, suppression of plant defense by FG may additionally play a role. (ii) The biological function of fumonisin production in planta is to protect kernels shed on the ground by accumulating protective metabolites before competitors become established. Therefore, to decipher the biological function of mycotoxins, the entire life history of mycotoxin producers must be considered.
Collapse
Affiliation(s)
- Mohammed Sherif
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Phytopathology Unit, Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Nadine Kirsch
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for National and International Plant Health, Julius Kühn-Institut, 38104 Braunschweig, Germany
| | - Richard Splivallo
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Nectariss Grasse SAS, 06130 Grasse, France
| | - Katharina Pfohl
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
- Institute for National and International Plant Health, Julius Kühn-Institut, 38104 Braunschweig, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Del Favero G, Zeugswetter M, Kiss E, Marko D. Endoplasmic Reticulum Adaptation and Autophagic Competence Shape Response to Fluid Shear Stress in T24 Bladder Cancer Cells. Front Pharmacol 2021; 12:647350. [PMID: 34012396 PMCID: PMC8126838 DOI: 10.3389/fphar.2021.647350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Accumulation of xenobiotics and waste metabolites in the urinary bladder is constantly accompanied by shear stress originating from the movement of the luminal fluids. Hence, both chemical and physical cues constantly modulate the cellular response in health and disease. In line, bladder cells have to maintain elevated mechanosensory competence together with chemical stress response adaptation potential. However, much of the molecular mechanisms sustaining this plasticity is currently unknown. Taking this as a starting point, we investigated the response of T24 urinary bladder cancer cells to shear stress comparing morphology to functional performance. T24 cells responded to the shear stress protocol (flow speed of 0.03 ml/min, 3 h) by significantly increasing their surface area. When exposed to deoxynivalenol-3-sulfate (DON-3-Sulf), bladder cells increased this response in a concentration-dependent manner (0.1-1 µM). DON-3-Sulf is a urinary metabolite of a very common food contaminant mycotoxin (deoxynivalenol, DON) and was already described to enhance proliferation of cancer cells. Incubation with DON-3-Sulf also caused the enlargement of the endoplasmic reticulum (ER), decreased the lysosomal movement, and increased the formation of actin stress fibers. Similar remodeling of the endoplasmic reticulum and area spread after shear stress were observed upon incubation with the autophagy activator rapamycin (1-100 nM). Performance of experiments in the presence of chloroquine (chloroquine, 30 μM) further contributed to shed light on the mechanistic link between adaptation to the biomechanical stimulation and ER stress response. At the molecular level, we observed that ER reshaping was linked to actin organization, with the two components mutually regulating each other. Indeed, we identified in the ER stress-cytoskeletal rearrangement an important axis defining the physical/chemical response potential of bladder cells and created a workflow for further investigation of urinary metabolites, food constituents, and contaminants, as well as for pharmacological profiling.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Zeugswetter
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Yesterday masked, today modified; what do mycotoxins bring next? Arh Hig Rada Toksikol 2018; 69:196-214. [DOI: 10.2478/aiht-2018-69-3108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mycotoxins are secondary metabolites produced by toxigenic fungi in crops worldwide. In (micro)organisms such as plants, fungi, bacteria, or animals they may be further metabolised and modified, but this is also true for food processing, which may lead to a wide range of masked mycotoxin forms. These often remain undetected by analytical methods and are the culprits for underestimates in risk assessments. Furthermore, once ingested, modified mycotoxins can convert back to their parent forms. This concern has raised the need for analytical methods that can detect and quantify modified mycotoxins as essential for accurate risk assessment. The promising answer is liquid chromatography-mass spectrometry. New masked mycotoxin forms are now successfully detected by iontrap, time-of-flight, or high-resolution orbitrap mass spectrometers. However, the toxicological relevance of modified mycotoxins has not been fully clarified.
Collapse
|
4
|
Ajandouz EH, Berdah S, Moutardier V, Bege T, Birnbaum DJ, Perrier J, Di Pasquale E, Maresca M. Hydrolytic Fate of 3/15-Acetyldeoxynivalenol in Humans: Specific Deacetylation by the Small Intestine and Liver Revealed Using in Vitro and ex Vivo Approaches. Toxins (Basel) 2016; 8:toxins8080232. [PMID: 27483321 PMCID: PMC4999848 DOI: 10.3390/toxins8080232] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
In addition to deoxynivalenol (DON), acetylated derivatives, i.e., 3-acetyl and 15-acetyldexynivalenol (or 3/15ADON), are present in cereals leading to exposure to these mycotoxins. Animal and human studies suggest that 3/15ADON are converted into DON after their ingestion through hydrolysis of the acetyl moiety, the site(s) of such deacetylation being still uncharacterized. We used in vitro and ex vivo approaches to study the deacetylation of 3/15ADON by enzymes and cells/tissues present on their way from the food matrix to the blood in humans. We found that luminal deacetylation by digestive enzymes and bacteria is limited. Using human cells, tissues and S9 fractions, we were able to demonstrate that small intestine and liver possess strong deacetylation capacity compared to colon and kidneys. Interestingly, in most cases, deacetylation was more efficient for 3ADON than 15ADON. Although we initially thought that carboxylesterases (CES) could be responsible for the deacetylation of 3/15ADON, the use of pure human CES1/2 and of CES inhibitor demonstrated that CES are not involved. Taken together, our original model system allowed us to identify the small intestine and the liver as the main site of deacetylation of ingested 3/15ADON in humans.
Collapse
Affiliation(s)
| | - Stéphane Berdah
- Aix Marseille Univ, Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Faculté de médecine secteur Nord, Boulevard Pierre Dramard, F-13916 Marseille Cedex 20, France.
| | - Vincent Moutardier
- Aix Marseille Univ, Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Faculté de médecine secteur Nord, Boulevard Pierre Dramard, F-13916 Marseille Cedex 20, France.
| | - Thierry Bege
- Aix Marseille Univ, Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Faculté de médecine secteur Nord, Boulevard Pierre Dramard, F-13916 Marseille Cedex 20, France.
| | - David Jérémie Birnbaum
- Aix Marseille Univ, Laboratoire de Biomécanique Appliquée, UMRT24 IFSTTAR, Faculté de médecine secteur Nord, Boulevard Pierre Dramard, F-13916 Marseille Cedex 20, France.
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Eric Di Pasquale
- Aix Marseille Univ, CNRS, CRN2M, Marseille, France & CSO@MyEnterix, Marseille, France.
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
5
|
Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins. ACTA ACUST UNITED AC 2016; 2:127-133. [PMID: 29767078 PMCID: PMC5941024 DOI: 10.1016/j.aninu.2016.07.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/03/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022]
Abstract
The worldwide contamination of feeds and foods with mycotoxins is a significant problem. Mycotoxins pose huge health threat to animals and humans. As well, mycotoxins bring enormous economic losses in food industry and animal husbandry annually. Thus, strategies to eliminate or inactivate mycotoxins in food and feed are urgently needed. Traditional physical and chemical methods have some limitations such as limited efficacy, safety issues, losses in the nutritional value and the palatability of feeds, as well as the expensive equipment required to implement these techniques. Biological degradation of mycotoxins has shown promise because it works under mild, environmentally friendly conditions. Aflatoxin (AF), zearalenone (ZEA) and deoxynivalenol (DON) are considered the most economically important mycotoxins in terms of their high prevalence and significant negative effects on animal performance. Therefore, this review will comprehensively describe the biological degradation of AF, ZEA and DON by microorganisms (including fungi and bacteria) and specific enzymes isolated from microbial systems that can convert mycotoxins with varied efficiency to non- or less toxic products. Finally, some strategies and advices on existing difficulties of biodegradation research are also briefly proposed in this paper.
Collapse
|
6
|
Broekaert N, Devreese M, De Mil T, Fraeyman S, Antonissen G, De Baere S, De Backer P, Vermeulen A, Croubels S. Oral Bioavailability, Hydrolysis, and Comparative Toxicokinetics of 3-Acetyldeoxynivalenol and 15-Acetyldeoxynivalenol in Broiler Chickens and Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8734-8742. [PMID: 26343882 DOI: 10.1021/acs.jafc.5b03270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The goal of this study was to determine the absolute oral bioavailability, (presystemic) hydrolysis and toxicokinetic characteristics of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol in broiler chickens and pigs. Crossover animal trials were performed with intravenous and oral administration of deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol to broilers and pigs. Plasma concentrations were analyzed by using liquid chromatography-tandem mass spectrometry, and data were processed via a tailor-made compartmental toxicokinetic analysis. The results in broiler chickens showed that the absorbed fraction after oral deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol administration was 10.6, 18.2, and 42.2%, respectively. This fraction was completely hydrolyzed presystemically for 3-acetyldeoxynivalenol to deoxynivalenol and to a lesser extent (75.4%) for 15-acetyldeoxynivalenol. In pigs, the absorbed fractions were 100% for deoxynivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol, and both 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol were completely hydrolyzed presystemically. The disposition properties of 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol demonstrate their toxicological relevance and consequently the possible need to establish a tolerable daily intake.
Collapse
Affiliation(s)
| | | | | | | | - Gunther Antonissen
- Department of Pathology, Bacteriology and Poultry Diseases, Laboratory of Bacteriology and Mycology, Faculty of Veterinary Medicine, Ghent University , Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | - An Vermeulen
- Department of Bioanalysis, Laboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Gent, Belgium
| | | |
Collapse
|
7
|
Li F, Wang W, Ma J, Yu C, Lin X, Yan W. Natural occurrence of masked deoxynivalenol in Chinese wheat and wheat-based products during 2008-2011. WORLD MYCOTOXIN J 2012. [DOI: 10.3920/wmj2012.1412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A total of 697 samples of wheat and wheat-based products collected from 24 provinces in China during 2008-2011 were analysed for deoxynivalenol (DON), deoxynivalenol-3-glucoside (DON-3G), 3-O-acetyldeoxynivalenol (3-ADON) and 15-O-acetyldeoxynivalenol (15-ADON) by ultra-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). DON was the predominant toxin detected abundantly and frequently. Nine wheat flour samples were positive for DON at levels exceeding the Chinese regulatory limit of 1000 μg/kg for DON in wheat. Moderate concentrations of DON-3G and lower concentrations of both 3-ADON and 15-ADON were found in the presence of high DON levels. DON-3G was detected at concentrations of 4-238 μg/kg (mean 52 μg/kg) in wheat kernels and 3-39 μg/kg (mean 11 μg/kg) in wheat flour in 2008; and 3-235 μg/kg (mean 22 μg/kg), 3-53 μg/kg (mean 14 μg/kg) and 3-87 μg/kg (mean19 μg/kg) in wheat products in 2009, 2010 and 2011, respectively. The average relative ratio of DON-3G to DON was 33±3% in wheat kernels and 10±1% in wheat flour in 2008; and 22±7%, 9±4% and 14±7% in wheat products in 2009, 2010 and 2011, respectively. The natural occurrence of DON-3G is positively correlated with that of DON in all samples over the 4-year period. DON-3G was present at a level higher than 3-ADON and 15-ADON in all samples examined, possibly due to the fact that a higher level of DON, the precursor of DON-3G, was found compared to either 3-ADON or 15-ADON. As for the toxin proportion, DON-3G accounted for 30% (wheat kernel) and 13% (wheat flour), as well as 14%, 11% and 13% of the total 4 toxins tested in 2008, 2009, 2010 and 2011 samples, respectively. These results indicate the importance of considering DON-3G with regard to setting a regulatory limit for DON in Chinese wheat and wheat-based products.
Collapse
Affiliation(s)
- F.Q. Li
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| | - W. Wang
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| | - J.J. Ma
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| | - C.C. Yu
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| | - X.H. Lin
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| | - W.X. Yan
- Key Lab of Food Safety Risk Assesment, Ministry of Hea1th, China National Center for Food Safety Risk Assessment, 7# Panjiayuan Nanli, Chaoyang District, Beijing, 100021, PR China
| |
Collapse
|
8
|
Abstract
Mutant strains of Fusarium graminearum Z3639 produced by disruption of Tri8 were altered in their ability to biosynthesize 15-acetyldeoxynivalenol and instead accumulated 3,15-diacetyldeoxynivalenol, 7,8-dihydroxycalonectrin, and calonectrin. Fusarium sporotrichioides NRRL3299 Tri8 mutant strains accumulated 3-acetyl T-2 toxin, 3-acetyl neosolaniol, and 3,4,15-triacetoxyscirpenol rather than T-2 toxin, neosolaniol, and 4,15-diacetoxyscirpenol. The accumulation of these C-3-acetylated compounds suggests that Tri8 encodes an esterase responsible for deacetylation at C-3. This gene function was confirmed by cell-free enzyme assays and feeding experiments with yeast expressing Tri8. Previous studies have shown that Tri101 encodes a C-3 transacetylase that acts as a self-protection or resistance factor during biosynthesis and that the presence of a free C-3 hydroxyl group is a key component of Fusarium trichothecene phytotoxicity. Since Tri8 encodes the esterase that removes the C-3 protecting group, it may be considered a toxicity factor.
Collapse
Affiliation(s)
- Susan P McCormick
- Mycotoxin Research Unit, USDA/ARS, National Center for Agricultural Utilization Research, Peoria, Illinois 61604-3902, USA.
| | | |
Collapse
|
9
|
Abstract
Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of agricultural commodities and for the protection of crops from phytotoxic effects of fungal metabolites. This review summarizes research on the biological detoxification of fungal toxins by microorganisms and plants and its practical applications. Some mycotoxins are detoxified during ensiling and other fermentation processes (aflatoxins, alternariol, mycophenolic acid, patulin, PR toxin) while others are transformed into toxic products or survive fermentation unchanged. Plants can detoxify fomannoxin, fusaric acid, HC-toxin, ochratoxin A and oxalate but the degradation of deoxynivalenol has yet to be proven. Microflora of the digestive tract of vertebrates and invertebrates exhibit detoxification activities towards aflatoxins, ochratoxin A, oxalate and trichothecenes. Some toxin-producing fungi are able to degrade or transform their own products under suitable conditions. Pure cultures of bacteria and fungi which detoxify mycotoxins have been isolated from complex microbial populations by screening and enrichment culture techniques. Genes responsible for some of the detoxification activities have been cloned and expressed in heterologous hosts. The detoxification of aflatoxins, cercosporin, fumonisins, fusaric acid, ochratoxin A, oxalic acid, patulin, trichothecenes and zearalenone by pure cultures is reviewed. Finally, current application of these results in food and feed production and plant breeding is summarized and expected future developments are outlined.
Collapse
Affiliation(s)
- P Karlovsky
- University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
10
|
Islam Z, Nagase M, Yoshizawa T, Yamauchi K, Sakato N. T-2 toxin induces thymic apoptosis in vivo in mice. Toxicol Appl Pharmacol 1998; 148:205-14. [PMID: 9473527 DOI: 10.1006/taap.1997.8338] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A single intraperitoneal injection of T-2 toxin (0.35, 1.75, or 3.5 mg/kg body wt) induced time- and dose-dependent thymic atrophy in young female BALB/c mice. T-2 toxin (1.75 mg/kg) induced maximal atrophy by day 3 with complete recovery by day 7. Flow cytometric analysis showed that the CD4(+)CD8(+) double positive thymocyte population decreased markedly. Histopathological examination of the thymus indicated that the pattern of cell death in the thymocytes had a characteristic apoptotic morphology with cell shrinkage and nuclear condensation. The in vivo effects of T-2 toxin included the induction of DNA fragmentation of approximately 200 base pairs in ladder form and cell death in thymocytes. Furthermore, flow cytometric analysis of PI-stained thymocytes from animals dosed with T-2 toxin revealed the formation of apoptotic cells. Of nine kinds of trichothecene mycotoxins tested, T-2 toxin appeared to be the most potent agent to induce apoptosis in the thymus. We sought insight into the mechanism of T-2 toxin-induced apoptosis in vivo. Administration of the protein synthesis inhibitor, CHX (15 mg/kg ip), 5 min after T-2 toxin (1.75 mg/kg ip) inhibited the induction of apoptosis in thymocytes, suggesting that the de novo protein synthesis was necessary. By using adrenalectomized mice and anti-TNF-alpha antibody-injected mice, it was shown that neither endogenous glucocorticoid nor TNF-alpha appeared to be involved in the apoptotic process. Taken together, these findings suggest that T-2 toxin-induced thymic atrophy is associated with cell death through a mechanism of apoptosis.
Collapse
Affiliation(s)
- Z Islam
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | | | | | | | | |
Collapse
|
11
|
Kimura M, Kaneko I, Komiyama M, Takatsuki A, Koshino H, Yoneyama K, Yamaguchi I. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 1998; 273:1654-61. [PMID: 9430709 DOI: 10.1074/jbc.273.3.1654] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trichothecene mycotoxins such as deoxynivalenol, 4,15-diacetoxyscirpenol, and T-2 toxin, are potent protein synthesis inhibitors for eukaryotic organisms. The 3-O-acetyl derivatives of these toxins were shown to reduce their in vitro activity significantly as assessed by assays using a rabbit reticulocyte translation system. The results suggested that the introduction of an O-acetyl group at the C-3 position in the biosynthetic pathway works as a resistance mechanism for Fusarium species that produce t-type trichothecenes (trichothecenes synthesized via the precursor trichotriol). A gene responsible for the 3-O-acetylation reaction, Tri101, has been successfully cloned from a Fusarium graminearum cDNA library that was designed to be expressed in Schizosaccharomyces pombe. Fission yeast transformants were selected for their ability to grow in the presence of T-2 toxin, and this strategy allowed isolation of 25 resistant clones, all of which contained a cDNA for Tri101. This is the first drug-inactivating O-acetyltransferase gene derived from antibiotic-producing organisms. The open reading frame of Tri101 codes for a polypeptide of 451 amino acid residues, which shows no similarity to any other proteins reported so far. TRI101 from recombinant Escherichia coli catalyzes O-acetylation of the trichothecene ring specifically at the C-3 position in an acetyl-CoA-dependent manner. By using the Tri101 cDNA as a probe, two least overlapping cosmid clones that cover a region of 70 kilobase pairs have been isolated from the genome of F. graminearum. Other trichothecene biosynthetic genes, Tri4, Tri5, and Tri6, were not clustered in the region covered by these cosmid clones. These new cosmid clones are considered to be located in other parts of the large biosynthetic gene cluster and might be useful for the study of trichothecene biosynthesis.
Collapse
Affiliation(s)
- M Kimura
- Microbial Toxicology Laboratory, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Usleber E, Abramson D, Gessler R, Smith DM, Clear RM, Märtlbauer E. Natural contamination of Manitoba barley by 3,15-diacetyldeoxynivalenol and its detection by immunochromatography. Appl Environ Microbiol 1996; 62:3858-60. [PMID: 8967776 PMCID: PMC168193 DOI: 10.1128/aem.62.10.3858-3860.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Contamination of Canadian barley samples by 3,15-diacetyldeoxynivalenol was detected by enzyme immunoassays combined with liquid chromatography-mass spectrometry. This is the first reported natural occurrence of this mycotoxin. The barley was infected mainly with Fusarium graminearum. Deoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone were also found.
Collapse
Affiliation(s)
- E Usleber
- Institute for Hygiene and Technology of Food of Animal Origin, Veterinary Faculty, University of Munich, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Plattner RD, Tjarks LW, Beremand MN. Trichothecenes accumulated in liquid culture of a mutant of Fusarium sporotrichioides NRRL 3299. Appl Environ Microbiol 1989; 55:2190-4. [PMID: 2802604 PMCID: PMC203054 DOI: 10.1128/aem.55.9.2190-2194.1989] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A UV-generated mutant of Fusarium sporotrichioides NRRL 3299 was altered in its ability to biosynthesize T-2 toxin, as shown by a rapid screen with monoclonal antibodies to T-2. This stable mutant accumulated two trichothecenes that were not observed in liquid cultures of the parent strain. The two compounds were identified as 3,15-diol 12,13-epoxytrichothec-9-ene and 3,15-diol 12,13-epoxytrichothec-9-ene 3-acetate on the basis of their nuclear magnetic resonance and mass spectra. This is the first report of either of these two compounds as secondary metabolites of F. sporotrichioides and of a trichothecene acetylated at C-3 by this species.
Collapse
Affiliation(s)
- R D Plattner
- Northern Regional Research Center, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | |
Collapse
|
14
|
Beeton S, Bull AT. Biotransformation and detoxification of T-2 toxin by soil and freshwater bacteria. Appl Environ Microbiol 1989; 55:190-7. [PMID: 2705769 PMCID: PMC184076 DOI: 10.1128/aem.55.1.190-197.1989] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.
Collapse
Affiliation(s)
- S Beeton
- Biological Laboratory, University of Kent, Canterbury, United Kingdom
| | | |
Collapse
|
15
|
Bergers WW, van der Stap JG, Kientz CE. Trichothecene Production in Liquid Stationary Cultures of
Fusarium tricinctum
NRRL 3299 (Synonym:
F. sporotrichioides
): Comparison of Quantitative Brine Shrimp Assay with Physicochemical Analysis. Appl Environ Microbiol 1985; 50:656-62. [PMID: 16346884 PMCID: PMC238684 DOI: 10.1128/aem.50.3.656-662.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stationary liquid cultures of
Fusarium tricinctum
NRRL 3299 (synonym:
F. sporotrichioides
) produce T-2 toxin, neosolaniol, diacetoxyscirpenol, and HT-2 toxin when cultured on peptone-enriched Czapek Dox medium. At 15 and 27°C, maximum T-2 toxin yield (265 and 50 μg/ml) was found after 10 to 14 and 7 days, respectively. The T-2 toxin in the culture medium was metabolized rapidly at 27°C and slowly at 15°C. Addition of 0.025% (wt/vol) sorbic acid to the medium resulted in an increased production of trichothecenes at 15°C (400 μg of T-2 per ml after 14 days). Trichothecenes in the culture liquid were determined by the brine shrimp bioassay and physicochemical analysis. The brine shrimp assay was improved by using modern bioassay equipment, including tissue culture trays and multipipettes, and by a standardized approach with positive and negative controls. The physicochemical analysis was based on adsorption of the trichothecenes onto Amberlite XAD-2 columns, derivatization with trifluoroacetic anhydride followed by capillary gas chromatography, and identification by mass spectrometry (as many as 17 trichothecenes were detected in the culture medium). The brine shrimp assay offers an interesting monitoring system for the quantitation of T-2 toxin and should be useful for studies on production of this toxin in culture. Specific information on less toxic trichothecenes, however, requires a more time-consuming chemical analysis.
Collapse
Affiliation(s)
- W W Bergers
- Medical Biological Laboratory and Prins Maurits Laboratory, TNO, 2280 AA Rijswijk, The Netherlands
| | | | | |
Collapse
|
16
|
Pestka JJ, el-Bahrawy A, Hart LP. Deoxynivalenol and 15-monoacetyl deoxynivalenol production by Fusarium graminearum R6576 in liquid media. Mycopathologia 1985; 91:23-8. [PMID: 3840229 DOI: 10.1007/bf00437282] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Growth and toxigenesis by Fusarium graminearum R6576, were compared in four liquid media. Parameters monitored during the fermentation were deoxynivalenol (DON) and 15-acetyl deoxynivalenol (15-ADON) production, fungal mass, carbohydrate utilization, and pH. Factors which were varied included basal medium composition, corn steep liquor (CSL) concentration, sucrose concentration and ammonium tartrate concentration. Growth in modified Fries medium resulted in only low levels of DON (0.25 mg/L) and 15-ADON (0.25 mg/L) after 20 days. Addition of 4% CSL to modified Fries medium raised the 20 day DON yield to 16.5 mg/l. Increasing the sucrose concentration in modified Fries medium amended with 4% CSL resulted in increased mycelial dry weight but decreased levels of DON. Concentrations of ammonium tartrate greater than 1% in modified Fries amended with 4% CSL greatly reduced DON yield. Use of glucose-yeast extract-peptone (GYEP) for toxin production resulted in higher yields of 15-ADON (14.0 mg/L) than DON (5.5 mg/L) after 20 days. However, supplementation of GYEP with 4% CSL resulted primarily in DON production (4.5 mg/L) after 20 days. In general, qualitative and quantitative production of DON and 15-ADON by Fusarium graminearum R6576 were dependent on the composition of the complex liquid medium.
Collapse
|
17
|
Ehrlich KC, Lillehoj EB. Simple method for isolation of 4-deoxynivalenol from rice inoculated with Fusarium graminearum. Appl Environ Microbiol 1984; 48:1053-4. [PMID: 6508304 PMCID: PMC241676 DOI: 10.1128/aem.48.5.1053-1054.1984] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A new method for preparative isolation of 4-deoxynivalenol (DON) is presented. This method avoids the loss of material during purification on silica gel by column chromatography. DON and 3-acetyldeoxynivalenol in crude extracts of rice inoculated with Fusarium graminearum were converted to triacetyldeoxynivalenol; the acetylated product was easier to purify by silica gel chromatography than DON is. After hydrolysis and further purification on a charcoal-alumina column, the 71% pure DON was recovered in yields as high as 450 mg of DON per kg of rice. Subsequent separation on a Sephadex LH20 column yielded DON that was greater than 90% pure.
Collapse
|
18
|
Greenhalgh R, Neish GA, Miller JD. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates. Appl Environ Microbiol 1983; 46:625-9. [PMID: 6227284 PMCID: PMC239326 DOI: 10.1128/aem.46.3.625-629.1983] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Three isolates of Fusarium graminearum (DAOM 180377, 180378, and 180379) were screened for their ability to produce mycotoxins on the solid substrates corn and rice. They all produced deoxynivalenol and zearalenone on corn. On rice, only DAOM 180378 and 180379 produced significant amounts of these mycotoxins, with levels of deoxynivalenol being much higher than those of zearalenone. The effects of the initial moisture content before autoclaving, incubation temperature, and time were studied with isolate DAOM 180378. At 19.5 degrees C the main product was zearalenone, whereas at 25 degrees C both deoxynivalenol and zearalenone were formed. Higher incubation temperatures (28 degrees C) favored deoxynivalenol formation, the maximum amount being 515 ppm (515 micrograms/g) formed after 24 days at an initial moisture content of 40%. The maximum level of zearalenone produced at the same temperature was 399 ppm, but at an initial moisture content of 35%. Other factors, such as pH, oxygen and carbon dioxide concentrations, and size of the culture flask also appeared to affect the production of mycotoxins.
Collapse
|
19
|
Pavanasasivam G, Jarvis BB. Microbial Transformation of Macrocyclic Trichothecenes. Appl Environ Microbiol 1983; 46:480-3. [PMID: 16346370 PMCID: PMC239418 DOI: 10.1128/aem.46.2.480-483.1983] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A resting culture of
Rhizopus arrhizus
(ATCC 11145) transformed verrucarin A into 16-hydroxyverrucarin A, whereas
R. arrhizus
transformed verrucarin B into a mixture of 16-hydroxyverrucarin B and 3′-hydroxyverrucarin A. Relative to verrucarins A and B, the 16-hydroxy derivatives showed marked increases in activity, as tested in vivo against P388 mouse leukemia.
Collapse
Affiliation(s)
- G Pavanasasivam
- Department of Chemistry, University of Maryland, College Park, Maryland 20742
| | | |
Collapse
|
20
|
Yoshizawa T, Onomoto C, Morooka N. Microbial acetyl conjugation of T-2 toxin and its derivatives. Appl Environ Microbiol 1980; 39:962-6. [PMID: 7396487 PMCID: PMC291459 DOI: 10.1128/aem.39.5.962-966.1980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The acetyl conjugation of T-2 toxin and its derivatives, the 12,13-epoxytrichothecene mycotoxins, was studied by using mycelia of trichothecene-producing strains of Fusarium graminearum, F. nivale, Calonectria nivalis, and F. sporotrichoides, T-2 toxin was efficiently converted into acetyl T-2 toxin by all strains except a T-2 toxin-producing strain of F. sporotrichoides, which hydrolyzed the substrate to HT-2-toxin and neosolaniol. HT-2 toxin was conjugated to 3-acetyl HT-2 toxin as an only product by mycelia of F. graminearum and C. nivalis, but was also resistant to conjugation by both F. nivale and F. sporotrichoides. Neosolaniol was also biotransformed selectively into 3-acetyl neosolaniol by F. graminearum. However, 3-acetyl HT-2 toxin was not acetylated by any of the strains under the conditions employed, but was hydrolyzed to HT-2 toxin by F. graminearum and F. nivale. This is the first report on the biological 3 alpha-O-acetyl conjugation of T-2 toxin and its derivatives.
Collapse
|
21
|
Claridge CA, Schmitz H. Microbial and chemical transformations of some 12,13-epoxytrichothec-9,10-enes. Appl Environ Microbiol 1978; 36:63-7. [PMID: 100053 PMCID: PMC243035 DOI: 10.1128/aem.36.1.63-67.1978] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resting cells of Streptomyces griseus, Mucor mucedo, and a growing culture of Acinetobacter calcoaceticus when mixed with compounds related to 12,13-epoxytrichothec-9-ene-4beta,15-diacetoxy-3alpha-ol(anguidine) produced a series of derivatives that were either partially hydrolyzed or selectively acylated. These derivatives showed marked differences in activities as assayed by antifungal and tissue culture cytotoxicity tests.
Collapse
|
22
|
Abstract
Acetyl T-2 toxin (3,4,15-triacetoxy-8-isovaleroxy-12,13-epoxy-delta9-trichothecene) was isolated and characterized as a naturally occurring emetic trichothecene from liquid cultures of Fusarium poae (NRRL 3287). Acetyl T-2 toxin was shown to be much less toxic than T-2 toxin in pigeon assays.
Collapse
|
23
|
Yoshizawa T, Morooka N. Comparative studies on microbial and chemical modifications of trichothecene mycotoxins. Appl Microbiol 1975; 30:38-43. [PMID: 1147618 PMCID: PMC187110 DOI: 10.1128/am.30.1.38-43.1975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The microbial modification of several trichothecene mycotoxins by trichothecene-producing strains of Fusarium nivale and F. solani was studied. These results were compared with the corresponding chemical modifications. The growing mycelia of Fusarium spp. did not convert 4beta-acetoxy-3alpha,7alpha, 15-trihydroxy-12, 13-epoxytrichothec-9-en-8-one (fusarenon) into 3alpha,4beta, 7alpha,15-tetrahydroxy-12,13-epoxy-trichothec-9-en-8-one (nivalenol), whereas 3alpha,4beta,7alpha,15-tetracetoxy-12,13-epoxytrichothec-9-en-8-one (tetraacetylnivalenol) was deacetylated to yield 3alpha-hydroxy-4beta,7alpha,15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (4,7,15-triae-tylnivalenol), which was resistant to further deacetylation. T-2 toxin was transformed intoHT-2 toxin, and 8alpha-(3-methylbutyryloxy)-3alpha,4beta,-15-triacetoxy-12,13-epoxytrichothec-9-en-8-one (T-2 acetate) was transformed into HT-2 toxin via T-2 toxin. Chemical modification with ammonium hydroxide converted tetraacetylnivalenol into fusarenon via 4,7,15-triacetylnivalenol. 3alpha-7alpha,15-Triacetoxy-12,13-epoxytrichothec-9-en-8-one (triacetyldeoxynivalenol) gave deacetylation products lacking the C-7 or c-15 acetyl group in addition to 7alpha,15- diacetoxy-3alpha-hydroxy-12, 13-epoxytrichothec-9-en-8-one (7,15-diacetyldeoxynivalenol). These results demonstrate the regio-selectivity in microbial modification of trichothecenes. Based on the results and available knowledge concerning the transformation of trichothecenes, mechanisms for biological modifications of these mycotoxins are postulated.
Collapse
|