1
|
Pluske JR, Kim JC, Black JL. Manipulating the immune system for pigs to optimise performance. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disease and enhanced microbial load are considered to be major factors limiting the performance and overall efficiency of feed use by pigs in Australian piggeries. It is recognised that pigs exposed to conventional housing systems with high microbial loads grow 10–20% more slowly than do gnotobiotic pigs or pigs kept in ‘clean’ environments. Consequently, a proportion of pigs in any production cycle are continuously being challenged by their immediate environment, which can cause an immune response to be mounted. Such a process is physiologically expensive in terms of energy and protein (comprised of amino acids), with, for example, the enhanced rate of protein turnover associated with the production of immune cells, antibodies and acute-phase proteins increasing energy expenditure by 10–15% of maintenance needs and protein requirements by 7–10%. The requirements for lysine, tryptophan, sulfur-containing amino acids and threonine can be increased by a further 10%. The over-stimulation of the immune response with excess production of pro-inflammatory cytokines causes excessive production primarily of the prostaglandin E2 (PGE2), which contributes to anorexia, fever and increased proteolysis, and a concomitant reduction in pig performance. Prostaglandin E2 is produced from dietary and cell-membrane phospholipids via secretory phospholipase A2 (sPLA2) to produce arachidonic acid, which is catalysed by the COX-2 enzyme. Negating the negative effects of PGE2 appears not to adversely affect the ability of the immune system to combat pathogens, but improves pig performance. There are negative outcomes for pig health and productivity through both under- and over-stimulation of the immune response. This review briefly outlines the impact of immune stimulation on pigs and discusses strategies to optimise the immune response for pig health and performance.
Collapse
|
2
|
Abstract
AbstractNine hundred and sixty weaned pigs were exposed for 5·5 weeks to controlled concentrations of airborne dust and ammonia in a single, multi-factorial experiment. Production and health responses were measured but only the former are reported here. The treatments were a dust concentration of either 1·2, 2·7, 5·1 or 9·9 mg/m3(inhalable fraction) and an ammonia concentration of either 0·6, 10·0, 18·8 or 37·0 p. p. m., which are representative of commercial conditions. The experiment was carried out over 2·5 years and pigs were used in eight batches, each comprising five lots of 24 pigs. Each treatment combination was replicated once and an additional control lot (nominally ≈ 0 mg/m3dust and ≈ 0 p. p. m. ammonia) was included in each batch to provide a baseline. The dust concentration was common across the other four lots in each batch in which all four ammonia concentrations were used; thus the split-plot design was more sensitive to the effects of ammonia than dust.The pigs were kept separately in five rooms in a purpose-built facility. The pollutants were injected continuously into the air supply. Ammonia was supplied from a pressurized cylinder and its concentration was measured with an NOxchemiluminescent gas analyser after catalytic conversion. The endogenous dust in each room was supplemented by an artificial dust, which was manufactured from food, barley straw and faeces, mixed by weight in the proportions 0·5: 0·1: 0·4. The ingredients were oven-dried, milled and mixed and this artificial dust was then resuspended in the supply air. Dust concentration was monitored continuously with a tribo-electric sensor and measured continually with an aerodynamic particle sizer and gravimetric samplers.Live weight per pig and cumulative food intake per pen of 12 pigs were measured after 5·5 weeks of exposure. Exposure to both aerial pollutants depressed live weight relative to the control (control v. pollutant, 25·7 v. 25·0 (s.e.d. = 0·33) kg, P = 0·043) and there was a trend for food intake to be lower for pollutant-exposed pigs (control v. pollutant 292 v. 280 (s.e.d. = 7·1) kg per pen, P = 0·124). The reduction in live weight and food intake was dependent upon the concentration of dust (mean across all ammonia concentrations for increasing dust concentration; live weight 25·3, 26·4, 24·0 and 24·5 (s.e.d. = 0·65) kg, P = 0·081; food intake 295, 316, 248 and 263 (s.e.d. = 14·3) kg per pen, P = 0·016) but not ammonia (mean across all dust concentrations for increasing ammonia concentration; live weight 24·4, 25·1, 25·3 and 25·3 (s.e.d. = 0·41) kg, P = 0·158; food intake 279, 275, 288 and 279 kg (s.e.d. = 9·0) kg per pen, P = 0·520). There was an interaction between dust and ammonia for live weight (P = 0·030) but the effects were complicated and may have been the result of a type I error. There was no interaction for food intake (P = 0·210). In general, both food intake and live-weight gain, but not food conversion efficiency, were lower for weaned pigs exposed to 5·1 and 9·9 mg/m3dust concentrations compared with 1·2 and 2·7 mg/m3treatments. Other measures of production were also analysed and supported the overall interpretation that dust concentrations of 5·1 mg/m3and higher depress performance.This study is the first to quantify the effects of chronic exposure to common aerial pollutants on the performance of weaned pigs. The results suggest that dust concentrations of 5·1 or 9·9 mg/m3(inhalable fraction) across ammonia concentrations up to 37 p.p.m. adversely affect performance. The commercial significance of these findings depends on the financial benefits of the superior production at low dust concentrations relative to the cost of providing air of this quality.
Collapse
|
3
|
Judge EP, Hughes JML, Egan JJ, Maguire M, Molloy EL, O'Dea S. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine. Am J Respir Cell Mol Biol 2014; 51:334-43. [PMID: 24828366 DOI: 10.1165/rcmb.2013-0453tr] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.
Collapse
Affiliation(s)
- Eoin P Judge
- 1 Irish National Lung and Heart Transplant Program, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
4
|
Siegert P, Schmidt G, Papatheodorou P, Wieland T, Aktories K, Orth JHC. Pasteurella multocida toxin prevents osteoblast differentiation by transactivation of the MAP-kinase cascade via the Gα(q/11)--p63RhoGEF--RhoA axis. PLoS Pathog 2013; 9:e1003385. [PMID: 23696743 PMCID: PMC3656108 DOI: 10.1371/journal.ppat.1003385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
The 146-kDa Pasteurella multocida toxin (PMT) is the main virulence factor to induce P. multocida-associated progressive atrophic rhinitis in various animals. PMT leads to a destruction of nasal turbinate bones implicating an effect of the toxin on osteoblasts and/or osteoclasts. The toxin induces constitutive activation of Gα proteins of the Gq/11-, G12/13- and Gi-family by deamidating an essential glutamine residue. To study the PMT effect on bone cells, we used primary osteoblasts derived from rat calvariae and stromal ST-2 cells as differentiation model. As marker of functional osteoblasts the expression and activity of alkaline phosphatase, formation of mineralization nodules or expression of specific transcription factors as osterix was determined. Here, we show that the toxin inhibits differentiation and/or function of osteoblasts by activation of Gαq/11. Subsequently, Gαq/11 activates RhoA via p63RhoGEF, which specifically interacts with Gαq/11 but not with other G proteins like Gα12/13 and Gαi. Activated RhoA transactivates the mitogen-activated protein (MAP) kinase cascade via Rho kinase, involving Ras, MEK and ERK, resulting in inhibition of osteoblast differentiation. PMT-induced inhibition of differentiation was selective for the osteoblast lineage as adipocyte-like differentiation of ST-2 cells was not hampered. The present work provides novel insights, how the bacterial toxin PMT can control osteoblastic development by activating heterotrimeric G proteins of the Gαq/11-family and is a molecular pathogenetic basis for understanding the role of the toxin in bone loss during progressive atrophic rhinitis induced by Pasteurella multocida. Pasteurella multocida causes as a facultative pathogen various diseases in men and animals. One induced syndrome is atrophic rhinitis, which is a form of osteopenia, mainly characterized by facial distortion due to degradation of nasal turbinate bones. Strains, which especially affect bone tissue, produce the protein toxin P. multocida toxin (PMT). Importantly, PMT alone is capable to induce all symptoms of atrophic rhinitis. To cause osteopenia PMT influences the development and/or activity of specialized bone cells like osteoblasts and osteoclasts. Recently, we could identify the molecular mechanism of PMT. The toxin constitutively activates certain heterotrimeric G proteins by deamidation. Here, we studied the effect of PMT on the differentiation of osteoblasts. We demonstrate the direct action of PMT on osteoblasts and osteoblast-like cells and as a consequence inhibition of osteoblastic differentiation. Moreover, we revealed the underlying signal transduction pathway to impair proper osteoblast development. We show that PMT activates small GTPases in a Gαq/11 dependent manner via a non-ubiquitously expressed RhoGEF. In turn the mitogen-activated protein kinase pathway is transactivated leading to inhibition of osteoblastogenesis. Our findings present a mechanism how PMT hijacks host cell signaling pathways to hinder osteoblast development, which contributes to the syndrome of atrophic rhinitis.
Collapse
Affiliation(s)
- Peter Siegert
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Hermann–Staudinger–Graduiertenschule Universität Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| | - Joachim H. C. Orth
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- * E-mail: (KA); (JO)
| |
Collapse
|
5
|
Pasteurella multocida toxin interaction with host cells: entry and cellular effects. Curr Top Microbiol Immunol 2012; 361:93-111. [PMID: 22552700 PMCID: PMC4408768 DOI: 10.1007/82_2012_219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric G(q)-, G(i)- and G(12/13)-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida.
Collapse
|
6
|
Abstract
The mitogenic toxin from Pasteurella multocida (PMT) is a member of the dermonecrotic toxin family, which includes toxins from Bordetella, Escherichia coli and Yersinia. Members of the dermonecrotic toxin family modulate G-protein targets in host cells through selective deamidation and/or transglutamination of a critical active site Gln residue in the G-protein target, which results in the activation of intrinsic GTPase activity. Structural and biochemical data point to the uniqueness of PMT among these toxins in its structure and action. Whereas the other dermonecrotic toxins act on small Rho GTPases, PMT acts on the α subunits of heterotrimeric G(q) -, G(i) - and G(12/13) -protein families. To date, experimental evidence supports a model in which PMT potently stimulates various mitogenic and survival pathways through the activation of G(q) and G(12/13) signaling, ultimately leading to cellular proliferation, whilst strongly inhibiting pathways involved in cellular differentiation through the activation of G(i) signaling. The resulting cellular outcomes account for the global physiological effects observed during infection with toxinogenic P. multocida, and hint at potential long-term sequelae that may result from PMT exposure.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
7
|
Duncan EJS, Kournikakis B, Ho J, Hill I. Pulmonary deposition of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident. Inhal Toxicol 2009; 21:141-52. [PMID: 18923948 DOI: 10.1080/08958370802412629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dry anthrax spore powder is readily disseminated as an aerosol and it is possible that passive dispersion when opening a letter containing anthrax spores may result in lethal doses to humans. The specific aim of this study was to quantify the respirable aerosol hazard associated with opening an envelope/letter contaminated with a dry spore powder of the biological pathogen anthrax in a typical office environment. An envelope containing a letter contaminated with 1.0 g of dry Bacillus atrophaeus (BG) spores (pathogen simulant) was opened in the presence of an unrestrained swine model. Aerosolized spores were detected in the room in seconds and peak concentrations occurred by three minutes. The swine, located approximately 1.5 m from the source, was exposed to the aerosol for 28 min following the letter opening event and then moved to a clean room for 30 min. A necropsy was completed to determine the extent of in vivo spore deposition in the lungs. The median number of viable colony forming units (CFU) measured in the combined right and left lung was 21,200: the average mass of both lungs was 283 g. In excess of 100 CFU per gram of lung tissue was found at sites within the anterior, intermediate and posterior lobes. The results of this study confirmed that opening an envelope containing spores generated an aerosol spanning the respirable particle size range of 1-10 microm, and that normal respiration of swine led to spore deposition throughout the lungs. The observed deposition of spores in the lungs of the swine is within the LD(50) range of 2,500-55,000 estimated for humans for inhaled anthrax. Thus, there would appear to be a significant health risk to those individuals exposed to anthrax spores when opening a contaminated envelope.
Collapse
Affiliation(s)
- E J Scott Duncan
- Defence R. & D. Canada - Suffield, Medicine Hat, Alberta, Canada.
| | | | | | | |
Collapse
|
8
|
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295:L240-63. [PMID: 18487356 DOI: 10.1152/ajplung.90203.2008] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Collapse
Affiliation(s)
- Christopher S Rogers
- Department of Internal Medicine, Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jordan RW, Hamilton TDC, Hayes CM, Patel D, Jones PH, Roe JM, Williams NA. Modulation of the humoral immune response of swine and mice mediated by toxigenic Pasteurella multocida. ACTA ACUST UNITED AC 2004; 39:51-9. [PMID: 14556996 DOI: 10.1016/s0928-8244(03)00201-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Progressive atrophic rhinitis is an upper respiratory tract disease of pigs caused by toxigenic strains of the bacterium Pasteurella multocida. In this study the effect of P. multocida on the humoral immune response of pigs and mice was investigated. Pigs were given live intranasal challenge with either a toxigenic strain or a non-toxigenic strain of P. multocida, or were given daily intranasal instillation of a cell-free lysate of the toxigenic strain. Mice were given a live intranasal challenge of either a toxigenic or a non-toxigenic strain of P. multocida. All of the animals were immunised with ovalbumin and serum concentrations of anti-ovalbumin antibodies were quantified and compared between different treatment groups and control animals. Intranasal challenge with toxigenic P. multocida caused a significant reduction in the levels of anti-ovalbumin IgG in both species. A similar effect was seen in pigs given a cell-free extract of toxigenic P. multocida. Whilst the mechanism of this suppression is unclear, we surmise that immunomodulation of the host is an important virulence factor for toxigenic P. multocida, and could be an important function of the toxin. This immunomodulatory effect may enhance colonisation of P. multocida aiding horizontal transmission and may predispose to concurrent infection with other potential pathogens.
Collapse
Affiliation(s)
- Robert W Jordan
- Department of Clinical Veterinary Science, University of Bristol, Bristol BS40 5DU, UK.
| | | | | | | | | | | | | |
Collapse
|